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 

Abstract — Real-time human activity recognition on a mobile 

phone is presented in this article. Unlike in most other studies, not 

only the data were collected using the accelerometers of a 

smartphone, but also models were implemented to the phone and 

the whole classification process (preprocessing, feature extraction 

and classification) was done on the device. The system is trained 

using phone orientation independent features to recognize five 

everyday activities: walking, running, cycling, driving a car and 

sitting/standing while the phone is in the pocket of the subject's 

trousers. Two classifiers were compared, knn (k nearest 

neighbors) and QDA (quadratic discriminant analysis). The 

models for real-time activity recognition were trained offline 

using a data set collected from eight subjects and these offline 

results were compared to real-time recognition rates, which are 

obtained by implementing models to mobile activity recognition 

application which currently supports two operating systems: 

Symbian^3 and Android. The results show that the presented 

method is light and, therefore, suitable for be used in real-time 

recognition. In addition, the recognition rates on the smartphones 

were encouraging, in fact, the recognition accuracies obtained are 

approximately as high as offline recognition rates. Also, the 

results show that the method presented is not an operating system 

dependent. 

 
Key words—Activity recognition, classification, mobile phones 

 

I. INTRODUCTION AND RELATED WORK 

UMAN activity recognition using wearable sensors, such 

as accelerometers, has been widely studied during the 

recent 20 years. Despite several years of study and promising 

recognition results, not many commercial products, besides 

pedometers, exploiting these results are available. There are 
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some exceptions, however, such as Polar Active [17] and 

ActiGraph [1], which can be used to detect the intensity of the 

activity. Nevertheless, in overall, it seems that companies and 

people have not been willing to spend money on technology 

enabling activity recognition. Now, things are about to change: 

Smartphones are sold more and more every year (smartphone 

shipments: 2009: 169 million, 2010: 295 million [23]). 

Smartphones include a wide range of sensors, such as 

accelerometers, magnetometers, gyroscopes, and GPS, all of 

which are sensors used for activity recognition in the past 

studies. Therefore, people already have the technology 

enabling activity recognition and mobile application stores 

(AppStore, Nokia Store, Android Market, etc.) can be used to 

distribute activity recognition applications directly to end-

users. 

In this article real-time user-independent human activity 

recognition is presented. The presented method uses only 

orientation independent features and it is used to recognize 

five every day activities. Article compares the performance of 

two classifiers (QDA and knn) in offline and real-time 

scenarios. Unlike in most of the other studies, in this study the 

recognition models are implemented to mobile phone to see 

how models work in real-life, outside laboratory conditions.  

In addition, models are tested using two different mobile 

phones: Nokia N8 running Symbian^3 operating system and 

Samsung Galaxy Mini which is running Android 2.2.1 

operating system. It is shown that the method presented in this 

study enables accurate recognition results not only when the 

acceleration data is studied offline but also when the whole 

recognition process (preprocessing, feature extraction and 

classification) is done in real-time on device. What is more, it 

is shown that the method is operating system independent. 

Human activity recognition using accelerometers has been 

carried out in various studies, such as [2], [5], [25], [26]. 

These studies were done using accelerometers build for 

research use. Therefore, based on these results, it is not 

straightforward to build a commercial product. There are also 

some articles where activity recognition using mobile phones 

has been studied ([3], [14], [16], [19], [24], [27]). 

In each of these studies, the data is collected using a mobile 

phone and the activity recognition is done afterwards on PC, 
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based on collected data. Thus, the activity recognition 

algorithms are not implemented on the phone, and the 

classification is not done in real-time on a mobile phone as in 

our study. 

An activity recognition system running purely on a 

smartphone is presented in [7]. The presented system can be 

trained on the device and it also does the classification in real-

time on the device. The recognition is based on features 

calculated using geometric template matching and support 

vector machine (SVM) is used as a classifier. Unfortunately, 

the article does not include recognition rates: thus, the 

evaluation of the system is difficult. However, the smartphone 

application is available from Android Market. The system 

described in [13] can also be found from Android Market. It 

seems to recognize activities with high accuracy, but all the 

features used are not orientation independent. In addition, 

personalized mobile activity recognition system for Android 

phones is presented in [8]. In this application user can select 

which activities he wants application to recognize but it 

requires training data collection gathered by the user. 

