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Abstract 
 
This paper explains the trade-off between bias and variance in the choice of expansion 
factors for the Chilean Financial Household Survey (EFH). I outline several alternatives for 
the expansion factors assigned to each household in the EFH. The alternatives are based on 
a full post-stratification procedure using as strata different groups of Chile’s geographical 
regions, the wealth of each town, and the income level of each household. I find that 
expansion factors based on a small number of strata can accurately represent the age, 
education and income distribution of Chile with little bias and variance involved. 
 
Resumen 
 
Este trabajo explica las ventajas y desventajas en la elección de factores de expansión para 
la Encuesta Financiera de Hogares (EFH) del Banco Central de Chile. En general, la 
construcción de factores de expansión (o pesos poblacionales) con más estratos reduce el 
sesgo de las estimaciones, pero al costo de un posible aumento de la varianza cuando el 
número de estratos es demasiado alto. Se exponen diversas alternativas para los factores de 
expansión atribuidos a cada hogar de la EFH. Las alternativas se basan en un procedimiento 
de pos-estratificación completo, usando como estratos agregaciones de regiones chilenas, el 
ingreso de cada comuna, y el ingreso del hogar. Los resultados muestran que factores de 
expansión construidos con un número bajo de estratos representan de forma precisa la edad, 
educación, y distribución del ingreso de Chile, con poco sesgo y poca varianza. 
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1 Introduction

The Encuesta Financiera de Hogares (EFH) is a survey of financial assets and debts of Chilean

households that has been implemented by the Central Bank of Chile and Center Microdatos of the

University of Chile since 2007. There are now three waves of the EFH project. The first wave of

the EFH was implemented in 2007 and collected information from 4021 urban households at the

Chilean national level. The second and third waves were implemented respectively in 2008 and

2009, covering a panel of 1207 urban households in the Metropolitan Region of Chile.

The EFH survey seeks to obtain a rigorous estimation of the financial risk incurred by Chilean

households. Research applications range include studies of the distribution of households’ assets and

debt (Banco Central de Chile, 2009, 2010), effects of unemployment cycles on debt risk (Fuenzalida

and Ruiz-Tagle, 2009), borrowing constraints (Ruiz-Tagle and Vella, 2010), credit default (Alfaro,

Gallardo and Stein, 2010), estimates of the earthquake effects on households’ finances (Banco

Central de Chile, 2010), and changes in real estate prices (Sagner, 2009).

However, in Chile - as for other countries such as Italy, the UK, Spain, Netherlands, and the USA

- most of the complex financial relationships are concentrated in a small number of upper income

households. The need to cover this small number of households requires the EFH to cover more

upper income households based on a complex sample design. This work examines the challenge

of making the sample of 4021 EFH households representative of the 3.850.000 Chilean households

at the urban national level. I explain briefly how these "statistical representativity" procedures

are built and their importance for data analysis. Finally, I evaluate a set of several "statistical

population" methods and suggest one of these to be used in the public EFH dataset provided by

the Central Bank of Chile.

This paper is organized as follows. Section 2 explains briefly what expansion factors mean,

while section3 considers the most general methods of computing expansion factors and how they

can be used to obtain representative statistics of a survey dataset.

In section 4 I explain how the Center Microdatos built the EFH random sample and the special

problems it involves. I also outline the basic structure of the expansion factors published by the

Center Microdatos and its main flaws. The sample design of the EFH survey allows me to consider

several methods of estimating the expansion factors of each EFH household. In section 5 I consider
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a set of post-stratification procedures based on three types of household characteristics: 1) their

regional area of residence, 2) the income distribution of their urban area (or sub-area) of residence,

and 3) the household’s income stratum at the Chilean national level. This large set of procedures

are then estimated using data from the Chilean population survey (CASEN) in 2003 and 2006.

When applied to the survey data expansion factors can be used to compute population weights and

obtain representative statistics of any variable at the Chilean national level. Expansion factors can

also be correctly used to obtain representative statistics for some of Chile’s regions and demographic

groups.

Section 6 shows how these expansion factors when applied to the EFH 2007 sample allow

us to obtain accurate statistics for the income distribution and house ownership among Chilean

households. I compare several types of expansion factors in terms of how well they reproduce

Chilean national statistics from other datasets. The expansion factors that represent both more

accurate statistics and less variance are the ones based on simple information, such as the broad

regional area of residence and the income placement of the urban area of residence in terms of the

Chilean national population. I then show that the estimated expansion factors are also reasonably

accurate in reproducing key statistics of the distribution of education and age in Chilean households.

I provide therefore a clear recommendation of which type of expansion factor future researchers

should use in most of their applications. At the same time I have written an easy software procedure

that allows future researchers to use other types of expansion factors for projects involving smaller

regions of Chile and to examine how sensitive their results are to changes in population weights.

Finally, I present a summary of the conclusions in Section 7 and provide broad lines for future

improvements and research.

2 How to understand expansion factors and population weights

2.1 What are expansion factors?

Each household in the a survey represents a different number of statistically equivalent households.

Survey researchers call this the statistical representativity or "expansion factor" of each observation.

For example, if the survey directors go to city A and interview one household in every 1000, then
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the expansion factor of city A households should be 1000. Also, the sum of the expansion factors

for all observations in the sample dataset should be equivalent to the target population universe

of the survey. Therefore, if for instance the target population includes all the households of Chile,

then the sum of the expansion factors for all observations in the dataset should be equivalent to

the household population of Chile.

Many researchers erroneously think one can obtain adequate statistics from a survey by treating

all observations with the same importance. However, if surveys collect respondents with unequal

probabilities or in a non-random way, then ignoring the expansion factors implies the estimated

statistics cannot be understood as representative of the target population (Neyman, 1934).

Suppose A and B are cities of equal size, but the interview rate of A households is only 1 in

1000 while in B it is 1 in 500. In the survey there are 30% of A people unemployed and 15%

of unemployed B people. Therefore if a researcher is ignoring population weights, he will state

that the unemployment rate is 30%1
3 + 15%

2
3 = 20%. This statistic however is valid only for the

set of interviewed people. In fact the real statistic for the target population is 30% 1000
1000+2×500 +

15% 2×500
1000+2×500 = 25%.

A big problem is that the "target population" universe is often unknown. There is no accurate

dataset listing all the Chilean households and where they live. This is true of Chile and of most

countries in the world. Therefore the size of the target population and its characteristics is usually

measured by using another dataset. This dataset is quite often another population survey which was

obtained with a larger sample and a higher coverage, making it therefore a reliable approximation

of the target population.

In the case of the United States these large population datasets are usually the US Census

and the Current Population Survey (CPS). In the case of Chile there is also a Chilean Household

Census - published by the Chilean Institute of National Statistics (INE) every 10 years - and the

Encuesta de Caracterización Socieconómica Nacional (CASEN) survey. The CASEN survey has the

advantages of measuring more variables than the Census (such as income) and of being implemented

more frequently. The CASEN survey also has high response rates (90%), which limits errors from

sample bias. For these reasons, the CASEN 2003 and 2006 datasets were judged to be the most

suitable source of information to estimate the statistical representativity of the EFH.

