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Abstract

In this paper we will model the electricity market auction as a two-
person game with incomplete information under the assumption that bid-
ders are asymmetric in units production, risk neutral and with unknown
values.

We characterize the strictly monotone bayesian Nash equilibrium and
we rank a family of auction models which contains the classic models Uni-
form, Discriminatory and Vickrey auction models.
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1 Introduction

Gradually since the 1990s, several countries have liberalized their electricity
markets, initially in state hands. In these countries, power companies compete
to generate in the Electricity Market and they take their electricity production
to auction [Fehr y Harbord(1998)]. Each power company bids an amount of
electricity units and a unit price for each hour (or half hour) of the following
day. In view of the supply, the Market Operator (the auctioneer) ranks the
bids from the lowest to the highest and then distributes the demand among
the lowest bids, until the demand has been fully met. The price paid to each
company taking part in the dispatch of the demand, depends on the auction
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model adopted for the transaction. There are two main auction models: the
Uniform auction model and the Discriminatory auction model.

In the Uniform auction model, the unit price received by a company sup-
plying the market is the same for all companies: the highest accepted bid. In
the Discriminatory auction model each company dispatching in the market re-
ceives its own bid. Much debate has been going on about the advantages and
disadvantages of these auction models [Ausubel and Cramton (2002), Fabra
(2001); Fabra, Fehr and Harbord (2002 ); Fabra, Fehr and Harbord (2003)] but
no clear conclusion has been reached.

Some papers argue in favour of the Uniformmodel [Wolfram (1999)] whilst
others favour the Discriminatory model [Federico and Rahman (2001)]. There
are other auction models used in contexts outside the Electricity Market such
as the Vickrey auction model [Vickrey (1961)].

This paper will be consider a parametric family of auction models which
contains the three classic models mentioned. Wewill make a comparative anal-
ysis of the auction models belonging to the parametric family, identifying the
preferred model of the companies or the Market Operator.

In this paper the valuations are private, so we model the Electricity Market
as a game with incomplete information.

The organization and the achievements of this work are:

We define a parametric family of auction models, which contains as partic-
ular cases, the Uniform, the Discriminatory and the Vickrey auction models.
We define the hypotheses in Section 2, which includes that one of the suppliers
has two production units.

In Section 3, we obtain bayesian Nash equilibria for every auction model
belonging to the parametric family. Once the equilibria have been determined,
we calculate the expected revenue for the companies and the payment theMar-
ket Operator expects tomake in Section 4. These expressions are not dependent
on the choice of auction model belonging to the vertices of GAM and we ob-
tain a revenue equivalence result.

2 The Market Model

We assume the following hypotheses in the market model:

There are two risk neutral suppliers where one of them, called supplier

1, has two production units denoted by subindexes 1̃, 1̂. The other supplier,
called supplier 2, has only one production unit, denoted by subindex 2. Both
suppliers compete to provide the electricity required and they have the same
perfectly divisible capacity k1̃ = k1̂ = 1 and k2 = 2.

The cost function of production unit i ∈ {1̃, 1̂, 2} is g(qi, θi) = qiθi, where
qi ∈ [0, 1] is the amount dispatched by production unit i.

The type θi
(
where θ1̃ = θ1̂ = θ1 and θ2

)
which is private information to

supplier i ∈ {1, 2}, is an independent realization of a uniformly distributed
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continuous random variable in [0, 1]. Supplier i and only supplier i, observes
the realization of θi and it gathers the uncertainty that company j has about the
production cost of company i.

The demand of a period is price-inelastic, known with certainty and is rep-
resented by the parameter D.

Each supplier simultaneously and independently submits a bid:
(
b1̃, b1̂

)
∈

[0, 1]× [0, 1] is the bid of supplier 1 (one component by each production unit)
and b2 ∈ [0, 1] is the bid of supplier 2, specifying the minimum unit-price offer
at which it is willing to supply the whole of the capacity of each production
unit.

A strategy for production unit i ∈ {1̃, 1̂, 2} is a strictly monotone and dif-
ferentiable function bi(.) : [0, 1]× [0, 1].

Let’s refer to this market model as the Asymmetric Model in production
units.

Once the Market Operator has received the bids, it allocates the electricity
distribution in such a manner that the production unit with the lowest bid
will dispatch first. If its capacity is not enough to satisfy the entire demand,
then the production unit with the second lowest bid will dispatch second. If
its capacities are not enough to satisfy the entire demand, then the production
unit with the highest bid will satisfy the residual demand. Hence the amount
that the supplier i ∈ {1, 2} dispatches is given by the following function:

Q1(b1̃, b1̂, b2) =





min(2,D) if M < b2

min(1,D) if m < b2 < M and D < 3

1+min(1,D− 3) if m < b2 < M and 3 < D

0 if b2 < m and D < 2

min(2,D− 2) if b2 < m and 2 < D

Q2(b1̃, b1̂, b2) =





min(2,D) if b2 < m

0 if m < b2 < M and D < 1

min(2,D− 1) if m < b2 < M and 1 < D

0 if M < b2 and D < 2

min(2,D− 2) if M < b2 and 2 < D

Where m = min(b1̃, b1̂) and M = max(b1̃, b1̂).

All aspects of this game and the auction model used, are assumed to be
common knowledge.

The price paid to each supplier depends on the auction model adopted
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for the transaction. There are three classic auction models: Uniform auction
model, Discriminatory auction model and Vickrey auction model.

In the Uniform auction model, the unit-price received by production unit i
is equal to the highest accepted bid. All production units in the market receive
the same unit-price.

In the Discriminatory auction model, the unit-price received by production
unit i is equal to its own bid bi. All production units dispatching into the mar-
ket could receive a different unit-price.

In the Vickrey auction model, the rule used by the Market Operator to es-
tablish the price is more complicated than in the previous two models. The
unit price received by production unit i dispatching in the market is equal to
the unit price of the electricity unit needed to cover the demand if the supplier
who has the production unit i removes its bid.