Activity recognition using mobile phones has some 

limitations. Because smartphones are expensive products, 

people do not want to carry a phone while performing 

activities where there is a danger to break it. Therefore, it is 

not necessary to recognize most of the sports activities such as 

playing football or swimming. Thus, this study concentrates on 

recognizing five everyday activities, walking, cycling, running, 

idling (=sitting/standing) and driving/riding a car. The 

importance of the everyday activity has been shown in several 

studies, for instance, in [4] it is shown that there is a 

relationship between moderate intensity lifestyle activity and 

cardiometabolic health. 

 Although the latest smartphones are equipped with 

processors enabling huge calculation capacity, the activity 

recognition algorithms must nevertheless be light. The mobile 

phone can be running several applications simultaneously and 

the activity recognition algorithms are not allowed to use the 

whole processing power, nor disturb other applications. 

Therefore, the recognition must be done using light methods. 

The paper is organized as follows: Section II describes 

sensors and data sets. Section III introduces the techniques and 

methods used in this study. Models trained using offline data 

and their accuracy are presented in Section IV. Sections V and 

V1 evaluates the accuracy of the activity recognition based on 

models trained using offline data, when detection is done in 

real-time on a mobile phone running Symbian^3 and Android 

operation systems. Finally, conclusions are discussed in 

Section VII. 

 

II. DATA SET 

The data for training the models were collected using a 

Nokia N8 smartphone [15] running Symbian^3 operating 

system, Figure 1. N8 includes a wide range of sensors: tri-axis 

accelerometer and magnetometer, two cameras (12 MP and 0.3 

MP), GPS, proximity sensor, compass, microphones and 

ambient light sensor.  

The models used in this study were trained based on activity 

data collected from eight healthy subjects. The trousers' front 

pocket was fixed as the phone placement, but the subject was 

allowed to determine whether the phone was placed in the left 

or right pocket. The participants performed five different 

activities: walking, running, cycling, driving a car, and idling, 

that is, sitting/standing. The total amount of the data collected 

was about four hours. 

These activities were selected because normal everyday life 

consists mainly of these five activities. Walking and running 

are different from the other three because everyone has a 

personal walking and running style. Other activities are not 

personal, for instance, while cycling, the movement trajectory 

is predefined. Therefore, the models to recognize walking and 

running are most challenging to train. 

The real-time classification using Nokia N8 was tested by 

seven subjects, three of whom were subjects whose data were 

not used to train the recognition models. These subjects 

carried the phone in their trousers' front pocket and performed 

from one to five activities. 

In addition, the real-time classification was tested using 

Samsung Galaxy Mini smartphone running Android 2.2.1 

operating system. Galaxy Mini is a low budget smartphone 

having tri-axis accelerometer, proximity sensor, compass and 

3.15MP camera. It uses 600MHz ARMv6 processor. Galaxy 

Mini was tested by six subjects who carried the phone in their 

trousers' front pocket and performed from one to five 

activities. 

In this study, only the tri-axis accelerometer was used in this 

study to detect activities. Accelerometers were running at full 

speed, which is a phone model dependent feature. However, 

all the samples were not used in activity recognition process. 

The latest value from accelerometer was called every 25 

milliseconds. Therefore the used sampling frequency was 

40Hz, which is much less than the maximum sampling 

frequency. The highest possible frequency was not used 

because it varies between devices and it also varies depending 

what functions of the phone are used. The used method 

enables the same sampling frequency to any smartphone, 

making recognition less phone model dependent. 