In this case the CASEN data surveys a sample of 42000 Chilean households living in urban
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areas and provides therefore an accurate representation of most regions and cities of Chile. This

was the reason why the Center Microdatos chose the CASEN classification of urban areas as a

guideline for the sample design of the first EFH 2007 wave.

3 General Methods to compute expansion factors

3.1 The inverse selection probability method

There are two main classes of methods to compute expansion factors. The first family is known as

the inverse selection design probability method (Lohr, 2009). If every observation in the universe

is selected with positive probability, this method is an accurate way of making the smaller sample

a statistical representation of the target population. Therefore if observation i in the sample was

selected with probability pi, then the expansion factor fi is:

1) fi = (pi)−1.

A standard example of this method is a random sample where all n sample elements are chosen

with equal probability from a population of size N and therefore fi =
N

n
. If the selection design

probabilities, pi, are well specified, then the researcher can obtain consistent statistics for any

variable in the survey (Neyman, 1934).

Some surveys design their sample in order to minimize the variance of estimation of a certain

statistic (Lavallée and Hidiroglou, 1988, Hedlin, 2000, Rivest, 2002, Kadane, 2005, Horgan, 2006,

Fabrizi and Trivisano, 2007). It is important to notice, however, that the use of the correct

expansion factors still results in consistent estimates for statistics of any other variable in the

survey (Neyman, 1934, Kish, 1992). Therefore a specific sample design to fit a certain statistic only

raises issues of optimality and efficiency in the estimates of other statistics, but does not create

problems of asymptotic consistency.

The inverse probability method is usually applied when stratified sample probabilities are

carefully chosen before the survey and non-response rates are low. For several surveys, however,

non-response rates are high and therefore the selection probability of each unit is unknown. This
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leads to ill-defined statistics if inverse selection probabilities are used. Suppose no households in

urban area X were interviewed. Then the selection probability of these households post-survey is

0 and that corresponds to a factor of infinity. Also, in some cases selection design probabilities

are designed to minimize survey costs of units that are harder to reach and not to optimize the

researcher’s statistical work (Tillé, 2006). This implies that the sample design probabilities will give

too much importance to a few observations and increase substantially the variance of the statistical

methods applied to the survey sample (Kish, 1992).

For these reasons researchers often use alternative methods to estimate the expansion factors for

a survey dataset (Kish, 1992). In this case the survey researcher will seek something less rigorous

than finding the true sample selection probabilities and will require only that the survey weights

replicate the known population totals of some auxiliary variables. The ideal alternatives seek to

approximate the true inverse selection probabilities by taking into account the most important

elements of household heterogeneity, while reducing the effects of sample selection variables less

relevant for the outcomes (Kish and Frankel, 1974).

3.2 Post-stratification methods

The second class of methods is usually known as post-stratification methods (Kish and Frankel,

1974, Lohr, 2009) and consists in the following: 1) all the observations in both the sample and the

target population are classified in several groups (or strata) according to their characteristics (it

is assumed that all the strata are represented both in the sample and target population), 2) the

expansion factor of each group in the sample is chosen in a way to match exactly the number of

people of that group in the target population. The basic philosophy of post-stratification is the same

as for the inverse selection probability method. If the strata are seen as an adequate representation

of the several types of observations present in the target population, then the post-stratification

gives the inverse sample selection probability of each type (Estevao and Särndal, 2000).

Assume the post-stratified method classifies observations in groups g = 1, .., G and all groups

are represented both in the target population and the survey sample. Then the expansion factor

for each observation i ∈ g(i) is:

2) fi =
Ng(i)

ng(i)
,
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where Ng(i) is the size of group g(i) in the target population and ng(i) is the size of the group

g(i) in the survey sample.

If the groups in the post-stratification method include all the relevant variables that affect the

selection probability of the sample units, then this method is equivalent to the inverse selection

probability method (Kott, 2006a, Lohr, 2009). In this sense, one can view a good post-stratification

method as one that is a reliable approximation for the sample selection probability. For this

reason, the choice of groups and variables for the post-stratification procedure should be driven by

an explicit theory of sample selection based on the survey design and non-response (Groves and

Couper, 1995).

3.3 Differences between post-stratification methods

Several post-stratification methods exist (Deville and Sarndal, 1992, Deville, Sarndal, and Sautory,

1993, Rao, 2005, Kott, 2006a, 2006b). Most of them can, however, be seen as members of two

different families: 1) full post-stratification methods (Lohr, 2009); 2) incomplete post-stratification

methods and generalized calibration raking procedures.

Full post-stratification methods work by matching the population of each group (or strata)

in the survey sample with their totals from other surveys, as described in equation 2). Partial

post-stratification is obtained by multiplying the expansion factors that match different variables.

Suppose gh = 1, .., Gh represents the strata membership of observation i in terms of variable h.

Then the expansion factors of a partial post-stratification procedure using variables h = 1, ..,K

would be:

3) fi =
K∏

h=1

Ngh(i)

ngh(i)
.

Full post-stratification would require creating mutually exclusive groups for each combination of

all the K variables, i.e., g∗ = {g1× ...× gK}, and then applying equation 2) as fi =
Ng∗(i)
ng∗(i)

. Partial

post-stratification is an easier and simpler approach than full-post-stratification. However, both

methods are only equivalent if all the K variables are independent of each other. If the variables

are not independent of each other, then partial post-stratification does not match well any of the

statistics it is adjusting for. In this case partial post-stratification can be quite imprecise and
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create both bias and high variance in the expansion factors (Kozak and Verma, 2006). Therefore

full post-stratification is always preferable when feasible.

Generalized raking procedures is a more complex family of post-stratification procedures than

the ones described in equation 3). These procedures work by minimizing a distance function of

several sample statistics with known statistics of the target population. Such procedures as the

CALMAR macro are now widely used by national statistics offices in France, Canada, United

Kingdom, Italy, Luxemburg, and Spain, among several other countries (Estevao, Hidiroglou, and

Sarndal, 1995, Bover, 2004, Faiella and Gambacorta, 2007, Crockett, 2008).

An important difference between the two methods is that the strata population method requires

that every person in the survey be classified in mutually exclusive groups. Calibration methods,

however, can be used to create matches with statistics that are known for the whole population,

but that are not necessarily specified for each strata in the sample. This is the case because not

all surveys collect the same information. For example, Census data collect only demographic

information, while Employment Surveys may collect only income and occupation information.

Therefore the researcher may be unable to classify each observation in mutually exclusive groups.