This paper discusses not only the three classic models, but in fact we will
also consider a parametric family of auction models which contains the three
classic models as particular cases. This family is a set of auction models whose
profit function for supplier i is:

B1(θ1, b1̃, b1̂, b2) =





γ1̃
1m+ γ1̂

1M+ β1
1b2 + ϕ − φ1θ1 if M < b2

γ1̃
1m+ γ1̂

2M+ β1
2b2 + ϕ − φ1

2θ1 if m < b2 < M

γ1̃
3m+ γ1̂

2M+ ϕ − φ3θ1 if b2 < m

2.1.a)

B2(θ2, b1̃, b1̂, b2) =





γ2
1b2 + β2̃

1m+ β2̂
1M+ ϕ − φ1θ2 if b2 < m

γ2
2b2 + β2̂

1M+ ϕ − φ2
2θ2 if m < b2 < M

γ2
3b2 + ϕ − φ3θ2 if M < b2

2.1.b)

Where m = min(b1̃, b1̂) and M = max(b1̃, b1̂)

γ1̃
1, γ

1̂
1, γ

1̂
2, γ

1̃
3, γ

2
1, γ

2
2, γ

2
3, β1

1, β1
2, β2̃

1, β2̂
1, ϕ ∈ [0,∞)

γ1̃
1 + γ1̂

1 + β1
1 + ϕ = φ1, γ1̃

1 + γ1̂
2 + β1

2 + ϕ = φ1
2 , γ1̃

3 + γ1̂
2 + ϕ = φ3

γ2
1 + β2̃

1 + β2̂
1 + ϕ = φ1, γ2

2 + β2̂
1 + ϕ = φ2

2 , γ2
3 + ϕ = φ3, γ1̃

1 + γ1̂
1 = γ2

1

β2̃
1 + β2̃

1 = β1
1, γ1̃

3 + γ1̂
2 = γ2

3

The parameters φ1, φ1
2 , φ2

2 and φ3 are determined by the demand. If D ≤ 1,

then φ1 = D, φ1
2 = φ2

2 = φ3 = 0. If D = 1+ α, with α ∈ (0, 1], then φ1 = 1+ α,

φ1
2 = 1, φ2

2 = α, φ3 = 0. If D = 2+ α, with α ∈ (0, 1], then φ1 = 2, φ1
2 = 1,

φ2
2 = 1+ α, φ3 = α. If D = 3+ α, with α ∈ (0, 1], then φ1 = 2, φ1

2 = 1+ α,

φ2
2 = 2, φ3 = 1+ α. If D ≥ 4, then φ1 = 2, φ1

2 = 2, φ2
2 = 2, φ3 = 2.

This family of auction models verifies two principles required for an elec-
tricity auction, which are:
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• The bid made by a production unit is the minimum price at which it is
willing to supply the whole of its capacity. The Market Operator cannot
pay a company a price lower than its own bid.

• The production unit that hasmade the lowest bid should enter themarket
first and if it cannot satisfy all the demand, then the others production
units should enter the market to dispatch the residual demand.

Let’s refer to this parametric family of auction models as TheGeneral Auc-
tion Model (GAM).

Clearly, if we fix the values of the parameters then the auction model used
for the transaction is completely determined. The values of the parameters
depend on the size of the demand. Therefore we will analyze the following
cases:

Case 1 The three production units have enough capacity to supply the
whole demand, i.e., D ≤ 1. In this case, the production unit with the lowest
bid is the only one to dispatch. In fact, Case 1 is a particular case of single-unit
(D) auction. Therefore, we know beforehand that the Revenue Equivalence
Theorem is applicable. The expected revenue for each supplier is Pi (θi) =

D
(1−θ2i )

2 and the Market Operator expects to pay PMO = 2
3D.

Case 2 Supplier 2 has enough capacity to supply the whole demand with
its unique production unit. However the supplier 1, who has enough capacity
too, needs its two production units for this, i.e. 1 < D = 1 + α ≤ 2, with
α ∈ (0, 1). In this case if bidder 2 is the bidder with the lowest bid, then bidder
2 is the only one to dispatch. If bidder 2 puts its bid between the two bids
of bidder 1 then: one of the production unit of supplier 1 dispatches all its
capacity and bidder 2 dispatches the residual demand α. Finally, if the bid of
bidder 2 is the highest of the three bids, then bidder 2 doesn’t dispatch any
electricity units.

Then, substituting φ1 = 1+ α, φ1
2 = 1, φ2

2 = α and φ3 = 0 into the expres-
sions 2.1.a) and 2.1.b), the GAM is reduced to a parametric family with profit
function for supplier i ∈ {1, 2}:

B1(θ1, b1̃, b1̂, b2) =

=





γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+ (1+ α − γ2

1)b2 − (1+ α) θ1 if M < b2

γ1̃
1m+

(
1− γ1̃

1

)
b2 − θ1 if m < b2 < M

0 if b2 < m

B2(θ2, b1̃, b1̂, b2) =

=





γ2
1b2 +

(
1+ α − β2̂

1 − γ2
1

)
m+ β2̂

1M− (1+ α) θ2 if b2 < m(
α − β2̂

1

)
b2 + β2̂

1M− αθ2 if m < b2 < M

0 if M < b2
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where
(

γ1̃
1, γ

2
1, β2̂

1

)
∈ [0, 1]×

[
γ1̃
1, 1+ α

]
×
[
0,min{α, 1+ α − γ2

1}
]
,m = min(b1̃, b1̂)

and M = max(b1̃, b1̂).

Case 3 The capacity of both suppliers is needed to satisfy the demand,
but possibly the three production units wouldn’t be necessary, i.e., 2 < D =
2+ α < 3, with α ∈ (0, 1). In this case, if supplier 2 has the highest bid then the
three production units enter the market: the two production units of supplier
1 despatch all its capacity and supplier 2 despatches the residual demand α.
Otherwise, if supplier 2 doesn’t have the highest bid, the production unit of
supplier 1 with the highest bid does not enter the market.

