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Abstract

Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the
different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the
possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to
be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms
have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years
(2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been
linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and
average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield
zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior
delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose.
However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with
more equilibrated zonal differences over time.

Additional key words: cluster analysis; fuzzy c-means algorithm; grape yield maps; k-means algorithm; precision
viticulture; zonal management.

Resumen

Análisis cluster de mapas de vendimia para la delimitación de zonas de manejo diferencial

El manejo zonal en viña requiere la delimitación previa de zonas estables de cosecha dentro de la parcela. Entre los
diferentes métodos de zonificación existentes, el análisis cluster de los datos de cosecha de diferentes años es una de
las posibilidades que han sido citadas en la literatura científica. Sin embargo, existen dudas razonables en relación al
algoritmo que debe ser utilizado y al número de zonas que deben delimitarse dentro de la parcela. En este artículo se
comparan dos algoritmos diferentes de clasificación (algoritmo de k-medias y algoritmo difuso de c-medias), a par-
tir de los datos de cosecha (mapas de cosecha) correspondientes a tres años sucesivos de vendimia (2002, 2003 y 2004)
en una parcela de uva ‘Pinot Noir’. La elección final del método (algoritmo) ha estado vinculada a la obtención de un
patrón de cosecha estable en el tiempo y a la delimitación dentro de la parcela de zonas compactas y de cierto tama-
ño. La recomendación general es la utilización de mapas reclasificados en dos clases de cosecha (zona de cosecha ba-
ja y zona de cosecha alta) y, en consecuencia, el manejo sitio-específico en viña debería estar basado en la delimita-
ción previa de únicamente dos zonas diferentes o subparcelas. Los dos algoritmos evaluados son una buena opción
para este propósito. Con todo, el algoritmo difuso de c-medias permite una mejor zonificación de la parcela, formando
áreas que, siendo más compactas en superficie, mantienen asimismo mejor equilibradas las diferencias zonales a lo
largo del tiempo.

Palabras clave adicionales: algoritmo difuso de c-medias; algoritmo de k-medias; análisis cluster; manejo zonal;
mapas de vendimia; viticultura de precisión.
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Introduction

Grape yield is variable within the same parcel. This
spatial variability normally presents little changes from
one campaign to the next and follows a clearly defined
spatial distribution pattern, even when there have been
signif icant differences in total grape yield between
consecutive years (Bramley and Hamilton, 2004). Then,
the delineation of differential management zones using
historical series of grape yield maps offers winegrowers
and winemakers an excellent opportunity to improve
the site-specific management of vineyards.

Yield sensors and monitors supply reliable and geo-
referenced values for the grape harvest (Arnó et al.,
2009). Once the maps have been constructed, various
methodologies can be used for zonal delineation of a
parcel using yield data from several years (Blackmore,
2000; Diker et al., 2004; Bocchi and Castrignanò,
2007). However, cluster analysis, used on a series of yield
maps, is one of the most recommended classification
methodologies to allow zoning at parcel level (Lark
and Stafford, 1997; Lark, 1998; Panneton et al., 2001;
Shatar and McBratney, 2001; Bramley and Hamilton,
2004; Ping and Dobermann, 2005; Taylor et al., 2007).
Through an iterative process, this procedure enables
the clustering of values interpolated from yield maps
into homogenous groups (classes). The number of groups
can be predetermined, but the delineation of 2 to 5 classes
is the general recommendation (Bramley and Hamilton,
2004). The aim is to zone the parcel taking into account
the classes provided by cluster analysis.

Another possibility is to use, as variables for the
cluster analysis, yield, soil data (e.g. the apparent soil
electrical conductivity), remote sensing images and
site characteristics together. In most cases, this possibi-
lity has proved to be an interesting way to identify
within-field homogeneous and stable zones (Cupitt and
Whelan, 2001; Boydell and McBratney, 2002; Taylor
et al., 2003; King et al., 2005; Yan et al., 2007; Guastaferro
et al., 2010). The delineation of management zones
only based on soil fertility variables is also proposed
by Ortega and Santibáñez (2007).