For this reason, several surveys first create expansion factors using full post-stratification based

on Census data first and then make partial post-stratification adjustments for other statistics

(Deville, Sarndal, and Sautory, 1993). In this case, it is important that the first-stage of full

post-stratification results in expansion factors with a low variance, since the second-stage process

of matching more statistics usually increases the variance of the expansion factors even more (Kott,

2006b).

3.4 Choice of the number of strata

Another problem is how many groups or variables to choose for post-stratification (Wu, 2002, Lohr,

2009). In general there is a bias versus variance trade-off. Creating more strata or adjusting for

more variables helps the expansion factors match more statistics and reduces the sample bias.

However, adjusting for more strata can make the expansion factors more volatile and therefore

increases the variance of the sample estimators (Kish and Frankel, 1974).
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In the case of expansion factors the bias-variance trade-off is often very significant. Suppose

we have a dataset where all individuals have the same expansion factor with value 1000. After

adjusting the expansion factors to match statistics x1, ..., xK their dispersion increases to values

between 10 and 100000. In this case the researcher will match the chosen K statistics perfectly,

but the other statistics obtained from the dataset will be very sensitive to the few observations

who represent 100000 households and therefore a few observations will completely determine the

estimation.

For this reason the researcher should choose to match only the most relevant statistics for his

survey (Kott, 2006a). Strata should be chosen in a way that individuals inside a group are as

homogeneous as possible and new strata should only be added if the individuals belonging to those

strata are significant different from the other strata (Lohr, 2009). Excluding strata which are very

different creates bias, but including irrelevant strata increases variance. Little and Vartivarian

(2005) show that if only the relevant variables are included for the post-stratification adjustment,

then it is possible to reduce both the bias and variance of the estimators.

3.5 Computing representative statistics

Mean statistics of any variable x can be estimated by using standardized expansion factors (Horvitz

and Thompson, 1952):

4) x̄ =
∑
i(

fi∑
v fv

)xi.

It is standard notation to denote the standardized expansion factor as the population weight

of each observation i, wi = (
fi∑
v fv

). This notation also creates an analogy between the expansion

factors, population weights, and other statistical methods such as weighted moments, weighted

likelihood or weighted least squares. The basic principle underneath all concepts is the same. Also,

mean statistics of x can be obtained for any sub-group of individuals:

5) x̄G =
∑
i∈G(

fi∑
v∈G fv

)xi.

Quantile statistics (qα ≡ argminx Pr(xi ≤ x) ≥ α) can also be computed in a similar way:
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6) q̂α ≡ argminx
∑
i(

fi∑
v fv

)1(xi ≤ x) ≥ α.

7) q̂α,G ≡ argminx
∑
i∈G(

fi∑
v∈G fv

)1(xi ≤ x) ≥ α.

Standard-errors and t-statistics for estimators using expansion factors are often difficult to derive

or involve long expressions (Kott, 2006a, Lohr, 2009). Some statistical software programs provide

adequate methods for estimating standard-errors in surveys with expansion factors. However, if

bootstrap is a method that is valid for the specified econometric estimator, then bootstrap is also

guaranteed to work with expansion factors (Funaoka, Saigo, Sitter, and Toida, 2006). Therefore

bootstrap is a safe option for the researcher in most applications (Rao and Wu, 1988).

Also, as explained before, in most cases the expansion factors of each observation are the result

of statistical methods and not a factor that is known with certainty. The researcher, however, can

account for model and sample uncertainty of the expansion factors when estimating his model.

This is easily achieved by replicating different expansion factors for each bootstrap sample and

obtaining model estimates for each bootstrap draw of the expansion factors (Brownstone and Chu,

1994, Brownstone, 1997).

3.6 Consistency of regresson models

Unbiasedness of the weighted estimates of a model is not feasible, since weighted estimators involve

a multiple of two random variables (the random observations and the weights). However, weighted

estimates are approximately unbiased, presenting a bias of order N − 1, negligible in large samples
(Wolter, 1985).

It is also possible to estimate regressions models without expansion factors and to get consistent

estimates of the coefficients. However, this result is only valid if the regression model is taken as the

real model and the sample selection design is ignorable, which is rarely a realistic assumption. Also,

several statistical studies (Little, 1981, Nathan and Smith, 1989, Kott, 1991, Särndal, Swensson,

and Wretman, 1992) show that weighted estimates are more robust to model mis-specification,

omitted variable problems, and to the heteroskedasticity that normally characterizes sample survey

data. Wooldridge (1999) proves that, when the selection probabilities are based on exogenous
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variables, traditional M estimators and their variances are consistent even without expansion

factors. However, the asymptotic variance of the unweighted M estimator is only optimal if a

generalized information matrix condition is met. Basically, this would mean the unweighted M

estimator would only be optimal under correctly specified MLE models and homecedastic error

terms. Since in most realistic applications errors are heterocedastic, this would be an argument for

using the M-estimator with population weights.

In most cases the researcher understands the regression model as a first-order approximation of

the true model and not as an absolute truth. In this case omitting variables which are related to

the expansion factors may worsen the problems of mis-specified models. Reiter, Raghunathan, and

Kinney (2006) show that in the case of multiple imputation problems, ignoring expansion factors

can have a strong effect.

Even if the regression model is taken to be the real world model, the researcher will only be

getting valid estimates for E(Y | X). If the researcher wants to obtain inferences for the whole
population, then expansion factors are needed to get valid estimates of Pr(X) and therefore estimate

E(Y ) =
∫
E(Y | X) Pr(X)∂X. This problem is a big concern for any welfare analysis. Therefore

the use of expansion factors is highly advised to estimate models, especially if the researcher intends

to make statements about the values for the whole target population.

It is also important to note that Maximum Likelihood standard-errors without expansion factors

are invalid, because the sample selection design makes the estimator inefficient. Therefore Maximum

Likelihood model variances should be obtained using the Huber-White robust variance matrix.

4 Classification of urban areas according to population wealth

I start by explaining how the EFH attempts to survey individuals of higher wealth strata. In

general, it is not feasible to observe the wealth level of households prior to the interviews (Kalton,

2009), therefore the EFH builds its survey by sampling urban areas with a greater concentration of

wealthier households. This led to the use of 2 distinct samples that were jointly used to form the

EFH 2007 dataset: 1) a sample of 691 households of high income whose addresses were given by the

Chilean Servicio de Impuestos Internos (SII, which is the Chilean equivalent of the Income Revenue

Service authority); 2) a sample of 3330 households selected from several urban areas classified in the
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Chilean Censo de Población y Viviendas. This selection process is similar to the ones implemented

in the American Survey of Consumer Finances (Kennickell, 1997) and the Encuesta Financiera de

Familias of the Bank of Spain (Bover, 2004). Microdatos and the Central Bank of Chile denote

the first 691 households as the SII sample and the other 3330 as the Censo sample as a way to

summarize their different origin.