The training data were collected by subjects whose age 

 
Fig. 1.  Nokia N8. 
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varied from 25 to 34 years (average 29 years) and height from 

1.65 to 1.90 meter (average 1.78 meter) and real-time 

classification was tested by subjects whose age varied from 27 

to 34 years (average 30 years) and height from 1.65 to 1.90 

meter (average 1.75 meter). They performed activities outside 

the laboratory. Subjects walked inside and outside, mainly on 

flat surface but also in a staircase. Streets where subjects 

walked, run, drove a car, and cycled were normal tarmac 

roads, and the route and speed were determined by subjects 

themselves. Partly the same roads were employed in offline 

and real-time tests. The roads used for collecting driving a car 

data included motorways, as well as roads at the city center. 

Idling consists mostly of office working but includes also 

standing. 

 

III. ACTIVITY RECOGNITION 

In this study, two different activity recognition classifiers 

were compared: quadratic discriminant analysis [10] (QDA) 

and k nearest neighbors [6] (knn). In addition, the recognition 

was performed using three different settings: (1) offline 

recognition, to compare different features, classifiers and to 

evaluate models for online recognition, (2) online recognition 

on the device, to test the models in realistic real-life 

conditions, and (3) on device recognition on different phone 

models to test operating system dependency of the models. 

In each case, the raw data were processed in the same way 

to obtain comparable results. 

A. Preprocessing and feature extraction 

The purpose of this study was to develop a user-independent 

activity recognition method that runs purely on a smartphone 

and gives accurate recognition results also when the system is 

used in non-laboratory conditions. The recognition was 

supposed to work when the mobile phone is placed in the 

trousers' front pocket. However, the mobile phone can lay on 

the pocket in numerous different orientations. There are two 

ways to eliminate the effect of the orientation: (1) by 

recognizing the orientation of the phone, or (2) by eliminating 

the orientation information. On the other hand, the orientation 

is impossible to recognize using only accelerometers. 

Therefore, the effect of orientation had to be eliminated. In the 

preprocessing stage, the three acceleration channels were 

combined as one using square summing to obtain the 

magnitude acceleration, which is orientation independent. 

Moreover, the orientation of the phone has limitations, the 

screen or the back of the phone is always against the user's leg 

when the phone is in the pocket. Therefore, it was tested if 

features extracted from a signal where two out of three 

acceleration channels were square summed would improve the 

classification accuracy. 

The online activity recognition was done using a sliding 

window technique. The signals from the sensors were divided 

into equal-sized smaller sequences, also called windows. From 

these windows, features were extracted and finally the 

classification of the sequences was done based on these 

features. In this study, the windows were of the length of 300 

observations, which is 7.5 seconds, because the sampling 

TABLE I 

THE RESULTS OF OFFLINE RECOGNITION USING QDA. 

Subject/ Activity Idling Walking Cycling Driving Running 

Idling 94.3% 1.2% 0.3% 4.2% 0.0% 

Walking 1.0% 95.6% 2.3% 0.0% 1.3% 

Cycling 0.4% 3.4% 94.3% 1.9% 0.0% 

Driving 3.7% 0.0% 2.2% 94.2% 0.0% 

Running 0.0% 0.0% 0.0% 0.0% 100.0% 

 

TABLE 2 

THE RESULTS OF OFFLINE RECOGNITION USING KNN. 

Subject/ Activity Idling Walking Cycling Driving Running 

Idling 94.5% 1.1% 0.0% 4.3% 0.0% 

Walking 1.0% 90.2% 8.6% 0.0% 0.3% 

Cycling 0.3% 1.7% 94.6% 3.4% 0.0% 

Driving 4.2% 0.0% 2.1% 93.8% 0.0% 

Running 0.0% 0.4% 0.0% 0.0% 99.6% 
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frequency was 40Hz. In offline recognition, the slide between 

two sequential windows was 75 observations, while in online 

recognition, the slide was set to 150 observations. To reduce 

the number of misclassified windows, the final classification 

was done based on the majority voting of the classification 

results of three adjacent windows. Therefore, when activity 

changes, a new activity can be detected when two adjacent 

windows are classified as a new activity. For instance, if the 

slide is 150 observations, a new activity can be detected after 

450 observations, which is around eleven seconds if the 

sampling rate is 40Hz. 