In a multivariate cluster analysis of grape yield maps,
zones of differential crop management can vary within
a parcel, to a greater or lesser degree, depending on
whether the hard k-means algorithm or the fuzzy 
c-means algorithm is used. Although the particularities
how these methods work for different applications are
well known (e.g. Guastaferro et al., 2010), the objec-
tive of the present paper is to determine which algorithm

is the most appropriate for zoning purposes in preci-
sion viticulture (PV). For that, both procedures were
applied and compared using the grape yield data corres-
ponding to three successive years. Final choice of the
most recommendable algorithm was possible through
verification of the temporal stability of the spatial yield
distribution patterns. Notwithstanding the above, it
should be remembered that, as stated by King et al.
(2005), the use of yield maps should always be comple-
mented by the owner’s experience and field accumu-
lated knowledge.

Material and methods

Data acquisition

The yield data used in the study correspond to the
harvests of the years 2002, 2003 and 2004 of a vineyard
parcel (P30, Vitis vinifera L. cv. Pinot Noir) located in
Raimat (Lleida, Spain). This parcel has a total surface
area of 5.0 ha and was planted in 1985 with a 2.1 m vine
spacing and 3.2 m row spacing pattern. The vineyard
is sprinkler-irrigated.

The monitoring equipment was, for each year of the
study, the Canlink 3000 yield monitor (Farmscan, Ben-
tley, Western Australia). The exact harvesting dates
were September 16 (2002), September 4-6 (2003) and
August 24 (2004).

While the yield monitor was configured in 2002 to
capture data each 4 s, in 2003 and 2004 this data capture
interval was raised to 5 s. This enabled a reduction in
the number of monitored observations to a value closer
to the number of interpolations which were subsequently
used to construct the yield maps.

Grape yield mapping

Local block kriging based on local variograms was
used to map the grape harvest over a predefined 3 m
grid surface. The interpolated yield values were, there-
fore, directly comparable as they referred to the same
points or co-ordinates. Spatial interpolation was carried
out using VESPER, version 1.6.3, geostatistical soft-
ware (Minasny et al., 2005).

While the yield maps for 2002 and 2003 were cons-
tructed from the original data supplied by the monitor,
the 2004 map was obtained from interpolated yield
values from the f irst map provided by the Codorníu
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Company. Since the reference grid of the Codorníu
map did not coincide exactly with the grid used in 2002
and 2003, the yield values for the desired locations had
to be obtained from values already interpolated at other
different locations.

Clustering and statistical analysis

A cluster analysis of the study parcel was carried out
using the values interpolated from the three grape yield
maps together (2002, 2003 and 2004). This procedure
allowed, first, the construction of a reclassified yield map
according to a predefined number of groups or yield
classes. Clustering was initially performed with the 
k-means algorithm. In a second step, and following the me-
thodology proposed by Bramley and Hamilton (2004),
the temporal stability of grape yield pattern was tested
using an analysis of variance. The separate ANOVA of
yield for each year, in relation to the zones or clusters (ana-
lysis factor), should allow observation of any signifi-
cant differences between the various yield zones, with
a means separation which should also display the same
tendency (ranking) for each of the years under study.
The data analysis procedure is shown in Figure 1.

To compare the results of the k-means algorithm,
the same procedure was repeated using a fuzzy logic
clustering method: the fuzzy c-means algorithm. This
algorithm has been widely used in the delineation of
site-specif ic management zones in extensive crop-
farming (a comparison of different algorithms can be

found in Guastaferro et al., 2010), but no study has
been published to date of its use in precision viticulture.