The 691 households of the SII sample were selected with basis on their reported 2006 taxable

income. The distribution of the SII sample was implemented with a stratification based on the first

9 deciles and the top 10 percentiles of taxable income. Although representing a small part of the

EFH this sample guarantees the representation of a significant number of top income households

and is therefore highly important to insure the adequate representativity of the survey across

the richest households. For the SII sample Microdatos built expansion factors by using partial

post-stratification (implemented as described before in equation 3) in relation to two variables,

regions (grouped in 4 groups denoted as "Zonas") and 3 wealth strata (deciles 1 to 5, 6 to 8, and

9 to 10) from the Encuesta de Protección Social de 2004 (Behrman, Bravo, Mitchell, and Todd,

2006).

The 3330 Censo households, which compose the main part of the EFH 2007 sample, were

selected from a sample with a high representation of rich urban areas. I present here a summary

of the classification process of urban areas in different wealth types, but the reader is referred to

the Informe Final Encuesta Financiera de Hogares (2008) for more details.

Urban areas in Chile are classified as cities (known by the Spanish term, "comunas") and smaller

sub-areas inside each city, denominated "segmentos". The largest cities (comunas) in Chile were

immediately chosen as part of the population from which the EFH household addresses were to be

sampled. Then a large set of smaller comunas were randomly sampled to be representative of the

rest of Chile. The random sampling of smaller cities was necessary, since with a 4000 household

sample it is not possible for the EFH survey to efficiently cover all the 346 comunas of Chile.

Microdatos used the CASEN 2003 dataset to obtain the national deciles of household income

per capita. Then each segmento is classified among 3 wealth types: 1) areas having at least 75%

of households of deciles 9 and 10 are classified as type 3; other areas are then classified as type 2 if

at least 75% of their households are of deciles 6 and above; finally, the remaining urban areas are

classified as type 1.
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Using this system, Microdatos classified 3764 distinct urban areas of the CASEN 2003 dataset

according to 3 wealth types1. By choosing a higher number of urban areas from types 2 and 3, the

EFH was able to over-sample higher income households. Microdatos sampled a large number of

segmentos to insure a wider coverage of Chile. A small number of segmentos could create a sample

with observations highly correlated, therefore a large number of segmentos insures a greater degree

of independence between observations. In the final sample of households effectively interviewed

by the EFH there are 694 segmentos: 259 of type 3, 194 of type 2, 225 of type 1, and 16 new

segmentos with no wealth classification. The 16 segmentos without a wealth classification are

meant to represent new urban areas which were created between 2003 and 2007.

After selecting the comunas and segmentos, a given number of households was selected in

each segmento. The sampling probability of each household i in segmento j of comuna m can be

summarized as the multiple of the probability of the comuna selection (f1,m(i)), segmento selection

(f2,j(i)), and the selection of the household in its segmento (f3,i).

8) ftotal,i = f3,i × f2,j(i) × f1,m(i) 2.

After the survey the sample design expansion factors were then adjusted for sample non-response

across different segmentos. This was the inverse selection probability method used to compute the

first version of the EFH expansion factors (Centro de Microdatos, 2008). Finally, the SII and Censo

samples were jointly combined by multiplying the expansion factors with their respective sample

1 It is important to note that the CASEN 2003 was only used to randomly select segmentos and comunas. There

was no sampling of the households interviewed in the CASEN 2003 survey, therefore it is not possible to link the

households in either sample.
2 In the Informe Final of Microdatos these probabilities are explained in greater detail. Let h(m) be the wealth

type of each comuna. Let M(k), M(m), and M(j) be the number of households in each region k, comuna, and

segmento, respectively. Let M(h) be the total number of households of type h = 1, 2, 3 collected by the EFH survey.

c(h, k) denotes the number of towns of type h = 1, 2, 3 selected in each region k. The number n(j,m) denotes the

number of urban areas inside comuna m selected for the survey. Finally, g(i, j) denotes the number of households

that will be selected for survey inside each urban area j. Note that that some comunas are auto-selected (meaning

selected with 100% probability), while other comunas are randomly sampled among a set of other similar towns.

Among the randomly sampled towns in each region, each town m of type h = 1, 2, 3 is selected with probability

f1,m = c(h(m), k)
M(m)

M(k(m))
. Then segmentos inside each comuna are selected with probability f2,j = n(j,m(j))

M(j)

M(m(j))
. Finally, each household i in segmento j is selected with probability f3,i =

g(i, j(i))

M(j(i))
.
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proportions for each wealth strata (types 1,2,3). I will now show that substantial improvements

can be made in relation to these expansion factors by using post-stratification procedures.

5 Computing expansion factors for the EFH sample

5.1 Why not use a pure inverse probability weight?

Sampling theory usually advises that selecting a number of households proportional to the population

of each area is optimal (Lohr, 2009). However, it was too expensive for Microdatos to interview

a small number of households by segmento, since this would demand interviewers to cover a wide

geographical area. Therefore 93% of the Censo sample is represented by segmentos with 10 to 32

households independently of the segmento size. Unfortunately, this has large implications for the

variance of the expansion factors based on segmentos. Suppose two different segmentos have similar

households, but their population sizes are different. One segmento has 100 households, while the

other segmento has 3000 households. If due to non-response, the final sample ends up with 20

households in the small segmento and 1 household in the large segmento, then the households of

each segmento are assigned respectively expansion factors of 5 and 3000. Obviously, this increases

a lot the variance of any estimator using inverse probability expansion factors (Kish, 1992).

Also, all measures of survey population - including the ones provided by Census data - have

measurement error. Since the population of smaller areas such as segmentos has a much larger

measurement error than the estimates for bigger areas such as cities, this implies that expansion

factors based on segmentos have substantial measurement errors. Considerations of excessive

variance and measurement error imply therefore that an inverse selection probability expansion

factor is unlikely to be optimal for the EFH survey.

5.2 Linking the CASEN and EFH households in different types

Typically, small surveys do not cover all the areas of a country. However, the goal of the researcher

is to make an inference from the small survey to the whole target population nationwide. For
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this reason there must be a correspondence rule linking all the non-represented of Chile to units

effectively represented in the survey. Deville and Lavallée (2006) provides the best description of

the importance of this problem. To make the EFH representative of Chile we must classify all its

households in a similar set of strata as other larger surveys of Chile.

The CASEN 2003 and 2006 datasets are the most ideal ones to build expansion factors for the

EFH, since they were used in its sample design and have the same measures of household income.

However, these surveys represent the distribution of urban households of Chile in the past. For

this reason I update the expansion factors of these surveys to reflect demographic growth between

those years and the EFH sample years.