Then, substituting φ1 = 2, φ1
2 = 1, φ2

2 = 1+ α and φ3 = α into the expres-
sions 2.1.a) and 2.1.b), the GAM is reduced to a parametric family with profit
function for supplier i ∈ {1, 2}:

B1(θ1, b1̃, b1̂, b2) =

=





γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+

(
2− α + γ2

3 − γ2
1

)
b2 + α − γ2

3 − 2θ1 if M < b2

γ1̃
1m+ γ1̂

2M+
(
1− α + γ2

3 − γ1̂
2 − γ1̃

1

)
b2 + α − γ2

3 − θ1 if m < b2 < M(
γ2
3 − γ1̂

2

)
m+ γ1̂

2M+ α − γ2
3 − αθ1 if b2 < m

B2(θ2, b1̃, b1̂, b2) =

=





γ2
1b2 +

(
2− α + γ2

3 − β2̂
1 − γ2

1

)
m+ β2̂

1M+ α − γ2
3 − 2θ2 if b2 < m(

1+ γ2
3 − β2̂

1

)
b2 + β2̂

1M+ α − γ2
3 − (1+ α) θ2 if m < b2 < M

γ2
3b2 + α − γ2

3 − αθ2 if M < b2

where

(
γ2
3, γ

1̂
2, γ

1̃
1, γ

2
1, β2̂

1

)
∈ [0, α]×

[
0, γ2

3

]
×
[
0, 1− α + γ2

3 − γ1̂
2

]
×

[
γ1̃
1, 2− α + γ2

3

]
×
[
0,min{2− α + γ2

3 − γ2
1, 1+ γ2

3}
]

m = min(b1̃, b1̂) and M = max(b1̃, b1̂).

Case 4 The capacity of three production units suppliers is needed to sat-
isfy the demand but there is excess overall capacity, i.e. 3 ≤ D = 3+ α < 4,
with α ∈ (0, 1). In this case, one production unit of supplier 1 despatches
all its capacity and the other production unit of supplier 1 despatches at least
the residual demand α. If supplier 2 doesn’t have the highest bid, then it
despatches all its capacity and otherwise it despatches 1+ α.

Then, substituting φ1 = 2, φ1
2 = 1 + α, φ2

2 = 2 and φ3 = 1 + α into the
expressions 2.1.a) and 2.1.b), the GAM is reduced to a parametric family with
profit function for supplier i ∈ {1, 2}:
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B1(θ1, b1̃, b1̂, b2) =

=





γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+

(
1− α + γ2

3 − γ2
1

)
b2 + 1+ α − γ2

3 − 2θ1 if M < b2

γ1̃
1m+ γ1̂

2M+
(

γ2
3 − γ1̃

1 − γ1̂
2

)
b2 + 1+ α − γ2

3 − (1+ α) θ1 if m < b2 < M(
γ2
3 − γ1̂

2

)
m+ γ1̂

2M+ 1+ α − γ2
3 − (1+ α) θ1 if b2 < m

B2(θ2, b1̃, b1̂, b2) =





γ2
1b2 +

(
1− α + γ2

3 − β2̂
1 − γ2

1

)
m+ β2̂

1M+ 1+ α − γ2
3 − 2θ2 if b2 < m(

1− α + γ2
3 − β2̂

1

)
b2 + β2̂

1M+ 1+ α − γ2
3 − 2θ2 if m < b2 < M

γ2
3b2 + 1+ α − γ2

3 − (1+ α) θ2 if M < b2

where

(
γ2
3, γ

1̂
2, γ

1̃
1, γ

2
1, β2̂

1

)
∈ [0, 1+ α]×

[
0, γ2

3

]
×
[
0, γ2

3 − γ1̂
2

]
×

[
γ1̃
1, 1− α + γ2

3

]
×
[
0, 1− α + γ2

3 − γ2
1

]

m = min(b1̃, b1̂) and M = max(b1̃, b1̂).

Case 5 Demand exceeds overall capacity, i.e. 4 ≤ D. In this case there
is no competition. Both companies are guaranteed to dispatch their entire ca-
pacity. The revenue for each supplier is 2 and the Market Operator pay 4.
Obviously this is a trivial case.

3 Bayesian Nash Equilibrium

The following proposition gives the bayesian Nash equilibria for any auction
model belonging to the General Auction Model.

Proposition 1. If the hypotheses of the Asymmetric Model in production units
hold and an auction model belonging to GAM is used, then:

Region I) If φ3 = φ1
2, φ1 = φ2

2 , γ1̃
1 = 0, γ1̂

2 = γ2
3, φ1 − φ3 + γ2

3 − β2̂
1 − γ2

1 = 0
then there exist infinite bayesian Nash equilibria are given by

(
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

)
=
(
b∗
1̃
(θ1) , b

∗(θ1), b
∗(θ2)

)

where b∗
1̃
(θ1) is any strictly monotone and differentiable function verifying b∗

1̃
(θ1) ≤

b∗(θ1) ∀θ1 ∈ [0, 1].

Region II) Otherwise if one of the following expressions is true

•γ1̂
2 6= 0 or γ2

3 6= 0

•γ1̂
2 = 0 and γ1̃

1 = γ2
1

•γ1̂
2 = γ2

3 = 0 and γ2
1 = (1+ k) γ1̃

1, (1+ k) φ1
2 = φ1 + kφ3, for any k ∈ ℜ
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then the unique symmetric bayesian Nash equilibrium is given by:

(
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

)
= (b∗(θ1), b

∗(θ1), b
∗(θ2))

where b∗(θi) in Region I and Region II is given by:

a) If γ2
1 = γ2

3 = 0 then b∗(θi) = θi

b) If γ2
3 = 0 and γ2

1 6= 0 then

b∗(θi) =
(φ1 − φ3) θi + γ2

1

γ2
1 + φ1 − φ3

c) If γ2
1 6= γ2

3 6= 0 then

b∗(θi) =
(φ3 − φ1) θi − γ2

1 +
(
γ2
3

) γ23−γ21+φ3−φ1

γ23−γ21
(
γ2
1 +

(
γ2
3 − γ2

1

)
θi
) φ1−φ3

γ23−γ21

γ2
3 − γ2

1 + φ3 − φ1

d) If γ2
1 = γ2

3 6= 0 then

b∗(θi) = θi +

γ2
1


1− e

−(1−θi)(φ1−φ3)
γ2
1




φ1 − φ3

Region III) If the parameters don´t belong to Region I or Region II then the
bayesian Nash equilibria are solutions of the following system of differential equations:





γ1̃
1

(
1− (b∗2)

−1 (t)
)
+
(
φ3 − φ1

2

) (
t−

(
b∗
1̃

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

(
γ2
1 − γ1̃

1

) (
1− (b∗2 )

−1 (t)
)
+
(
φ1
2 − φ1

) (
t−
(
b∗
1̂

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

γ2
1

(
1− (b∗

1̃
)−1(t)

)
+
(

φ2
2 − φ3 − β2̂

1

) (
(b∗

1̃
)−1(t)− (b∗

1̂
)−1(t)

)

+
(
φ2
2 − φ1

) (
t− (b∗2)

−1 (t)
)

d
dt (b

∗
1̃
)−1 (t)

+
(
φ3 − φ2

2

) (
t− (b∗2)

−1 (t)
)

d
dt (b

∗
1̂
)−1 (t) = 0

Proof. See appendix

We will deduce the Bayesian Nash equilibrium for each non trivial case
from Proposition 1:

3.1 Case 2

In this case, the parametric family of auction models is determined by the val-

ues of the parameters belonging to the region RC2 = {
(

γ1̃
1, γ

2
1, β2̂

1

)
∈ [0, 1]×
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[
γ1̃
1, 1+ α

]
×
[
0,min{α, 1+ α − γ2

1}
]
}. There are eight auction models on the

vertices of this region

Model γ1̃
1 γ2

1 β2̂
1

A 0 0 0
Vickrey 0 0 α
Uniform 0 1+ α 0

B 1 1 0
C 1 1 α

Discriminatory 1 1+ α 0

with the following bayesian Nash equilibria

Model/Equilibrium
[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]

A [θ1, θ1, θ2]
Vickrey [θ1, θ1, θ2]

Uniform
[
1+θ1
2 , 1+θ1

2 , 1+θ2
2

]

B
[
1+(1+α)θ1

2+α ,
1+(1+α)θ1

2+α ,
1+(1+α)θ2

2+α

]

C
[
1+(1+α)θ1

2+α ,
1+(1+α)θ1

2+α ,
1+(1+α)θ2

2+α

]

Discriminatory
[
1+θ1
2 , 1+θ1

2 , 1+θ2
2

]

3.2 Case 3

In this case the parametric family of auction models is determined by the val-
ues of the parameters belonging to the region

RC3 =
(

γ2
3, γ

1̂
2, γ

1̃
1, γ

2
1, β2̂

1

)
∈ [0, α]×

[
0, γ2

3

]
×
[
0, 1− α + γ2

3 − γ1̂
2

]

×
[

γ1̃
1, 2− α + γ2

3

]
×
[
0,min{2− α + γ2

3 − γ2
1, 1+ γ2

3}
]

. There are eighteen auction models on the vertices of this region:
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Model γ2
3 γ1̂

2 γ1̃
1 γ2

1 β2̂
1

A1 0 0 0 0 0
Uniform α 0 0 0 0

A2 α α 0 0 0
B1 0 0 1− α 1− α 0
B2 α 0 1 1 0
B3 α α 1− α 1− α 0
C1 0 0 1− α 1− α 1
C2 α 0 1 1 1
C3 α α 1− α 1− α 1+ α
D1 0 0 1− α 2− α 0

Discriminatory α 0 1 2 0
D2 α α 1− α 2 0

Vickrey 0 0 0 0 1
V1 α 0 0 0 1+ α
V2 α α 0 0 1+ α
U1 0 0 0 2− α 0
U2 α 0 0 2 0
U3 α α 0 2 0

with the following bayesian Nash equilibria
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Model/Equilibrium
[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]

A1 [θ1, θ1, θ2]

Uniform

[
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ2−αθ

2−α
α

2
2(1−α)

]

A2

[
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ2−αθ

2−α
α

2
2(1−α)

]

B1
[
(2−α)θ1+1−α

3−2α ,
(2−α)θ1+1−α

3−2α ,
(2−α)θ2+1−α

3−2α

]

B2
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
(2−α)θi+1−α

3−2α
1−α (1−(1−α)θi)

α−2
1−α

3−2α

B3
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
(2−α)θi+1−α−α

3α−3
2α−1 (1−α−(1−2α)θi)

2−α
2α−1

3−3α

C1
[
(2−α)θ1+1−α

3−2α ,
(2−α)θ1+1−α

3−2α ,
(2−α)θ2+1−α

3−2α

]

C2
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
(2−α)θi+1−α

3−2α
1−α (1−(1−α)θi)

α−2
1−α

3−2α

C3
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
(2−α)θi+1−α−α

3α−3
2α−1 (1−α−(1−2α)θi)

2−α
2α−1

3−3α

D1
[
1+θ1
2 , 1+θ1

2 , 1+θ2
2

]

Discriminatory

[
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ22
2(2−(2−α)θ2)

]

D2

[
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ22
2(2−(2−α)θ2)

]

Vickrey [θ1, θ1, θ2]

V1

[
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ2−αθ

2−α
α

2
2(1−α)

]

V2

[
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ1−αθ

2−α
α

1
2(1−α)

,
(2−α)θ2−αθ

2−α
α

2
2(1−α)

]
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U1
[
1+θ1
2 , 1+θ1

2 , 1+θ2
2

]

U2

[
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ22
2(2−(2−α)θ2)

]

U3

[
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ21
2(2−(2−α)θ1)

,
2+α−(2−α)θ22
2(2−(2−α)θ2)

]

3.3 Case 4

In this case the parametric family of auction models is determined by the val-

ues of the parameters belonging to the region RC4 = {
(

γ2
3, γ

1̂
2, γ

1̃
1, γ

2
1, β2̂

1

)
∈

[0, 1+ α]×
[
0, γ2

3

]
×
[
0, γ2

3 − γ1̂
2

]
×
[
γ1̃
1, 1− α + γ2

3

]
×
[
0, 1− α + γ2

3 − γ2
1

]
}.

There are twelve auction models on the vertices of this region. We will also
consider the discriminatory auction model which is not located in any of the
vertices of RC4.