Unlike the k-means algorithm (or other determi-
nistic clustering methods like ISODATA), in which
each observation can only belong to a single group or
cluster, the fuzzy c-means algorithm allows more than
one group or cluster to be assigned to each individual,
according to its characteristics and with different degrees
of belonging. That is, fuzzy clustering methods assign
to each individual a partial class membership value to
each one of the classes or groups. The application of
this type of classif ication in precision viticulture is
particularly interesting. Given, on the one hand, the
continuous nature of the spatial variation of the grape
yield (since it is influenced in general by physical
environment factors which are in themselves spatially
continuous) and, on the other, the spatial imprecision
of the information supplied by the yield monitors,
using a yield classification method which takes into
consideration the continuity of the different classes
could result in a more representative (or less artificial)
zoning of the parcel. In this particular case, the aim
was to determine the degree of belonging of each
individual (map pixel) to each of the yield classes
which would result from zoning of the parcel. The class
in which each pixel obtained the highest score (assign-
ment) was the class which would finally appear on the
reclassified grape yield map (“defuzzification” process).
Cluster analysis using the k-means algorithm was carried
out with SAS Enterprise Guide (Statistical Analysis
System Institute Inc., Cary, NC, USA). Yield classifi-
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Figure 1. Methodology used to check the temporal stability of the yield maps 
(FPI: fuzziness performance index, NCE: normalized classification entropy).
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cation using the fuzzy c-means algorithm was perfor-
med with the software Management Zone Analyst (MZA)
version 1.0.1 (Fridgen et al., 2004).

The optimal fuzzy classif ication of yield data 
(n observations) into yield groups (c clusters) is the
classification which minimizes the objective function
Jm (Fridgen et al., 2004; Yan et al., 2007):

[1]

where m is the fuzziness exponent [m is usually set in
the range 1 < m ≤ 2 (Lark and Stafford, 1997); in this
particular case m was set to 1.30], (dij)2 the squared
distance between observations and centroids (clusters),
and uij the membership value assigned to pixel i within
the cluster j. The imposed conditions are shown in [2],
and must be met for any i = 1 to n and for any j = 1 to c:

[2]

As can be seen in [1], the fuzzy c-means algorithm
introduces the use of a weighting exponent (fuzzy
exponent), the function of which was to control the
degree of overlap established between the groups or
clusters. The algorithm also used the concept of dis-
tance between points to evaluate the similarity (proxi-
mity) between observations and the centroids of each
group. In this respect, the distance used in expression
[1] (Mahalanobis distance) was calculated through the
matrix product:

[3]

where yi represents the vector of the ith observation of
the data, vj the means vector (centroid) of the cluster
j, and S the matrix of variances and covariances of the
original data. In this way, Mahalanobis distance, as a
measure of similarity, enabled a “bringing together”
or “separation” of the points, taking into consideration
the existing degree of correlation between the variables
(yields of 2002, 2003 and 2004).

Validation of the zoning was performed through the
calculation of two coefficients: the Fuzziness Perfor-
mance Index (FPI) and the Normalized Classification
Entropy (NCE).

The FPI measures the degree of separation (or overlap)
between the partitioned groups of the original data
matrix (Fridgen et al., 2004). It was calculated from
the following expression:

[4]

where,

[5]

Values range between 0 and 1. Those values
approaching 0 were indicative of distinct classes with
little overlap between the groups, while values
approaching 1 indicated non-distinct classes or, in other
words, classes with a very high degree of overlap.

The NCE estimates the amount of disorganisation
created by the fuzzy partition of the data matrix with
a specific number of clusters or yield classes (Lark and
Stafford, 1997). Firstly, the classification entropy (H)
was calculated through the expression:

[6]

where the logarithmic base a could be any positive
integer, with the values of H varying from 0 to loga (c).
From [6], the final NCE value was given by:

[7]

The NCE were similar to those of entropy when c
was relatively small in comparison with n. As before,
the NCE values approaching 0 were indicative of a
more appropriate classification (or with a higher degree
of organisation). The optimum number of clusters was,
therefore, the number which managed to minimize the
two proposed coefficients.

Results

The 2002, 2003 and 2004 yield maps for parcel 30
(Pinot Noir cultivar) are shown in Figure 2. The mean
yield gave different values for the three years under
study (2002, 2003 and 2004). According to the coeffi-
cient of variation values, the 2002 grape yield (Table 1)
displayed greater within-parcel variation than those of
2003 and 2004. However, its spatial distribution follo-
wed similar patterns in the three campaigns (Fig. 2),
with no apparent influence from the differing total pro-
duction for each of the years. A visual evaluation seemed
to indicate a higher similarity between the 2003 and
2004 maps. It could be considered that the yields
(maps) of the years 2003 and 2004 displayed more
similarity with each other than with the 2002 map.