Also, the EFH households must be classified in terms of their income in a similar way as the

CASEN 2003 and 2006 samples. However, the CASEN 2003 and 2006 income percentiles reflect only

the income distribution of those years. These percentile values fail to take into account the income

growth or income inequalities over the more recent years3. Therefore I used the national percentiles

of the income distribution of the urban CASEN 2006 data and then I updated each percentile for

the nominal income growth of each decile between 2006-07 using the Encuesta Suplementaria de

Ingresos (ESI) of the Chilean INE4. The EFH households were then classified according this updated

measure of the income percentiles in 2007.

5.2.1 Matching the CASEN surveys with the INE population projections

Since the CASEN surveys include fewer comunas than the total of 346 comunas of Chile, I take into

account the non-represented comunas by assigning their population to the comunas of the same

3This ability to update the previous Chilean surveys to reflect the income distribution of the EFH sample years

is one of the reasons why I choose to build strata based on household income. It is possible to use other strata

classifications, such as asset wealth. However, there are no measures of how much household asset wealth has grown

in Chile since 2004. Therefore using strata defined by assets incurs the risk of seriously mis-measuring the current

situation of Chile.

For this reason I chose not to use the asset wealth deciles of the EPS 2004 to classify EFH households, as was done

in the original expansion factors of Microdatos.
4Due to its size, the ESI data is ideal to measure the updated income distribution of Chile, since it covers 33000

Chilean households in the last quarter of every year.
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region in the same proportion as their population size5. Then I compute the ratio of population

of each comuna in the CASEN surveys with their projected population by the INE for the EFH

sample years, ratio_INE_CASEN(i) = population INE(i)
population CASEN(i) . Then I multiply the population of

each comuna in the CASEN survey by this ratio to get a CASEN dataset that more accurately

reflects the current Chilean population.

5.2.2 Classifying the CASEN and EFH in similar strata

Since the EFH does not include all the urban areas of the CASEN we must take into account

each urban area is representative of a wider population than just itself. I do this by assigning the

population of the non-represented urban areas in the CASEN survey to areas of similar income

represented in the EFH.

Therefore I classified all the urban households in 3 income types of the CASEN 2003 according

to their national income decile (deciles 1 to 5, deciles 6 to 8, deciles 9 to 10)6. Then all the segmentos

and comunas of the CASEN 2003 are classified as types 1, 2, and 3, according to their population

of each household type in the same way as described in section 4. Segmentos and comunas in the

EFH are classified with the same types 1, 2, and 3, that were obtained from the CASEN 2003. For

the 16 segmentos of the EFH not present in the CASEN 2003 I use their own sample observations

to assign them a type 3, 2, or 1, classification. The expansion factor for these 16 segmentos will be

the same one as for the segmentos of the same type in the same comuna.

In this way all households in the CASEN and EFH are classified in the groups based on the

households’ income type (1,2,3) and their segmento. Let i = 1, ..,K denote each population group

(denoted by segmento number and the household strata). Then I obtain a list of all the common

5I update the population of each represented comuna as: population_1(i) = population(i)+

population(i)
K∑

k=1,k∈S,k∈G(i)
population(k)

×
K∑

k=1,k/∈S,k∈G(i)
population(k). , where S is the set of comunas represented in the CASEN

survey and G(i) is the set of comunas in the same Chilean region as comuna i.
6This procedure is the same one as described in section 4 with a small difference. Here I use deciles of total

household income and not household income per capita. I prefer the use of total income, because it is more stable

than income per capita (with a per capita income criterion a household could change income strata if a new member

is born or an older one dies). However, this distinction has a small impact on the results.
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groups in the EFH and CASEN. The population of each group i represented in the EFH is updated

as:

9) population_1(i) = population(i)+
population(i)
K∑

k=1,k∈S,k∈G(i)
population(k)

×
K∑

k=1,k /∈S,k∈G(i)
population(k),

where S is the set of groups represented in the EFH survey. G(i) is the set of groups in the

same region of Chile that have the same type of segmento (i.e., 12,3) and household strata (i.e.,

1,2,3) as group i7. This procedure therefore makes the EFH urban areas representative of Chile by

matching them with the CASEN data (which was also updated to match the INE projections for

the population of Chile by comuna in 2007).

5.3 The Censo sample

The EFH is the first household survey in Chile that seeks to measure a large number of variables

(as many as 200 relevant financial-economic characteristics of households), but with only a small

number of households (1200 or 4000). Especially since it is designed to become a useful tool

for policy makers and financial institutions it is quite important to build expansion factors that

represent Chile in an adequate way, but with minimum variance. The survey design of the Censo

sample worries only about the comunas and segmentos of residence of the household. To take into

account the stratified sample design the researcher must forcibly deal with the different areas of

residence of each household and with the larger non-response rates of higher income households

(Kennickell, 1997, 1999, Bover, 2004, 2008).

However, it is not clear how many strata we should adjust for. The ideal is to build expansion

factors that take into account relevant household heterogeneity in terms of income and wealth,

but that ignore redundant strata that only increase variance. The original expansion factors took

into account heterogeneity by segmento. However, unless we believe the finances of households in

7 If some types of strata defined by region, segmento type and household wealth type, are not represented in the

EFH, then a similar adjustment is made based on a strata classification with fewer categories (i.e., just region and

segmento type).
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segmentos of different sizes are extremely heterogeneous, then this option implies a large variance

in the expansion factors. In order to reduce the variance of the expansion factors one consider to

build expansion factors adjusting only for comunas and types of segmento (1,2,3). However, since

there are 80 comunas in the EFH it is still possible that even adjusting only for comunas creates

unnecessary variance. One could therefore consider adjusting for groups of comunas (according, for

example to their wealth types 1,2,3) to reduce the number of strata.

Since it is not obvious how many strata to use in the EFH I created a set of different expansion

factors and tested which ones made a better fit to the income distribution of Chile. The set of

expansion factors is detailed as follows. Each expansion factor is labelled with 4 digits, "expr****".

The first digit classifies the "smoothness" of the factor estimates: it has value 0 if the expansion

factor uses the true strata population or 1 for a "smoothed" estimate. The "smoothed" expansion

factors "expr1***" are obtained by using the mean predicted values of a regression of "expr0***".

I tried two regression options. The first one was a kernel regression8 using the median and

interquartile range for the household total income of the comuna and segmento of each observation.

The second option was a linear regression using the mean years of education, mean number of

persons per household, and the 25%, 50% and 75% household income quantiles of the comuna and

segmento of each observation. Both options gave similar results, therefore I only report the results

using the second option.

The second digit indicates the level of aggregation of the geographical areas of residence: 6

or "Zonas 2" differentiates for two aggregate groups of Chilean regions (Región Metropolitana,

Otras Regíones de Chile); 5 or "Zona" differentiates for four groups of Chilean regions (Regíon

Norte includes Chilean regions 1 to 4, Regíon Centro includes regions 5 to 8, Regíon Sur includes

regions 9 to 12, and Regíon Metropolitana includes region 13); 4 or Región differentiates for the

13 Chilean regions that composed the whole of Chile until 2007; 3 or "Provincia" differentiates

for each province of Chile; 2 or "Comuna" differentiates for each town of Chile; and, finally, 1 or

"Segmento" differentiates for each segmento of Chile.