The total number of 21 features was extracted from 

magnitude acceleration sequences. These features were 

standard deviation, mean, minimum, maximum, five different  

percentiles (10, 25, 50, 75, and 90), and a sum and square sum 

of observations above/below certain percentile (5, 10, 25, 75, 

90, and 95). The same features were also extracted from the 

signals where two out three acceleration channels were square 

summed together. It was noted that the combination of x and z 

axis signal channels improved the classification most. 

Therefore, from each window, the total number of 42 

orientation independent features were extracted, 21 features 

from the magnitude acceleration signal and 21 features from 

the signal where x and z were square summed. 

B. Classification 

The classification result was obtained using the decision tree 

presented in Figure 2, which classifies activities using a two 

stage procedure. In the first classification stage, a model is 

trained to decide if the studied subject is currently active 

(walking, running or cycling) or inactive (driving a car or 

idling). In the second stage, the exact activity label is obtained. 

One model has to be trained to classify an active activity as 

walking, running or cycling, and the other to classify an 

inactive activity as idling or driving. 

The models were trained offline using the collected data. 

These models were implemented to a smartphones (Symbian^3 

and Android) and also used in online tests. To compare 

different classifiers, the classification was performed using two 

different classification methods, knn and QDA. The most 

descriptive features for each model were selected using a 

sequential forward selection (SFS) method [9]. QDA 

classifiers were trained using the whole training data set, 

similar to knn classifier for the offline recognition. However, 

because of the limited computational power of the smartphone, 

the activity recognition on the device was performed using 

only a limited number of randomly chosen instances from 

training data. 

 

IV. MODEL TRAINING AND OFFLINE RECOGNITION 

The purpose of the offline recognition is to build and test 

accurate models that can later be implemented on a mobile 

phone to enable user-independent and operating system 

independent real-time recognition of the activities on the 

device. Models were trained for knn and QDA classifiers 

based on the data collected from eight persons. 

A. Results 

To obtain reliable user-independent results, the training was 

performed using the leave-one-out method, so that each 

person's data in turn was used for testing and the other seven 

sequences were employed for model training. 

The results are shown in Tables 1 and 2. 

B. Classification 

The offline recognition results show that the both classifiers, 

QDA and knn, enable accurate results. The average 

classification accuracy using QDA is 95.4%, while knn enables 

?

Active Inactive

Walk Run Cycle Sit/Stand Car

 
Fig. 2.  The decision tree obtained to recognize the type of activity 

TABLE 3 

THE RESULTS OF ONLINE RECOGNITION ON DEVICE USING NOKIA N8 AND KNN 

SUBJECT/ 

ACTIVITY 

IDLING WALKING CYCLING DRIVING RUNNING AVERAGE 

SUBJECT 1 91.5% 99.9% 89.2% 91.4% 87.2% 91.8% 

SUBJECT 2 99.9% 99.9% 93.7% 87.8% 92.4% 94.7% 

SUBJECT 3 76.3% 99.9% 89.6% - 92.8% 89.7% 

SUBJECT 4 - - - 97.6% - 97.6% 

SUBJECT 5 95.6% 99.9% 89.5% 89.4% 97.9% 94.5% 

SUBJECT 6 94.1% 99.9% 93.8% - 99.9% 96.9% 

SUBJECT 7 83.3% 99.8% 98.1% - 99.9% 99.4% 
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an accuracy of 94.5%. It should be noted, however that this 

difference is not statistically significant according to paired t-

test. Also, each of the five activities are recognized with high 

accuracy. 

 

V. REAL-TIME EXPERIMENTS ON DEVICE USING NOKIA N8 

An activity recognition application for Symbian^3 devices 

was build using Qt [18] programming language, Figure 3. 

