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Département de Mathématiques
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En este art́ıculo se demuestra un teorema de punto fijo común (Teo-

rema 3.1) en espacios métricos para dos auto–mapeos que satisfacen una

relación impĺıcita general que involucra el diámetro de conjuntos finitos

sin exigir continuidad. Este teorema se puede considerar como una gene-

ralización de un resultado de Totik (1983). También, unifica y generaliza

algunos otros resultados obtenidos por Fisher (1977), Akkouchi (2001) y

Nova (1997).
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In this paper we prove a common fixed point theorem (see Theorem 3.1) in

metric spaces for two self–mappings satisfying a general implicit relation

involving the diameter of finite sets, without requiring continuity. This

theorem may be considered as a generalization of a result by Totik (1983).

Also, it unifies and generalizes some other results obtained by Fisher

(1977), Akkouchi (2001) and Nova (1997).
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1 Introduction

The common fixed point theory has seen a great developpement during
the three last decades. One can say that its story has started with the
well known result of Markov and Kakutani.

For two self–mappings S and T of a given metric space (X, d), many
kind of contractive (exapnsive or nonexpansive) conditions may be con-
sidered. We list here some examples.
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d(Sx, Sy) ≤ q d(Tx, Ty) , ∀x, y ∈ X . (1.1)

This condition generalizes the well known Banach contraction prin-
ciple. It has been generalized by the following condition

d(Sx, Sy) ≤ q max{d(Tx, Ty), d(Sx, Tx), d(Sy, Ty),
d(Tx, Sy), d(Ty, Sx)} . (1.2)

A more general condition may be defined by means of functions of
five variables. That is contraction given by

d(Sx, Sy) ≤ F (d(Tx, Ty), d(Sx, Tx), d(Sy, Ty),

d(Tx, Sy), d(Ty, Sx)) ≤ 0 , (1.3)

for all x, y ∈ X, where F : [0,∞)5 −→ R is a function.

The previous conditions do not involve compositions of the mappings
S and T . In [3], Fisher has considered the following condition

d(Sx, TSy) ≤ αd(x, Sy) + β [d(x, Sx) + d(Sy, TSy)]

+γ [d(x, TSy) + d(Sx, Sy)] , (1.4)

for all x, y ∈ X, where, α, β, γ ≥ 0, such that α+ 2β + 2γ < 1.

Fisher has proved in [3] that if S is continuous then S and T have a
unique common fixed point.

This contraction was used by Nova [4] and Akkouchi [1] to establish
some improvements to the previous result of Fisher.

In [2], Fisher made the following conjecture. Suppose S and T are
self–mappings of the complete metric space X into itself, with either S
or T continuous, satisfying the inequality

d(Sx, TSy) ≤ cdiam{x, Sx, Sy, TSy} , (1.5)

for all x, y ∈ X, where 0 ≤ c < 1. Then S and T have a unique common
fixed point.
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We observe that (1.5) is more general than the condition (1.4). In-
deed, it can be shown that if the mappings S and T satisfy the condition
(1.4), then they satisfy the condition (1.5) with c := α+ 2β + 2γ.

This conjecture has been solved by Totik who proved in [5] the fol-
lowing result.

Theorem 1.1. If X is complete, S : X −→ X, T : X −→ X
with property (1.1), where 0 ≤ c < 1

2 , then S and T have a unique
common fixed point. On the other hand, there is a four point set X and
S, T : X −→ X, self–mappings of X without fixed point satisfying

d(Sx, TSy) ≤ 1

2
diam{x, Sx, Sy, TSy} , ∀x, y ∈ X . (1.6)

Thus, if 0 ≤ c < 1
2 we do not need any continuity assumption, and for

c ≥ 1
2 even the simultaneous continuity of S and T and the compactness

of X do not help.

The purpose of this paper is to give a generalization of this theorem
(see Theorem 3.1 below) by using a general contractive condition defined
by implicit relation of two variables (see section two and the condition
(3.1) below). Implicit relations allow us to unify and generalize some
results obtained in the papers [3], [1] and [4].

An example to support our result is given. We provide also two
related common fixed point theorems for families of self–mappings in
metric spaces (see Theorem 4.2 and Theorem 4.3). We point out that
our results are established without making appeal to continuity.

The main result of this paper is established in the third section. In the
fourth section, we have gathered some consequences and related results.