8Here I apply the Nadaraya-Watson kernel smoothing method, using a Epanechnikiv density function and the

Silverman’s rule of thumb bandwidth (Manski, 1990).

Da Silva and Opsomer (2009) applied a similar method to compute alternative expansion factors for the National

Health and Nutrition Examination Survey dataset. Their research found that local polynomial regressions were quite

effective in reducing the bias and variance of non-response adjustments to the expansion factors.
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The third digit indicates whether the strata consider different types of comunas and segmentos:

0 - does not differentiate for comunas and segmentos of different wealth types; 1 - differentiates for

the 3 different types of segmento wealth; 2 - differentiates for the 3 different types of comunas; and

3 - differentiates for the 9 different types of wealth of both the comuna (3 types) and segmento (3

types) of residence of the household.

Finally, the fourth digit indicates whether the strata differentiate for different types of household

income: 0 - indicates no differentiation across households in the same area; 1 - indicates a differentiation

for households according to 3 income types (1 - percentiles 1 to 50%, 2 - percentiles 51-80%, 3 -

percentiles 81-100%, measured at the national level); and 2 indicates a differentiation for households

of the national income percentiles 1-35, 36-50, 51-60, 61-68, 69-75, 76-80, 81-85, 86-88, 89-90, 91-92,

93-94, 95, 96, 97, 98, 99, 99.5, and 100.

This classification method results in a "phonebook list" of expansion factors. So for instance, an

expansion factor based only on segmentos would be expr0100, while an expansion factor based on

comunas and types of segmentos would be expr0210. A factor based on aggregate zonas and types

of comunas and segmentos would be expr0530. Even inside each comuna the EFH sample design

had a large oversample of richer neighborhoods. Therefore all the options I analyze consider either

household wealth type or segmento type as a control variable for the strata of each household.

Note that the expansion factor expr0100 use the information on the population of all the urban

sampling units in the EFH and how they were selected from the CASEN urban areas. Therefore the

expansion factor expr0100 is equivalent to the inverse probability of selection of the unit (IPSU).

5.4 The SII sample

The SII sample is highly biased towards high income households and requires therefore a different

statistical treatment from the rest of the sample. Due to the small sample size I decided to use

a stratification based on only two aggregate regions ("Zonas 2": Región Metropolitana, Otras

Regíones de Chile), but with several income strata (national income percentiles 1-35, 36-50, 51-60,

61-68, 69-75, 76-80, 81-85, 86-88, 89-90, 91-92, 93-94, 95, 96, 97, 98, 99, 99.5, and 100). The large

number of income strata was required, because the SII sample was indeed highly focused on the

top percentiles of income and therefore those households demanded differential treatment from the
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others. The SII sample was then matched to the population values of these strata in the CASEN

2006 data.

In terms of the notation above the SII factor method would correspond to an expansion factor

of the type expr0602. Adding more types of income (such as strata for the percentiles 1-20 and

21-35) does not change the results significantly.

5.5 Combining the Censo and SII samples

The Censo and SII samples were then combined in the EFH 2007 to form a joint sample of 4021

households. The final expansion factor was then updated to reflect the proportion each sample has

on the final dataset:

10) factorh(k) = factorh(k)× nh(k)
n(k)

,

where h ∈ {SII, Censo} denotes the sample origin of the observation and k ∈ {Regíon
Metropolitana, Otras Regíones de Chile} denotes the geographical area of the observation. nh(k)
represents the number of households that sample h has in area k, while n(k) = nSII(k)+nCenso(k)

denotes the total number of households in the EFH present in area k9. The final factor is then

labelled "expr****" in the same way as the factor for the Censo sample10.

6 Evaluating the expansion factors

6.1 Do the original Microdatos expansion factors provide efficient estimates?

Center Microdatos provided a set of provisory expansion factors for the EFH survey when information

from the CASEN 2003 and 2006 was not yet publicly available. The expansion factor of Centro
9This adjustment is necessary in order that the average household of both samples represents the same number

of Chilean households. The adjustment requires different proportions for the Regíon Metropolitana and the Otras

Regíones de Chile in order to keep the representativity both at the national level and at the level of the Regíon

Metropolitana. This is important, because the EFH waves in 2008 and 2009 were only implemented in the Regíon

Metropolitana. Therefore this adjustment allows for comparability across different EFH waves.
10Since the SII factor is kept the same for all different options, there is no confusion in keeping the factor Censo

notation.
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Microdatos uses the population of each comuna and the type of segmento in each comuna to create

an expansion factor for the Censo sample. This procedures is based on a partial post-stratification

method that considers comunas and types of segmentos as independent strata. Also, this procedure

did not take into account how comunas in the EFH were selected and that therefore not all comunas

in the EFH are equally representative of the other comunas in Chile. Microdatos also used a partial

post-stratification procedure for the SII sample based on 4 aggregate geographical regions of Chile

and 3 wealth strata (1-50, 51-80, 81-100 percentile groups) from the Encuesta de Proteccion Social in

2004 (EPS). Afterwards, Microdatos combined the two samples using the same procedure described

in equation 10).

It is important to note that the provisory Microdatos procedure suffers from three flaws. One,

in the Censo sample it is not taken into acccount that the richest comunas in Chile were chosen

to be part of the EFH and therefore that the Chile outside the EFH sample design is poorer than

the one that was included. Second, the SII sample is based on only three wealth strata, when the

sample selected was highly based on individiuals of the highest income percentiles in Chile (95%

and above). A third failure is that Microdatos uses partial post-stratification on both the Censo

and SII samples. This procedure does not take into account that strata are not independent, since

some Chilean comunas and regions are much richer than others. One can easily perceive that all

these flaws create a bias in the Microdatos sample towards over-counting the number of wealthy

households in Chile.

I will now show in the next section that the original EFH weights created by Microdatos provide

highly biased estimates of the education and income distribution in Chile. In particular, Microdatos

weights estimated the percentiles of income in Chile with a mean absolute bias of 28.3%.

6.2 Comparing factor options with income strata

To evaluate the performance of the expansion factors I first computed the minimum, maximum,

mean, and standard-deviation of each expansion factor option. These dispersion statistics allow

me to measure how variance reduction there is in choosing each option. I also computed their

correlation coefficient in relation to the factor expr0602. The factor expr0602 is the one that takes

into account the largest heterogeneity in income strata. Therefore the correlation coefficient gives a
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rough measure of whether the dispersion in each expansion factor is indeed significant for explaining

the wealth type of each household.