.

Model γ2
3 γ1̂

2 γ1̃
1 γ2

1 β2̂
1

A1B1 0 0 0 0 0
Vickrey 0 0 0 0 1− α
U1D1 0 0 0 1− α 0
UN 1+ α 0 0 0 0
V1 1+ α 0 0 0 2
U2 1+ α 0 0 2 0
B2 1+ α 0 1+ α 1+ α 0
C2 1+ α 0 1+ α 1+ α 1− α
DI 1+ α 0 1+ α 2 0

B3A2 1+ α 1+ α 0 0 0
Uniform 1+ α 1+ α 0 0 2
D2U3 1+ α 1+ α 0 2 0

Discriminatory 1+ α α 1 2 0

with the following bayesian Nash equilibria
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Model/Equilibria
[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]

A1B1 [θ1, θ1, θ2]

Vickrey

[
b∗
1̃
(θ1) , θ1, θ2

]
with b∗

1̃
(θ1) ≤ θ1∀θ1 ∈ [0, 1]

strictly monotone and differentiable

U1D1

[
b∗
1̃
(θ1) ,

1+θ1
2 , 1+θ2

2

]
with b∗

1̃
(θ1) ≤ θ1∀θ1 ∈ [0, 1]

strictly monotone and differentiable

UN

[
−(1−α)θ1+(1+α)θ

1−α
1+α
1

2α ,
−(1−α)θ1+(1+α)θ

1−α
1+α
1

2α ,

−(1−α)θ2+(1+α)θ
1−α
1+α
2

2α

]

V1

[
−(1−α)θ1+(1+α)θ

1−α
1+α
1

2α ,
−(1−α)θ1+(1+α)θ

1−α
1+α
1

2α ,

−(1−α)θ2+(1+α)θ
1−α
1+α
2

2α

]

U2

[
(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

,
(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

,

(1−α)(3+α−(1−α)θ22)
2(1−α)(2−(1−α)θ2)

]

B2

[b∗ (θ1) , b
∗ (θ1) , b

∗ (θ2)] where

b∗ (θi) =
(1−α)θi+(1+α)

(
1−e

−(1−θi)(1−α)
1+α

)

1−α

C2

[b∗ (θ1) , b
∗ (θ1) , b

∗ (θ2)] where

b∗ (θi) =
(1−α)θi+(1+α)

(
1−e

−(1−θi)(1−α)
1+α

)

1−α

DI
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
(1−α)(3+α−(1−α)θ2i )
2(1−α)(2−(1−α)θi)

B3A2
[b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)] where

b∗ (θi) =
−(1−α)θi+(1+α)θ

1−α
1+α
i

2α
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Uniform

[
b∗
1̃
(θ1) ,

−(1−α)θ1+(1+α)θ
1−α
1+α
1

2α ,
−(1−α)θ2+(1+α)θ

1−α
1+α
2

2α

]

with b∗
1̃
(θ1) ≤

−(1−α)θ1+(1+α)θ
1−α
1+α
1

2α ∀θ1 ∈ [0, 1]

strictly monotone and differentiable

D2U3

[
b∗
1̃
(θ1) ,

(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

,
(1−α)(3+α−(1−α)θ22)
2(1−α)(2−(1−α)θ2)

]

with b∗
1̃
(θ1) ≤

(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

∀θ1 ∈ [0, 1]

strictly monotone and differentiable

Discriminatory

[
(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

,
(1−α)(3+α−(1−α)θ21)
2(1−α)(2−(1−α)θ1)

,

(1−α)(3+α−(1−α)θ22)
2(1−α)(2−(1−α)θ2)

]

4 Expected revenue and payment

Let’s see what these expressions are like for each demand size.

4.1 Case 2

Every bayesian Nash equilibrium in Case 2 has the following form

[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]
= [b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)]

so if an auction model on the vertices of RC2 is used and both companies bid
with their strategies in equilibrium, the revenue for company i is reduced to

Ii(θi, θj) =

{
γ2
1b

∗ (θi) + (1+ α − γ2
1)b

∗
(
θj
)

i f θi < θj
0 i f θi > θj

where γ2
1 ∈ [0, 1+ α], and the expected revenue for company i is:

Pi(θi) = Eθj [Ii(θi, θj)] =
∫ 1

0
Ii(θi, θj)dθj

= (1− θi) γ2
1b

∗ (θi) + (1+ α − γ2
1)
∫ 1

θi

b∗
(
θj
)
dθj

=
(1+ α)(1− θ2i )

2
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in any auction model considered. Moreover, the payment the Market Operator
expects to make is:

PMO =
2

∑
i=1

Eθi [Pi(θi)] = 2
∫ 1

0
Pi(θi)dθi

=
2 (1+ α)

3

Remark 2. Clearly the expected revenue for the companies and the payment the Mar-
ket Operator expects to make are not dependent on the parameters, therefore we obtain
an equivalence revenue result for every auction model belonging to the vertices of RC2.

4.2 Case 3

Every bayesian Nash equilibrium in Case 3 has the following form

[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]
= [b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)]

so if an auction model on the vertices of RC3 is used and both companies bid
with their strategies in equilibrium, the revenue for company i is reduced to

Ii(θi, θj) =

{
γ2
1b

∗ (θi) +
(
2− α + γ2

3 − γ2
1

)
b∗
(
θj
)
+ α − γ2

3 i f θi < θj
γ2
3b

∗ (θi) + α − γ2
3 i f θi > θj

where γ2
1 ∈

[
0, 2− α + γ2

3

]
, γ2

3 ∈ [0, α] and the expected revenue for com-
pany i is:

Pi(θi) = Eθj [Ii(θi, θj)] =
∫ 1

0
Ii(θi, θj)dθj

=
((

γ2
3 − γ2

1

)
θi + γ2

1

)
b∗ (θi) + α − γ2

3 +

+
(
2− α + γ2

3 − γ2
1

) ∫ 1

θi
b∗
(
θj
)
dθj =

(2− α)(1− θ2i )

2
+ α

in any auction model considered. Moreover, the payment the Market Operator
expects to make is:

PMO =
2

∑
i=1

Eθi [Pi(θi)] = 2
∫ 1

0
Pi(θi)dθi

=
4 (1+ α)

3

Remark 3. Clearly the expected revenue for the companies and the payment the Mar-
ket Operator expects to make are not dependent on the parameters, therefore we obtain
an equivalence revenue result for every auction model belonging to the vertices of RC3.