Every Nokia phone running a Symbian^3 operating system has 

the same kind of accelerometers, and therefore, the results 

presented in this section can be obtained using any Nokia 

Symbian^3 phone. The application uses the activity 

recognition models that were trained using the data presented 

in Section II. It should be noted that offline recognition 

employing knn uses the whole training data set to recognize 

activities from the test data, making the classification process 

complex. As mentioned before, because of the limited 

computational power of the smartphone, the recognition on the 

device was performed using only a limited number of 

randomly chosen instances from training data. In this study, 

eight instances from each activity per subject were chosen as 

instances of knn-based recognition model. QDA -based real-

time classification results were obtained using the very same 

models used in offline recognition.  

A. Results 

The application and the real-time classification were tested 

by seven persons carrying Nokia N8 smartphone on their 

trousers’ front pocket. Three of these were different from the 

eight subjects that collected the data for training the 

recognition models. The recognition results are shown in 

Tables 3 and 4. Both classifiers were running on the device in 

parallel; thus, the results are comparable. 

B. Discussion 

The real-time experiment showed that the application and 

models are running smoothly on the device. When activity 

recognition is done using QDA classifier, the application uses 

under 5% of the CPU's (680Mhz ARM11 processor) capacity. 

Therefore, the application can be employed alongside other 

applications, such as games. The usage of knn as a classifier 

uses slightly more CPU capacity. In addition, the recognition 

rates on the device are around as high as offline. The average 

recognition rate using QDA is 95.8%, while using knn it is 

slightly lower, 93.9%. According to paired t-test, this 

difference is not statistically significant, however. 

Online recognition was tested by subjects (subjects 1, 2 and 

3) whose data was not used for training as well as subjects 

(subjects 4, 5, 6 and 7) whose data was used for training. In 

both cases, the average recognition rate is high. However, 

there are two cases where user-independent classification has 

not succeeded very well. Walking activity of Subject 1 was 

recognized only with the rate of 65.6% when QDA is used as a 

classifier and cycling of Subject 3 using knn was recognized 

correctly only in 76.3% of the cases. In both cases, cycling and 

walking were mixed together. It seems that inner class 

variation of these activities is too low causing 

misclassification. As mentioned above, walking is one of the 

most difficult activities to recognize user-independently, 

because every subject has a personal walking style. In 

addition, not the whole training data were used to train the knn 

model to keep to recognition process light, which may have 

caused the weak recognition rates with Subject 3's cycling 

activity. In overall, the recognition on the device works well, 

TABLE 4 

THE RESULTS OF ONLINE RECOGNITION ON DEVICE USING NOKIA N8 AND QDA. 

SUBJECT/ 

ACTIVITY 

IDLING WALKING CYCLING DRIVING RUNNING AVERAGE 

SUBJECT 1 98.5% 65.6% 95.7% 99.6% 91.5% 90.2% 

SUBJECT 2 99.9% 97.6% 91.2% 88.5% 99.2% 95.3% 

SUBJECT 3 99.9% 97.6% 91.3% - 99.8% 96.9% 

SUBJECT 4 - - - 87.2% - 87.2% 

SUBJECT 5 98.2% 99.3% 97.6% 98.1% 99.9% 98.6% 

SUBJECT 6 99.9% 96.0% 93.8% - 99.9% 97.4% 

SUBJECT 7 99.9% 99.8% 98.1% - 99.9% 99.4% 

 

 
Fig. 3.  Activity recognition application for Symbian^3 smartphones. 
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however. It seems that the first phase of the recognition, where 

observations are classified as active or inactive, appears to 

work almost perfectly. Therefore, to make recognition even 

more accurate, the second phase of the classification should be 

improved. 

The models used in online recognition are user-independent 

and it also seems that they are "car-independent". Two 

different cars were used in the data collecting phase. Although 

during the online test, subjects 1 and 2 used a car  not used to 

train the models,  the recognition rate is still high. On the other 

hand, to make sure that the models are car-independent, more 

tests should be carried out using different cars and road 

conditions. 