In table 1 I show that indeed there is substantially more variance in choosing expansion factors

based on segmentos, comunas, and even provincias. Also, factors based on segmentos imply that

some households have a statistical representation for just 10 or 15 households, while other ones

represent 15000 or 20000 households, which would be equivalent to some of the largest comunas in

Chile. Choosing expansion factors based on segmentos and comunas results in standard-deviations

larger than the mean. Creating expansion factors based on aggregate regions of types 5 and 6

instead of segmentos successfully reduces this standard-deviation from above 1300 to less than 900

and reduces the minimum-maximum range from 15-15000 to around 50-5000. Note also that these

large standard-errors are all caused by the Censo sample and not by the SII sample. Since the

sample design of this sample could only distinguish people living in 3 types of neighborhoods, there

is no reason why some households are worth one thousand times less than other similar households.

However, perhaps the biggest problem for the factor types based on segmentos, comunas and

provincias is that their correlation with the income strata population (given by expr0602) is low. By

using aggregate regions (such as type 5 or 6) instead of segmentos one can increase the correlation

with the income strata from 40% to above 60%. It is important to note that the original expansion

factors (labelled CMD for Centro de Microdatos) only have a correlation factor of 23% with the

income strata, substantially below the new options.

Using the expansion factor expr0602 it is possible to get a reliable estimate of the Chilean

household income distribution using the EFH 2007. To compare how well each expansion factor

estimates the Chilean income distribution, I compute the average absolute deviations from the

estimates of the income distribution of each factor type in relation to the income distribution

obtained with factor 0602:

11) abs_devb(expr∗∗∗∗) = 1
K(b)

∑K(b)
i=1

∣∣log(stat(i))expr∗∗∗∗ − log(stat(i))expr0602
∣∣,

where b ∈ {percentiles, deciles, quintiles}, stat(i) ∈ {percentile, decile, quintile}, and K(b) ∈
{99, 9, 4}. The top percentile is excluded from the mean absolute deviation statistic, since income

is potentially unbounded and therefore there is no upper limit for the top percentile of household

income.
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In table 2 I show the mean values of abs_devb(expr∗∗∗∗). Again, it is quite clear that expansion

factors based on more aggregate areas (such as 0431, 531, and 0631) are more efficient in estimating

the income distribution of Chile. Therefore the new work improves estimates greatly at the same

time that it reduces factor variances. Tables 2 also shows that accounting for segmento type is also

not enough to get a good representation of the income distribution. It is therefore important to

account for both types of segmento and household.

Overall, the expansion factor 0531 appears to provide a good balance between reducing factor

variance and providing a good fit of the income distribution of Chile. Therefore the study of this

paper brings substantial improvements to the original expansion factors estimated by Microdatos.

Overall, it is easy to conclude that the original expansion factors over-estimated the income of

Chilean households by around 20%.

6.3 Monte Carlo performance of the expansion factors

The results from table 2 have some criticisms. First, they are the result of a single sample and

therefore do not really take into account estimation variance. Second, the results are based on a

counterfactual estimation of the income distribution of Chile using the CASEN 2006 and the ESI

2007. If this counterfactual estimation is not correct, then the results are misleading.

However, there are 3301 households from the Censo sample whose segmentos are all present in

the CASEN 2003. This allows us to make the following Monte Carlo experiment. Let us get 2500

bootstrap samples of 3301 households from the CASEN 2003, using the same segmentos as the EFH.

Then we apply the factor CMD and the other factor types I constructed before, obtaining statistics

for the absolute deviations of the percentiles, deciles and quartiles of each factor in relation to the

national urban CASEN 2003 income distribution. This exercise does not depend on counterfactual

estimations of the income distribution, since the original population is known and remains fixed.

Therefore it allows us to make an evaluation of how different factor types perform in different

samples11.

11Since there are few households per segmento in the CASEN 2003, I assign randomly households of segmentos

from the same income types (1,2,3) to these segmentos. I do this because the short availability of households per

segmento will tend to decrease the actual variance of the factors based on segmentos in relation to the truth.
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In table 3.1 I show that the mean bias of the Microdatos sample is large, being around 10.8%.

It is the largest bias next to the factors that only condition on the comuna and not on types of

segmentos. This experiment clearly shows that it is not enough to condition on comunas to get

consistent statistics in the EFH.

In table 3.2 I show the mean values of abs_devb(expr∗∗∗∗) across all the 2500 Monte Carlo

samples. The qualitative results are similar to tables 1 and 2. Again, expansion factors based

on aggregate regions (such as types 5 and 6) work fairly well. In particular, the option expr0531

appears to be quite robust across all Monte Carlo samples and it is laso one of the alternatives with

lowest estimated standard-error in all the 2500 Monte Carlo samples.

I also show the dispersion statistics of the performance of each factor type in tables 4.1-4.7. It is

easy to verify that the expansion factor expr0531 performs quite well and that its top percentile of

mean absolute error is still quite below the lowest percentile of mean absolute error for the original

Microdatos factors. Therefore even in the worst 1% scenario, the expansion factor expr0531 would

still estimate the income percentiles of Chile with a mean absolute error of only 5.2%.

6.4 Demographic representation of the EFH

Finally, in table 5 I compare the education statistics of the EFH 2007 with the CASEN 2006 and

2009, using both the original expansion factors by Microdatos and the expansion factor 0531. It

is quite clear from this table that again the original expansion factors were portraying a richer

Chile than the true one. The original expansion factors over-estimate the number of people with a

post-graduate degree at the national level by 40%12. It also over-estimates the number of people

with college degrees by 17%.

The new expansion factor 0531 is also accurate in representing the age distribution in Chile. It is

relevant to note that the Center Microdatos expansion factors were also accurate in portraying the

age distribution. This can be explained by the small inequality in the age distribution across Chile.

Age is much more similar across different cities than education or income, because the mortality of

However, there is little qualitative impact in adding households or not to the selected segmentos of the EFH.

Therefore I do not report the statistics obtained with the restricted EFH segmentos option.
12This work uses the CASEN as a reference for the true education distribution in Chile. However, the Census

2002, CASEN 2003, and EPS 2004 datasets give similar conclusions as the CASEN 2009 data.
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poor households is not dramatically higher than for richer households. Therefore estimates of the

age distribution have less variance and are less sensitive to the use of different expansion factors.

In table 7 I show that the unemployment rates estimated for the EFH using the original

expansion factors are too low relative to official INE statistics13. Again, the new expansion factors

make a much better job of providing a good fit of Chile, while the original ones seem to portray a

richer country than Chile actually is (in terms of income, education, and unemployment rates).

A similar comparison is valid if we use the distribution of education and age for the Chilean

household heads instead of all persons. The comparisons in tables 5, 6, and 7, are also similar if

we use other expansion factors besides the 0531. These results are available from the author upon

request.

The conclusion, therefore, is that the new expansion factors are a substantial improvement in

making the EFH portray Chile effectively and represent a more reliable tool for both research and

policy work.