Revista “Pensamiento Matemático”- Número 2 - Abr’12
ISSN 2174-0410

15



Investigación - A Revenue Equivalence Result in a Duopolistic Electricity
Market where one of the suppliers has two production units

Estrella Alonso y
Juan A. Tejada

4.3 Case 4

Every bayesian Nash equilibrium in Case 4 has one of the following two forms
[
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]
= [b∗ (θ1) , b

∗ (θ1) , b
∗ (θ2)]

or [
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

]
=
[
b∗
1̃
(θ1) , b

∗ (θ1) , b
∗ (θ2)

]

with b∗
1̃
(θ1) ≤ b∗ (θ1) ∀θ1 ∈ [0, 1] strictly monotone and differentiable function,

so if an auction model on the vertices of RC4 is used and both companies bid
with their strategies in equilibrium, the revenue for company i is reduced in
every case to

Ii(θi, θj) =

{
γ2
1b

∗ (θi) +
(
1− α + γ2

3 − γ2
1

)
b∗
(
θj
)
+ 1+ α − γ2

3 i f θi < θj
γ2
3b

∗ (θi) + 1+ α − γ2
3 i f θi > θj

where γ2
1 ∈

[
0, 1− α + γ2

3

]
, γ2

3 ∈ [0, 1+ α] and the expected revenue for com-
pany i is:

Pi(θi) = Eθj [Ii(θi, θj)] =
∫ 1

0
Ii(θi, θj)dθj

=
((

γ2
3 − γ2

1

)
θi + γ2

1

)
b∗ (θi) + 1+ α − γ2

3 +

+
(
1− α + γ2

3 − γ2
1

) ∫ 1

θi
b∗
(
θj
)
dθj =

(1− α)(1− θ2i )

2
+ 1+ α

in any auction model considered. Moreover, the payment the Market Operator
expects to make is:

PMO =
2

∑
i=1

Eθi [Pi(θi)] = 2
∫ 1

0
Pi(θi)dθi

=
4 (2+ α)

3

Remark 4. Clearly the expected revenue for the companies and the payment the Mar-
ket Operator expects to make are not dependent on the parameters therefore, we obtain
an equivalence revenue result for every auction model belonging to the vertices of RC4.

Remark 5. Alonso, E. and J. Tejada (2010) proved a revenue equivalence result when
there are two suppliers with only one production unit.
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Appendix

Proof of Proposition 1

The profit function of supplier 1 is:

B1(θ1,m,M, b2 (θ2)) =




= γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+

(
φ1 − φ3 + γ2

3 − γ2
1

)
b2 (θ2) + φ3 − γ2

3 − φ1θ1

if b−1
2 (M) < θ2

= γ1̃
1m+ γ1̂

2M+
(

φ1
2 − φ3 + γ2

3 − γ1̂
2 − γ1̃

1

)
b2 (θ2) + φ3 − γ2

3 − φ1
2θ1

if b−1
2 (m) < θ2 < b−1

2 (M)

=
(

γ2
3 − γ1̂

2

)
m+ γ1̂

2M+ φ3 − γ2
3 − φ3θ1 if θ2 < b−1

2 (m)

The profit function of supplier 2 is:

B2(θ2, b1̃ (θ1) , b1̂ (θ1) , b2) =




= γ2
1b2 +

(
φ1 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
b1̃ (θ1) + β2̂

1b1̂ (θ1) + φ3 − γ2
3 − φ1θ2

if
(
b1̃
)−1

(b2) < θ1

=
(

φ2
2 − φ3 + γ2

3 − β2̂
1

)
b2 + β2̂

1b1̂ (θ1) + φ3 − γ2
3 − φ2

2θ2

if b−1
1̂

(b2) < θ1 < b−1
1̃

(b2)

= γ2
3b2 + φ3 − γ2

3 − φ3θ2 if θ1 < b−1
1̂

(b2)

Supplier i knows its own type θi, but θj is a random variable, so the expected
profit for supplier 1 is given by:
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BM1(θ1, b1̃, b1̂, b
∗
2 (.)) =

∫ 1

0
B1(θ1,m,M, b∗2(θ2))dθ2 =

=
(

γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+ φ3 − γ2

3 − φ1θ1

) (
1− (b∗2)

−1 (M)
)

+
(

φ1 − φ3 + γ2
3 − γ2

1

) ∫ 1

(b∗2)
−1

(M)
b2 (θ2) dθ2

+
(

γ1̃
1m+ γ1̂

2M+ φ3 − γ2
3 − φ1

2θ1

) (
(b∗2 )

−1 (M)− (b∗2 )
−1 (m)

)

+
(

φ1
2 − φ3 + γ2

3 − γ1̂
2 − γ1̃

1

) ∫ (b∗2)
−1

(M)

(b∗2)
−1

(m)
b2 (θ2) dθ2

+
((

γ2
3 − γ1̂

2

)
m+ γ1̂

2M+ φ3 − γ2
3 − φ3θ1

)
(b∗2)

−1 (m) =

= γ1̃
1m+

(
γ2
1 − γ1̃

1

)
M+ φ3 − γ2

3 − φ1θ1

+ (b∗2)
−1 (M)

((
γ1̂
2 − γ2

1 + γ1̃
1

)
M+

(
φ1 − φ1

2

)
θ1

)

+ (b∗2)
−1 (m)

((
−γ1̃

1 + γ2
3 − γ1̂

2

)
m+

(
φ1
2 − φ3

)
θ1

)

+
(

φ1 − φ3 + γ2
3 − γ2

1

) ∫ 1

(b∗2)
−1

(M)
b2 (θ2) dθ2

+
(

φ1
2 − φ3 + γ2

3 − γ1̂
2 − γ1̃

1

) ∫ (b∗2)
−1

(M)