 

VI. REAL-TIME EXPERIMENTS ON DEVICE USING ANDROID-

PHONE 

According to the results of the previous section, both tested 

classifiers produce as good results. However, QDA is simpler 

than knn and, therefore, it is lighter and more suitable for be 

used in an application that is supposed to run at the 

background all the time. Android-version of the activity 

recognition application was built after Symbian^3-version 

using Java programming language. Therefore, based on the 

experiences gathered using Nokia phones, it was decided that 

Android-version would use QDA as a classifier. 

A. Results 

Real-time classification on Android device was tested by five 

subjects, again, carrying the phone on their trousers’ front 

pocket. Subject 1’s data was not used in to train the models. 

The data of other five subjects were used to train models but 

data is different to the one used in this section. The results are 

shown in Table 5. The purpose of these experiments was to 

show that the presented activity recognition method is 

operating system independent. 

B. Discussion 

The results show that activity recognition models are accurate 

also when they are running in Android-based smartphone. 

Therefore, the presented method is not an operating system 

dependent. 

 Noticeable is the weak recognition accuracy of the activity 

driving a car. Only 67.8% of the cases were recognized 

correctly when Subject 3 was using the application. However, 

Subject 3 had to stop several times during the data collection 

session because of the red traffic lights, and in this study, these 

stops were considered as driving a car. If these stops are 

considered as idling and therefore removed from driving 

results, the recognition rate of driving would be almost 

100.0%.  On the other hand, in the case of Subject 4, driving 

was recognized with a rate of 98.8%. This subject did not have 

to wait at traffic lights. 

 However, driving was the only activity recognized with a 

low rate. All the other activities were recognized with really 

high accuracy and the average recognition rate is 96.5%. For 

instance, running is recognized perfectly with a rate of 

100.0%. Moreover, the recognition accuracy of walking is also 

nearly 100%. The cycling did mix up with walking a little but 

still the average recognition rate of cycling was as high as 

94.5%. In fact, the average recognition rate on a device using 

Samsung Galaxy Mini is higher than offline recognition rate 

and recognition rate using Nokia N8. However, these results 

are not fully comparable because they are based on separate 

data collections. 

VII. CONCLUSIONS 

Orientation independent real-time activity recognition of 

five everyday activities using a mobile phone was introduced 

in this study. The whole classification process, including 

preprocessing, feature extraction, and classification, was done 

on the device. Recognition accuracies were tested using two 

classifiers (knn and QDA) to compare different classification 

algorithms. In addition, real-time activity recognition using 

QDA as a classifier was tested using two different phones 

(Nokia N8 and Samsung Galaxy Mini) running different 

operating systems (Symbian^3 and Android). These operating 

systems were chosen to this study, because not only they are 

popular, but also they enable real multitasking, unlike some 

other smartphone operating systems, such as iOS and 

Windows Phone 7. User-independent models for online 

recognition were trained offline using a data set collected by 

eight subjects.  

When the recognition rates of on device recognition using 

Nokia N8 are studied in detail it can be seen that using the 

models trained offline, the recognition rates on Nokia N8 

device are around as high as offline recognition results. In the 

offline case, the average classification accuracy based on the 

TABLE 5 

THE RESULTS OF ONLINE RECOGNITION ON DEVICE USING SAMSUNG GALAXY MINI AND QDA. 

SUBJECT/ 

ACTIVITY 

IDLING WALKING CYCLING DRIVING RUNNING AVERAGE 

SUBJECT 1  92.5% 97.1% 100.0% -- 100.0 % 97,4% 

SUBJECT 2 91.7% 100.0% 98.9% -- 100.0% 97.7% 

SUBJECT 3 100.0% 100.0% 90.9% 67.8% 100.0% 91.7% 

SUBJECT 4 -- -- -- 98.8% -- 98.8% 

SUBJECT 5 96,7% 97.8% 87.5% -- 100.0% 95.5% 

SUBJECT 6 98.5% 100.0% 95.2% -- -- 97.9% 
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data used to train the models using QDA is 95.4%, while knn 

enables an accuracy of 94.5%. While performing online 

recognition on Nokia N8, the average recognition rate using 

QDA is 95.8%, while using knn it is slightly lower, 93.9%. 