2 Implicit relations

We recall the a real valued function f defined on a topological space
(Y, T ) is called lower semi–continuous on T if for every real number β,
the set {y ∈ Y : f(y) > β} is open in Y . This is equivalent to say that
for every β ∈ R, the set {y ∈ Y : f(y) ≤ β} is closed in Y .

In all this paper, (X, d) will be a metric space. If A ⊂ X is a bounded
subset of X, we shall denote the diameter of A by δ(A).
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Let R+ be the set of all non–negative reals numbers and F2 the family
of all lower semi–continuous mappings F (t1, t2) : R2

+ → R satisfying the
following conditions:

F1. F is non–increasing in the variable t2.

F2. There exists 0 ≤ h < 1 such that for all u, v ≥ 0 with F (u, u+v) ≤
0, we have u ≤ hv.

Remark 1.1. The condition F2 implies the following property:

F (u, 2u) > 0 , ∀u ∈ (0, ∞) and ∀F ∈ F2 .

Examples.

1. F (t1, t2) = t1 − c t2, with 0 ≤ c < 1
2 .

2. F (t1, t2) =
√
t1 − c

√
t2

1+tp1
, with 0 ≤ c < 1√

2
and p > 0.

3. F (t1, t2) = tp1 − c
tp2

1+t2
, with 0 ≤ c < 1

2p and p ≥ 1.

4. F (t1, t2) = t21 − 1
8 t

2
2 − 1

24 t1t2.

F1. It is clear that F is continuous and that F is non–increasing in the
variable t2.

F2. For all u, v ≥ 0, we have F (u, u+ v) = u2− 1
8(u+ v)2− 1

24u(u+ v).
Then, F (u, u+ v) ≤ 0 is equivalent to say that

u2 ≤ 1

8
(u+ v)2 +

1

24
u(u+ v) ,

which implies that

u2 ≤
(
1

8
+

1

24

)
(u+ v)2 =

1

6
(u+ v)2 ,

from which, we deduce that u ≤ 1+
√
6

5 v = cv, with c = 1+
√
6

5 < 1.
So, F belongs to the set F2.
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3 Main result

The following theorem is a generalization of Theorem 1.1.

Theorem 3.1. Let S and T be two self–mappings of a metric space
(X, d). Suppose that:

i. One of S(X), T (X) or X is complete, and

ii. there exists F ∈ F2 such that the following holds:

F (d(Sx, TSy), δ({x, Sx, Sy, TSy}) ≤ 0 , (3.1)

for all x, y ∈ X.

Then, S and T have a unique common fixed point z in X. Moreover,
we have

S(X) ∩ Fix(T ) = Fix{S, T} = Fix(S) = {z} . (3.2)

If in addition, S and T commute (i.e., S ◦ T = T ◦ S), then we have

S(Fix(T )) = Fix{S, T} = Fix(S) = {z} . (3.3)

Proof. Let x0 be an arbitrary point in X. We define inductively a
sequence {xn} of points in X such that:

x2n+1 = Sx2n ,

x2n+2 = Tx2n+1 , (3.4)

for all n = 0, 1, 2, · · · .
For each positive integer n, we set tn := d(xn, xn+1).
For all positive integer n, by setting x = x2n and y = x2n−2 in (3.1)

we obtain

F (d(Sx2n, TSx2n−2), δ({x2n, Sx2n, Sx2n−2, TS2n−2})
= F (d(x2n+1, x2n), δ({x2n−1, x2n, x2n+1}) ≤ 0 .

As

δ({x2n−1, x2n, x2n+1}) ≤ t2n+1 + t2n ,
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and since F is non–increasing in the second variable, we get

F (d(x2n, x2n+1), d(x2n, x2n+1) + d(x2n, x2n−1)) ≤ 0 , ∀n ≥ 1 . (3.5)

By virtue of property (F 2), we deduce that

d(x2n, x2n+1) ≤ hd(x2n−1, x2n) .

Similary, we obtain

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1) .

Therefore, for all positive integer n, we have

d(xn, xn+1) ≤ hd(xn−1, xn) .

Then, the sequence {xn} is a Cauchy sequence.