(b∗2)
−1

(m)
b2 (θ2) dθ2

Where m = min(b1̃, b1̂) and M = max(b1̃, b1̂). Thus
(
b1̃, b1̂

)
is the best bid for

company 1 if it maximizes the expected profit, given that its type is θ1. First we
are going to suppose that supplier 1 makes different bids with its production
units. Derivation with respect to b1̃ and b1̂ (one of them is m and the other is
M) yields

∂

∂m
BM1(θ1,m,M, b∗2 (.)) =

= γ1̃
1 +

(
−γ1̃

1 + γ2
3 − γ1̂

2

)
(b∗2 )

−1 (m)

+
(

φ3 − φ1
2

)
(m− θ1)

d

dm
(b∗2)

−1 (m)

∂

∂M
BM1(θ1,m,M, b∗2 (.)) =

=
(

γ2
1 − γ1̃

1

)
+
(

γ1̂
2 − γ2

1 + γ1̃
1

)
(b∗2)

−1 (M)

+
(

φ1
2 − φ1

)
(M− θ1)

d

dM
(b∗2)

−1 (M)

If bidder 1 makes the lowest bid with the production unit 1̃ then as b1̃(θ1) = m

and b1̂(θ1) = M ⇔ θ1 = b−1
1̃

(m) = b−1
1̃

(M), replacing and setting the above
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equations to zero, we obtain the following differential equations:




γ1̃
1 +

(
−γ1̃

1 + γ2
3 − γ1̂

2

)
(b∗2 )

−1 (m) +

+
(
φ3 − φ1

2

) (
m−

(
b∗
1̃

)−1
(m)

)
d
dm (b∗2)

−1 (m) = 0
(

γ2
1 − γ1̃

1

)
+
(

γ1̂
2 − γ2

1 + γ1̃
1

)
(b∗2)

−1 (M) +

+
(
φ1
2 − φ1

) (
M−

(
b∗
1̂

)−1
(M)

)
d

dM (b∗2)
−1 (M) = 0

evaluating both on t we obtain




γ1̃
1 +

(
−γ1̃

1 + γ2
3 − γ1̂

2

)
(b∗2)

−1 (t) +

+
(
φ3 − φ1

2

) (
t−
(
b∗
1̃

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0
(

γ2
1 − γ1̃

1

)
+
(

γ1̂
2 − γ2

1 + γ1̃
1

)
(b∗2)

−1 (t) +

+
(
φ1
2 − φ1

) (
t−
(
b∗
1̂

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

If bidder 1 makes the same bid with both production units then we obtain only
one differential equation and it is:

γ2
1 +

(
γ2
3 − γ2

1

)
(b∗2 )

−1 (t) + (φ3 − φ1)
(
t− (b∗1 )

−1 (t)
) d

dt
(b∗2 )

−1 (t) = 0

On the other hand, the expected profit for supplier 2 is given by

BM2(θ2, b
∗
1̃
(.) , b∗

1̂
(.) , b2) =

∫ 1

0
B2(θ2, b

∗
1̃
(θ1) , b

∗
1̂
(θ1) , b2)dθ2 =

=
(

γ2
1b2 + φ3 − γ2

3 − φ1θ2

) (
1− (b∗

1̃
)−1(b2)

)

+
(

φ1 − φ3 + γ2
3 − β2̂

1 − γ2
1

) ∫ 1

(b∗
1̃
)−1(b2)

b1̃ (θ1) dθ1 + β2̂
1

∫ 1

(b∗
1̂
)−1(b2)

b1̂ (θ1) dθ1

+
((

φ2
2 − φ3 + γ2

3 − β2̂
1

)
b2 + φ3 − γ2

3 − φ2
2θ2

) (
(b∗

1̃
)−1(b2)− (b∗

1̂
)−1(b2)

)

+
(

γ2
3b2 + φ3 − γ2

3 − φ3θ2

)
(b∗

1̂
)−1(b2)

= γ2
1b2 + φ3 − γ2

3 − φ1θ2

+ (b∗
1̃
)−1(b2)

((
φ1 − φ2

2

)
θ2 +

(
φ2
2 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
b2

)

+ (b∗
1̂
)−1(b2)

(
−
(

φ2
2 − φ3 − β2̂

1

)
b2 +

(
φ2
2 − φ3

)
θ2

)

+
(

φ1 − φ3 + γ2
3 − β2̂

1 − γ2
1

) ∫ 1

(b∗
1̃
)−1(b2)

b1̃ (θ1) dθ1 + β2̂
1

∫ 1

(b∗
1̂
)−1(b2)

b1̂ (θ1) dθ1

Derivation with respect to b2 yields

∂

∂b2
BM2(θ2, b

∗
1̃
(.) , b∗

1̂
(.) , b2) =

= γ2
1 +

(
φ2
2 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
(b∗

1̃
)−1(b2)−

(
φ2
2 − φ3 − β2̂

1

)
(b∗

1̂
)−1(b2)

+
(

φ2
2 − φ1

)
(b2 − θ2)

(
(b∗

1̃
)−1(b2)

)′
+
(

φ3 − φ2
2

)
(b2 − θ2)

(
(b∗

1̂
)−1(b2)

)′
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As b−1
2 (b2) = θ2 ⇐⇒ b2(θ2) = b2, replacing and setting the above equations to

zero, we obtain the following differential equation:

0 = γ2
1 +

(
φ2
2 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
(b∗

1̃
)−1(b∗2 (θ2))

−
(

φ2
2 − φ3 − β2̂

1

)
(b∗

1̂
)−1(b∗2 (θ2))

+
(

φ2
2 − φ1

)
(b∗2 (θ2)− θ2)

(
(b∗

1̃
)−1
)′

(b∗2 (θ2))

+
(

φ3 − φ2
2

)
(b∗2 (θ2)− θ2)

(
(b∗

1̂
)−1
)′

(b∗2 (θ2))

Evaluating on t

0 = γ2
1 +

(
φ2
2 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
(b∗

1̃
)−1(t)−

(
φ2
2 − φ3 − β2̂

1

)
(b∗

1̂
)−1(t)