However, in some cases, user-independent real-time 

recognition results on Nokia N8 are not as high as expected. In 

order to achieve even more accurate online results with every 

subject, the training data should contain more variation. Now it 

seems that in some cases the models for online recognition are 

build using too homogeneous a data set, and therefore, the 

models are not as good as they could be. Nevertheless, the 

results are encouraging. Moreover, activity recognition 

application runs smoothly on N8. It uses under 5% of CPU 

capacity when QDA is employed as a classifier; thus, other 

applications can be run alongside. Using knn as a classifier 

requires more CPU capacity. 

Because of the accuracy and lightness of the QDA classifier 

based activity recognition, Android-version of the application 

was tested only using QDA. Android-version was tested by six 

subjects carrying Samsung Galaxy Mini smartphone on their 

trousers’ pocket. The results are really good with every 

subject. For instance, running is recognized perfectly with rate 

100.0%. All the other activities were also recognized with 

really high accuracy. The only exception was driving a car -

activity, where detection accuracy was lower than expected 

with one test subject. However, the main reason for this was 

red traffic lights which caused long unwanted stops. 

Based on the results it is clear that activity recognition 

works reliably operating system independently. It seems that in 

this study, the on device recognition results using Android-

phone are a little higher than the ones gained using Symbian^3 

phone.  However, subjects did not carry Symbian^3 and 

Android phones at the same time, the real-time recognition 

results of Tables 4 and 5 are not fully comparable. 

Real-time activity recognition on device is working reliably 

on both tested operating systems, Symbian^3 and Android, 

though there are differences in accelerometers between phone 

models and operating systems. The main difference of 

accelerometers is the maximum sampling rate. However, in 

this study, the maximum sampling rate was not used. Though, 

the accelerometers were running at full speed, but still, a new 

value to be used in activity recognition was called every 25 

millisecond. Therefore, the used frequency was 40Hz, which is 

much less than the maximum frequency of most of the 

smartphones. Thus, the presented method can be used with 

every smartphone and it is not dependent on the phone model.  

Real-time recognition on the device was only tested by 

predefined five activities and not when the subject is doing 

something else. Null-data recognition is not included in this 

study, and therefore, such activities cause incorrect 

classifications. Thus, to improve the accuracy of the 

application, null-activity recognition should be included. Also 

building a behavior recognition system based on the activity 

recognition results could reduce the number of 

misclassifications [12]. In addition, it should be tested how 

different trousers affect the results, now every test subject was 

wearing jeans. 

The presented activity recognition application is not body 

position independent. The system is trained to recognize 

activities when the phone is placed to the subject's trousers' 

pocket. Although trousers' pockets are the most common place 

to carry a phone [11], especially among males, a body position 

independent approach should be considered. Body position 

independent recognition is naturally more difficult than 

position dependent, and therefore, most likely the recognition 

rates would not be as high as the ones presented in this study. 

However, high position independent recognition rates are for 

instance achieved in [14]. 

Although, the recognition accuracy on the device is 

excellent, there are still some remaining issues. The 

application uses too much battery and, therefore, even lighter 

methods should be used. For instance, human activities can be 

recognized from lower frequency signals than the ones used in 

this study [21]. Therefore, the sampling frequency could be 

reduced or the number of required classifications could be 

reduced by using periodic quick-test [22]. However, even now 

without memory and processing power optimization, the 

battery of Nokia N8 and Samsung Galaxy Mini lasts over 24 

hours while the application is running at the background. 

In this study, everything except model training is done on 

the device. Other option would be to send the accelerometer 

data to the server, perform the classification process there and 

send the results to a mobile phone. In this case, calculation 

capacity would not be an issue, but on the other hand, privacy 

issues should be handled. Moreover, data transfer is not free 

and can cause exceptionally high costs, especially when the 

mobile phone and application are used abroad. 
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