Assume that S(X) is complete. Therefore, {x2n+1} converges to a
point z = Sv for some v ∈ X. Since limn→∞ d(x2n, x2n+1) = 0, we
deduce that the whole sequence {xn} converges to the point z in X.
Hence, we have

z = lim
n→∞

Sx2n = lim
n→∞

Tx2n+1 . (3.6)

Let us prove that z = Tz. By using the inequality (3.1) we have,

F (d(Sx2n, TSv), δ({x2n, x2n+1, z, T z})) ≤ 0 . (3.7)

As

δ({x2n, x2n+1, z, T z}) ≤ d(x2n, x2n+1) + d(x2n+1, z) + d(z, Tz) ,

and since F is decreasing in the second variable, from (3.7), we get

F (d(x2n+1, T z), d(x2n, x2n+1) + d(x2n+1, z) + d(z, Tz)) ≤ 0 . (3.8)

Letting n −→ ∞, in (3.8), and using the lower semi–continuity of F ,
we obtain:

F (d(z, Tz), d(z, Tz)) ≤ 0 . (3.9)
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Suppose that d(z, Tz) > 0. Then by using the condition (F 2), we
get

0 < d(z, Tz) ≤ hd(z, Tz) < d(z, Tz) ,

a contradiction. Hence, d(z, Tz) = 0. That is z = Tz.

By setting x = z and y = x2n in (3.1), we get

F (d(Sz, x2n+2), δ({z, Sz, x2n+1, x2n+2})) ≤ 0 . (3.10)

As

δ({z, Sz, x2n+1, x2n+2}) ≤ d(z, Sz) + d(Sz, x2n+1) + d(x2n+1, x2n+2) ,

and since F is decreasing in the second variable, from (3.10), we get

F (d(Sz, x2n+2), d(z, Sz)+d(Sz, x2n+1)+d(x2n+1, x2n+2)) ≤ 0 . (3.11)

Letting n −→ ∞ in (3.11), and using the lower semi–continuity of F ,
we obtain:

F (d(Sz, z), 2d(z, Sz)) ≤ 0 . (3.12)

By using condition (F 2), we deduce that d(Sz, z) = 0, i.e., Sz = z.
Thus z is a common fixed point of S and T .

The remainder of the proof is similar if we suppose that T (X) or X
is complete instead of S(X). So we omit the details.

By using the assumption (F 2), it is easy to prove the uniqueness of
z.

Let w ∈ Fix(S) (i.e., Sw = w). We use the inequality (3.1) with
x = w and y = z. Then we obtain

F (d(Sw, TSz), δ({w, Sw, Sz, TSz}) = F (d(w, z), d(w, z)) ≤ 0 ,

which implies that w = z. Thus we have proved that

Fix{S, T} = Fix(S) = {z} .
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Let w = Sv ∈ Fix(T ). Then by using the inequality (3.1) we get

F (d(Sz, TSv), δ({z, Sz, Sv, TSv}) = F (d(z, w), d(z, w)) ≤ 0 ,

which implies that w = z. Thus we have proved that

S(X) ∩ Fix(T ) = Fix{S, T} = Fix(S) = z .

Suppose that S and T commute. Let y ∈ Fix(T ) and set w =
Sy. Then we have Tw = TSy = STy = Sy = w. Then by using the
inequality (3.1) we get

F (d(Sz, TSy), δ({z, Sz, Sy, TSy}) = F (d(z, w), d(z, w)) ≤ 0 ,

which implies that w = z. Thus we have proved that

S(Fix(T )) = Fix{S, T} = Fix(S) = z .

This ends the proof.

To support our result we give an example.

Example: We take X = {1, 2, 3, 4} equipped with the metric d given
by d(1, 2) = d(3, 4) = 3

5 , d(1, 4) = d(2, 3) = 2
5 , d(1, 3) =

1
5 , and d(2, 4) =

1. Let S and T be two mappings defined on X by setting S(2) = 1,
S(1) = S(3) = S(4) = 3, T (2) = 4, and T (1) = T (3) = T (4) = 3.

It is easy to show that the self–mappings S and T are satisfying the
following condition:

d(Sx, TSy)2 ≤ 1

8
δ({x, Sx, Sy, TSy})2

+
1

24
d(Sx, TSy) δ({x, Sx, Sy, TSy}) .

The function F of Example 4 given by

F (t1, t2) = t21 −
1

8
t22 −

1

24
t1 t2 ,

belongs to the set F2. So Theorem 3.1 may be applied to the mappings
S and T . We see that S and T have 3 as unique common fixed point in
X.
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4 Related results

The following results are consequences of Theorem 3.1.