A cluster analysis was performed to verify the
stability of the spatial variation of the yield, with the
analysis variables being the respective 2002, 2003 and

NCE =
H

[1 – (c/n)]

∑
i=1

n

uij · loga (uij)∑
j=1

c

H =  – 1
n

∑
i=1

n

(uij)2∑
j=1

c

F =
1
n

FPI = 1 – cF – 1
c – 1

dij = [(yi – vj)’ S–1 (yi – vj)]1/2

uij ∈[0,1]  ∀i,j   ; ∑
j=1

c

uij = 1,   ∀i

Jm =∑
i=1

n

(uij)m (dij)2∑
j=1

c
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2004 yields. Using the unsupervised k-means classifi-
cation algorithm, a conventional (or hard) zoning was
obtained in which each of the classif ied individuals
(5323 points or pixel values) could only belong to one
group or yield class. Figure 3 shows the two yield
zoning maps: on one map two production zones can be
distinguished (cluster 1 and cluster 2), and on the other
three zones (clusters 1, 2 and 3). The fuzzy c-means
algorithm was used as an alternative to this method
with up to three different maps obtained depending on
the number of groups used (two, three and four diffe-
rent zones) (Fig. 3). In this way, by considering the
possibility that each point could belong to a higher or
lower degree to more than one yield class, the resulting
zoning reflected the possible inherent variability of the
yield at a same location.

Once the different zonings of parcel 30 had been
obtained (two with the k-means algorithm and three

with the fuzzy c-means algorithm, Fig. 3), an analysis
of variance (ANOVA) was performed, for each zoning
and for each of the years under study, in which the
factor considered was the cluster or yield zone. The final
results are shown in Table 2 (k-means algorithm) and
Table 3 (fuzzy c-means algorithm). Finally, for the
latter method, the values of the FPI and NCE indices
are shown in Figure 4.

Discussion

In Table 2, the means separation offered a very clear
interpretation. For the three years studied, the zones of
the parcel classified as cluster 2 (Fig. 3) were the zones
where the lowest yield was obtained. Likewise, the
zones within the parcel which had been classified as
cluster 1 were the zones of highest productive potential.
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Figure 2. Yield maps of parcel 30 (Pinot Noir cultivar) for the years 2002, 2003 and 2004 (the average yields of each year are high-
lighted in boxes). The 2004 map was obtained from values interpolated from the yield map provided by the Codorniu Company.
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Table 1. Descriptive analysis of the values interpolated from the 2002, 2003 and 2004 yield
maps in parcel 30 (Pinot Noir cultivar)

2002 2003 2004

Number of interpolations 5,323 5,323 5,323
Mean (t ha–1) 9.905 10.303 6.645
Median (t ha–1) 9.863 10.753 6.594
Minimum (t ha–1) 0.125 0.313 1.928
Maximum (t ha–1) 27.949 22.732 13.055
Standard deviation (t ha–1) 5.511 4.604 2.679
Coefficient of variation, CV (%) 55.64 44.68 40.31



It was clear that the subdivision of the parcel into two
clusters distinguished two zones (low and high yield),
whose within-parcel distribution remained constant
from one campaign to the next.

The results were almost identical when zoning was
extended to three clusters or crop zones. Identification
of a three-tiered spatial pattern of the yield (clusters
1, 2 and 3, Fig. 3) also displayed clear stability or
continuity for the three years under study (2002, 2003
and 2004). Though no signif icant differences were
observed between cluster 3 and cluster 1 for the 2003

harvest, the temporal stability of the yield pattern
enabled identification of cluster 2 as the zone of lowest
production, cluster 3 as a zone of intermediate yield
and cluster 1 as the zone of highest production.