+
(

φ2
2 − φ1

) (
t− (b∗2)

−1 (t)
) d

dt
(b∗

1̃
)−1 (t)

+
(

φ3 − φ2
2

) (
t− (b∗2)

−1 (t)
) d

dt
(b∗

1̂
)−1 (t)

Then we have obtained two differential systems, if bidder 1 makes two bids
then the system is

(S1)





γ1̃
1 +

(
−γ1̃

1 + γ2
3 − γ1̂

2

)
(b∗2)

−1 (t)

+
(
φ3 − φ1

2

) (
t−
(
b∗
1̃

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0
(

γ2
1 − γ1̃

1

)
+
(

γ1̂
2 − γ2

1 + γ1̃
1

)
(b∗2)

−1 (t)

+
(
φ1
2 − φ1

) (
t−
(
b∗
1̂

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

γ2
1 +

(
φ2
2 − φ3 + γ2

3 − β2̂
1 − γ2

1

)
(b∗

1̃
)−1(t)−

(
φ2
2 − φ3 − β2̂

1

)
(b∗

1̂
)−1(t)

+
(
φ2
2 − φ1

) (
t− (b∗2)

−1 (t)
)

d
dt(b

∗
1̃
)−1 (t)

+
(
φ3 − φ2

2

) (
t− (b∗2)

−1 (t)
)

d
dt(b

∗
1̂
)−1 (t) = 0

And if bidder 2 makes the same bid with both production units then the system
is:

(S2)





γ2
1 +

(
γ2
3 − γ2

1

)
(b∗2)

−1 (t) + (φ3 − φ1)
(
t−
(
b∗1
)−1

(t)
)

d
dt (b

∗
2)

−1 (t) = 0

γ2
1 +

(
γ2
3 − γ2

1

)
(b∗1)

−1(t) + (φ3 − φ1)
(
t− (b∗2)

−1 (t)
)

d
dt (b

∗
1)

−1 (t) = 0

We have the following regions:

Region I If φ3 = φ1
2 , φ1 = φ2

2, γ1̃
1 = 0, γ1̂

2 = γ2
3, φ1 − φ3 + γ2

3 − β2̂
1 − γ2

1 = 0
then the system (S1) is reduced to





γ2
1 +

(
γ2
3 − γ2

1

)
(b∗2)

−1 (t) + (φ3 − φ1)

(
t−
(
b∗
1̂

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

γ2
1 +

(
γ2
3 − γ2

1

)
(b∗

1̂
)−1(t) + (φ3 − φ1)

(
t− (b∗2)

−1 (t)
)

d
dt(b

∗
1̂
)−1 (t) = 0
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and with the conditions b∗2 (1) = b∗
1̂
(1) = 1, it follows that there exist infinite

bayesian Nash equilibrium given by

(
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

)
=
(
b∗
1̃
(θ1) , b

∗(θ1), b
∗(θ2)

)

where b∗
1̃
(θ1) is any strictly monotone and differentiable function verifying

b∗
1̃
(θ1) ≤ b∗(θ1) ∀θ1 ∈ [0, 1].

Region II Otherwise and if one of the following expressions is true

•γ1̂
2 6= 0 or γ2

3 6= 0

•γ1̂
2 = 0 and γ1̃

1 = γ2
1

•γ1̂
2 = γ2

3 = 0 and γ2
1 = (1+ k) γ1̃

1, (1+ k) φ1
2 = φ1 + kφ3, for any k ∈ ℜ

Then 1 makes the same bid with the two production units. So the system
is reduced to (S2) and with the conditions b∗2(1) = b∗

1̂
(1) = 1, it follows that

there exist unique symmetric bayesian Nash equilibrium given by

(
b∗
1̃
(θ1) , b

∗
1̂
(θ1) , b

∗
2 (θ2)

)
= (b∗(θ1), b

∗(θ1), b
∗(θ2))

Both inRegion I as inRegion II, b∗(θi) is a particular solution of the differential
equation

(
γ2
1 +

(
γ2
3 − γ2

1

)
θi

)
(b∗)′ (θi)− (φ1 − φ3) b

∗(θi) = − (φ1 − φ3) θi

with b∗(1) = 1. Solving the differential equation we obtain

a) If γ2
1 = γ2

3 = 0, then
b∗(θi) = θi

b) If γ2
3 = 0 and γ2

1 6= 0, then

b∗(θi) =
(φ1 − φ3) θi + γ2

1

γ2
1 + φ1 − φ3

c) If γ2
1 6= γ2

3 6= 0 then

b∗(θi) =
(φ3 − φ1) θi − γ2

1 +
(
γ2
3

) γ23−γ21+φ3−φ1

γ23−γ21
(
γ2
1 +

(
γ2
3 − γ2

1

)
θi
) φ1−φ3

γ23−γ21

γ2
3 − γ2

1 + φ3 − φ1

d) If γ2
1 = γ2

3 6= 0 then

b∗(θi) = θi +

γ2
1


1− e

−(1−θi)(φ1−φ3)
γ2
1




φ1 − φ3
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Region III If the parameters don’t belong to Region I or Region II then we
can only say that the bayesian Nash equilibria are solutions of the following
system of differential equations:





γ1̃
1

(
1− (b∗2)

−1 (t)
)
+
(
φ3 − φ1

2

) (
t−

(
b∗
1̃

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

(
γ2
1 − γ1̃

1

) (
1− (b∗2 )

−1 (t)
)
+
(
φ1
2 − φ1

) (
t−
(
b∗
1̂

)−1
(t)

)
d
dt (b

∗
2)

−1 (t) = 0

γ2
1

(
1− (b∗

1̃
)−1(t)

)
+
(

φ2
2 − φ3 − β2̂

1

) (
(b∗

1̃
)−1(t)− (b∗

1̂
)−1(t)

)

+
(
φ2
2 − φ1

) (
t− (b∗2)

−1 (t)
)

d
dt (b

∗
1̃
)−1 (t)

+
(
φ3 − φ2

2

) (
t− (b∗2)

−1 (t)
)

d
dt (b

∗
1̂
)−1 (t) = 0

�
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