Theorem 4.1. Let S be self–mappings of a metric space (X, d).
Suppose that:

(i) One of S(X) or X is complete, and

(ii) there exists F ∈ F2 such that the following holds:

F (d(Sx, Sy), δ({x, Sx, Sy}) ≤ 0, (4.1)

for all x, y ∈ X.

Then, S is constant on X. That is, there exists a unique point z in
X such that Sx = z for all x ∈ X.

Proof. By applying Theorem (3.1) to the self–mappings S and T =
IdX the identity mapping of X, there exists a unique common fixed point
z of S and IdX . Moreover, by (3.3), since S and IdX commute, we have

S(X) = S(Fix(IdX)) = Fix{S, IdX} = Fix(S) = {z} .

We conclude that S must be constant.

Theorem 4.2. Let {Ti : i ∈ I} (I is a non–empty set) and S be
self–mappings of a metric space (X, d) satisfying:

(i) For each i ∈ I, one of Ti(X) or S(X) or X is a complete.

(ii) There is some F ∈ F2 such that

F (d(Sx, TiSy), δ({x, Sx, Sy, TiSy})) ≤ 0 , (4.2)

for all i ∈ I and for all x, y ∈ X.

Then the mappings {Ti : i ∈ I}, and S have a unique common fixed
point in X. Moreover, for each i ∈ I, we have

S(X) ∩ Fix(Ti) = Fix{S, Ti} = Fix(S) = {z} . (4.3)

Proof. By Theorem 3.1, for each i ∈ I there exists a unique point
xi such that
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Sxi = Tixi = xi .

We may suppose that I contains more than two elements. Let i, j be
two distinct elements in I. We set x = xi and y = xj in (4.2). Then we
get

F (d(Sxi, TjSxj), δ({xi, Sxi, Sxj , TjSxj}))
= F (d(xi, xj), δ({xi, xj})) ≤ 0 .

The last inequality says that we have F (d(xi, xj), d(xi, xj)) ≤ 0,
which (by the property (F 2)) implies that xi = xj . The remainder
is clear. This ends the proof.

Theorem 4.3. Let {Si : i ∈ I} (I is a non–empty set) be a familly
of self–mappings of a metric space (X, d) and let T be a self–mappings
of X. We suppose that

(i) Si ◦ Sj = Sj ◦ Si for all i, j ∈ I.

(ii) Si ◦ T = T ◦ Si for all i ∈ I.

(iii) For each i ∈ I, one of Si(X) or T (X) or X is complete.

(iv) There is some F ∈ F2 such that

F (d(Six, TSiy), δ({x, Six, Siy, TSiy})) ≤ 0 , (4.4)

for all i ∈ I and for all x, y ∈ X.

Then the mappings {Si : i ∈ I}, and T have a unique common fixed
point z in X. Moreover, for each i ∈ I, we have

Si(X) ∩ Fix(T ) = Fix{Si, T} = {z} = Si(Fix(T )) = Fix(Si) . (4.5)

Proof. By Theorem 3.1, for each i ∈ I there exists a unique point
xi such that

Sixi = Txi = xi .
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We may suppose that I contains more than two elements. Let i, j be
two distinct elements in I. We set x = xi and y = xj in (4.4). Then, by
using the condition (ii) above, we get

F (d(Sixi, TSixj), δ({xi, Sixi, Sixj , TSixj}))
= F (d(xi, Sixj), δ({xi, Sixj})) ≤ 0 .

The last inequality says that we have F (d(xi, Sixj), d(xi, Sixj)) ≤ 0,
which (by the property (F 2)) implies that xi = Sixj . By using the
condition (i), we have

Sjxi = SjSixj = SiSjxj = Sixj = xi. (4.6)

From the equalities (4.6) we deduce that xi is common fixed point of
Sj and T . By uniqueness, we deduce that xi = xj . The inequalities (4.5)
are consequences from Theorem 3.1. This ends the proof.
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Bolet́ın de Matemáticas, Nueva Serie 8, 26–30 (2001).

[2] B. Fischer, Results and a conjecture on fixed points, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 62, 769–775 (1977).

[3] B. Fisher, Results on common fixed points, Math. Japonica 22, 335–
338 (1977).

[4] L. Nova, Puntos fijos comunes, Bolet́ın de Matemáticas 4, 43–47
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