In short, it has been demonstrated that the grape
yield was not only variable within the parcel, but that
this spatial variability followed a particular distribution
pattern which remained stable over time. This result is
undoubtedly of enormous importance since, in princi-
ple, it justifies site-specific crop management (SSCM)
of the vineyard based on within-parcel delineation of
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Figure 3. Zoning of parcel 30 (Pinot Noir cultivar) based on classification of the yields
of 2002, 2003 and 2004 by means of cluster analysis: a) k-means and b) fuzzy c-means
algorithms.
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Table 2. Zoning of parcel 30 (Pinot Noir cultivar) based on grouping of the yield for 2002, 2003 and 2004 using the unsu-
pervised k-means algorithm

Production zone Number of points Yield 2002 Yield 2003 Yield 2004

Cluster 2 2,929 6.083b 7.362b 4.924b

Cluster 1 2,394 14.581a 13.901a 8.751a

Cluster 2 2,074 4.864c 5.654b 4.197c

Cluster 3 2,417 11.186b 13.262a 7.784b

Cluster 1 832 18.749a 13.297a 9.440a

In the same column, means with the same letter are not significantly different for a 95% confidence level.



zones of different productive potential. The high value
of the coefficient of variation (Table 1) also reinforces
this possibility.

The use of the fuzzy c-means algorithm for the
zoning of parcel 30 gave similar results (Fig. 3 and
Table 3). However, the peculiarity of the method allowed
some aspects to be highlighted which had gone unno-
ticed when the k-means algorithm had been used as
partition method.

The main conclusion from the analysis of variance
(Table 3) was that the persistence over time of the
spatial distribution pattern of the yield was only evident
when the parcel was divided into two clusters of diffe-
rent yield. In the other cases (3 and 4 clusters), only
cluster 1 (when 3 and 4 zones were delineated) corres-
ponded to the area of less production for each of the
years under study. However, the ranking of the remai-

ning clusters (though significantly different) displayed
no consistency for the series of years analysed. This
result, which coincides with some of the tests conduc-
ted by Bramley and Hamilton (2004), implies it would
be advisable to subdivide parcel 30 (Pinot Noir culti-
var) into just two zones or sub-parcels (low yield zone
of cluster 2 and high yield zone of cluster 1), given that
this zoning is the only one which guarantees a yield
spatial variation pattern which is stable over time.

As mentioned above, the yield maps for 2003 and
2004 displayed higher similarity to each other (Fig. 2)
than they seemed to display to the 2002 map. Con-
firmation of this was found in the fact that the corre-
lation (measured as Pearson’s linear correlation coeffi-
cient) between the 2003 and 2004 maps (ρ = 0.770) was
higher than that found between the 2002 and 2003
maps (ρ = 0.624), and between the 2002 and 2004 maps
(ρ = 0.691). This would explain the behaviour between
clusters 2 and 3 in the zoning which followed three
classes of yield (Table 3). In 2002, the highest produc-
tion potential zone corresponded to cluster 2, while the
spatial variation pattern of the yield inverted clusters
3 and 2 and remained stable from 2003 to 2004.
However, the most interesting pattern occurred when
the parcel was subdivided into 4 clusters (Table 3).
Again, there was a zone (now classified as cluster 1)
which was stable over time and for which the lowest
yields were obtained. However, the remaining clusters
were ranked differently for each of the years under
study. The most logical interpretation of this leads to
the same conclusion as before, namely that the sub-
division of parcel 30 (Pinot Noir cultivar) into just two
zones of different productive potential seems to be the
option which obtains better stabilisation over time of
the reclassified grape yield map.
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Table 3. Zoning of parcel 30 (Pinot Noir cultivar) based on grouping of the 2002, 2003 and 2004 yields through the unsu-
pervised fuzzy c-means algorithm

Production zone Number of points Yield 2002 Yield 2003 Yield 2004

Cluster 2 2,387 6.286b 6.014b 4.307b

Cluster 1 2,936 12.847a 13.790a 8.547a

Cluster 1 1,869 4.633c 5.356c 4.091c

Cluster 3 2,023 10.416b 14.113a 8.295a

Cluster 2 1,431 16.068a 11.379b 7.650b

Cluster 1 1,719 4.544d 5.108d 3.921d

Cluster 3 1,264 9.909c 13.152b 9.180a

Cluster 4 1,370 11.509b 13.623a 6.427c

Cluster 2 970 17.134a 11.109c 8.479b

In the same column, means with the same letter are not significantly different for a 95% confidence level.

Figure 4. Validation of the zoning of parcel 30 (Pinot Noir cul-
tivar) based on the evaluation of the FPI (fuzziness performance
index) and NCE (normalized classification entropy) indices.
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Normally the FPI and NCE values should fall as the
number of classes increases, and it is considered that
the optimum number of clusters (or zones of different
yield) is the number which is able to minimize the
respective values of these two indices. While minimi-
zation of the FPI was useful because the overlap
between groups decreased, minimization of the NCE
was interesting because the degree of organisation
increased as a consequence of data partitioning. In our
case (Fig. 4), the number of yield classes recommended
by the FPI criterion (4 clusters) differed from the opti-
mum number of classes obtained through the NCE
criterion (2 clusters). So, the initial expectation of obtai-
ning a matching result for both indices was not met
[Boydell and McBratney (2002) in cotton, and Ping
and Dobermann (2005) in corn, obtained similar results].

Since there was no agreement between the FPI and
NCE indices as to the optimum number of clusters
(Fig. 4), one option was to choose the least number of
classes (Lark and Stafford, 1997), which in this case
was two. It is also true that the FPI values for two and
four clusters were not so much different, as the index
can vary from 0 to 1 (in both cases, two and four clusters,
the overlap between groups was small). The same
interpretation is valid for the NCE coefficient, or even
more because the values were very similar besides of
the number of classes (Fig. 4). Likewise, the choice of
four classes, in view of the results shown in Table 3
(ANOVA), would not seem to be a good solution.
Zoning of the parcel with two sub-parcels is possibly
the most suitable option. The simplification thereby
achieved is clear and favours subsequent field mana-
gement. In addition, this result coincides with the rec-
ommendation made by Taylor et al. (2003), in the sense
of selecting a small number of zones even though the
zoning may not resolve certain differences (or the
differences remain unseen).

It is clear that the use of reclassif ied grape yield
maps (constructed on a historical series of yield) re-
quires, first of all, temporal stability of the zones deli-
neated within the parcel. So, faced with the decision
as to which classif ication method to use, the most
interesting zoning would be the one which fulfilled the
temporal stability criterion and which was able to
subdivide the parcel into two zones, whose differential
yield remained as uniform and consistent as possible
over successive campaigns. If we compare the ratios
between the high yield zone (cluster 1) and the low
yield zone (cluster 2) using first the zones delineated
through the k-means algorithm (Table 2) (2.4:1 for

2002, 1.89:1 for 2003 and 1.78:1 for 2004), and then
the zones delineated through the c-means algorithm
(Table 3) (2.04:1 for 2002, 2.3:1 for 2003 and 1.98:1
for 2004), we can see that they produce different results,
but the values for the c-means classification method
are closer to each other. This indicates that the fuzzy
c-means method was able to delineate two zones (clus-
ters 1 and 2) in the study parcel which, in addition to
showing significantly different yield levels, also dis-
played a productive ratio which remained appreciably
constant over the years. So, in agreement with Lark
(1998), classification using the continuous c-means al-
gorithm achieved, in comparison with the k-means algo-
rithm, a more coherent zoning of the parcel, forming more
compact regions and with a spatial distribution which
should facilitate the work of site-specific management.

The present research has shown that cluster analysis
is an appropriate method for obtaining classified grape
yield maps, and interesting application in precision
viticulture. The spatial distribution pattern of the grape
yield remains appreciably constant from one campaign
to the next, with classified maps in two clusters or yield
classes (low yield zone and high yield zone) displaying
higher temporal stability. Consequently, the application
of possible site-specific management in the vineyard
should be based on the prior delineation of just two
types of different zones or sub-parcels.

Compared with the k-means algorithm, the fuzzy c-
means algorithm is better at equilibrating possible
zonal differences over time, allowing for greater con-
sistency in site-specific management. Then, fuzzy clus-
tering should be rather used when delineation of mana-
gement zones is conducted in winegrape production
systems.
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