7 Conclusions

This work re-estimates the expansion factors for the EFH 2007 dataset, using several full post-stratification

options based on the geographical area and the income type of each household. I conclude that

factors based on aggregate regions of Chile (such as groups of 4 or 2 regions only) have much less

variance than the expansion factors based on more detailed geographical areas, such as comunas

or segmentos. I also find that the factor types of the aggregate regions actually have less bias in

measuring the income distribution than the expansion factors based on more detailed geographical

strata. This result could be caused by measurement error in the population sizes of small urban

units such as segmentos.

In particular, the option expr0531 appears to be quite robust in measuring the income distribution

of Chile. Since the option 0531 appears to have lower bias and standard-error in a Monte Carlo

exercise with 2500 Monte Carlo simulations, I recommend that this expansion factor should be

13There is another unemployment survey for the Santiago area implemented by the Universidad de Chile, the

Encuesta de Ocupacíon y Disocupacíon (EOD). The EOD unemployment rates for the final quarter of 2007 were

around 8.5%, which gives an even worse picture than the INE statistics.
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included in the official EFH 2007 dataset. In addition, the new expansion factors estimated for the

EFH dataset seem to provide a much better fit of the education of Chilean households than the

original Microdatos factors.

This research brings substantial improvements to the estimates of Chilean household finances.

In particular, computing statistics for education of the households, income, asset wealth, and debt

levels, it is easy to conclude that the original Microdatos expansion factors over-estimated the

income of Chilean households by around 20%. The new expansion factors make a much better job

of providing a good fit of Chile, while the original ones seem to portray a richer country than Chile

actually is (in terms of income, education, and unemployment rates).

The conclusion, therefore, is that the new expansion factors are a substantial improvement in

making the EFH portray Chile effectively and represent a more reliable tool for both research and

policy work.
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8 Appendix

Table 1: Dispersion of the expansion factors and correlation with income strata

Aggregation Factor Mean Standard Min Max Correlation Correlation

area deviation w/ 0602 w/ IPSU

6 0602 968 619 70 2216 100.0% 43.2%

1 CMD 982 1315 17 22054 23.6% 46.8%

1 0100/ IPSU 957 1251 14 15316 43.2% 100.0%

2 0200 957 952 27 5337 41.7% 69.6%

2 0201 957 1068 22 8137 56.3% 71.0%

2 1200 957 776 13 5337 50.2% 57.9%

2 1201 957 776 13 5337 50.2% 57.9%

2 0210 957 1208 26 8279 46.4% 87.2%

2 0211 957 1313 10 10000 47.0% 78.4%

3 0310 957 999 27 7358 54.2% 76.5%

3 0311 957 1078 10 9145 57.0% 69.9%

4 0410 957 901 27 5337 59.9% 73.6%

4 0411 957 968 10 5366 62.6% 69.0%

4 0430 957 903 27 5337 60.0% 73.4%

4 0431 957 970 10 5366 62.5% 68.8%

5 0510 957 844 27 5337 62.5% 69.1%

5 0511 957 910 27 5337 66.4% 65.0%

5 0520 957 691 27 5337 53.6% 55.4%

5 0521 957 771 27 5337 77.5% 58.3%

5 0530 957 846 27 5337 62.7% 68.9%

5 0531 957 912 27 5337 66.3% 64.8%

6 0610 957 835 27 5337 62.9% 68.4%

6 0611 957 900 27 5337 67.1% 64.3%

6 0630 957 837 27 5337 63.1% 68.2%

6 0631 957 902 27 5337 67.0% 64.1%
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Table 2: Absolute deviations of the income distribution

of each factor type in the EFH07 relative to factor 0602

Aggregation area Factor percentiles dciles quintiles

1 CMD 28.3% 27.2% 26.5%

1 0100 9.1% 7.9% 8.2%

2 0200 22.3% 21.5% 21.4%

2 0201 3.5% 1.4% 1.1%

2 1200 23.6% 22.4% 22.2%

2 1201 23.6% 22.4% 22.2%

2 0210 6.7% 5.5% 5.7%

2 0211 4.0% 2.3% 1.7%

3 0310 7.9% 7.0% 7.3%

3 0311 4.2% 2.8% 2.3%

4 0410 8.4% 7.6% 7.9%

4 0411 3.8% 2.5% 1.8%

4 0430 8.1% 7.3% 7.8%

4 0431 3.7% 2.4% 1.8%

5 0510 10.1% 8.8% 9.4%

5 0511 4.0% 2.0% 1.3%

5 0520 26.1% 24.6% 24.0%

5 0521 4.0% 1.6% 0.6%

5 0530 9.2% 8.3% 8.8%

5 0531 3.9% 1.8% 1.2%

6 0610 10.0% 9.1% 9.8%

6 0611 4.0% 2.0% 1.3%

6 0630 9.5% 8.6% 9.4%

6 0631 3.9% 1.8% 1.3%
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Table 3.1: Mean Bias of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 10.8% 11.1% 11.3%

1 0100 -6.7% -6.9% -7.4%

2 0200 21.5% 22.2% 23.0%

2 0201 -1.1% -1.3% -1.9%

2 1200 22.2% 23.0% 23.7%

2 1201 22.3% 23.1% 23.8%

2 0210 -8.9% -9.0% -9.5%

2 0211 -5.4% -5.5% -6.0%

3 0310 -6.8% -6.9% -7.4%

3 0311 -3.5% -3.4% -4.0%

4 0410 -6.1% -6.2% -6.7%

4 0411 -2.4% -2.3% -2.7%

4 0430 -6.4% -6.5% -7.0%

4 0431 -2.6% -2.5% -2.8%

5 0510 -6.0% -6.1% -6.7%

5 0511 -2.2% -2.0% -2.5%

5 0520 24.5% 25.1% 25.8%

5 0521 0.2% -0.1% -1.4%

5 0530 -6.3% -6.4% -7.0%

5 0531 -2.3% -2.1% -2.5%

6 0610 -5.8% -5.9% -6.5%

6 0611 -2.1% -1.9% -2.3%

6 0630 -6.1% -6.3% -6.8%

6 0631 -2.2% -2.0% -2.4%
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Table 3.2: Mean Absolute deviations of the income

distribution of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 11.6% 11.4% 11.4%

1 0100 7.6% 7.2% 7.5%

2 0200 21.6% 22.2% 23.0%

2 0201 3.4% 2.9% 2.3%

2 1200 22.3% 23.0% 23.7%

2 1201 22.4% 23.1% 23.8%

2 0210 9.1% 9.0% 9.5%

2 0211 5.8% 5.6% 6.0%

3 0310 7.2% 7.1% 7.5%

3 0311 4.1% 3.9% 4.0%

4 0410 6.5% 6.4% 6.8%

4 0411 3.3% 2.9% 2.8%

4 0430 6.7% 6.7% 7.1%

4 0431 3.4% 2.9% 2.9%

5 0510 6.4% 6.4% 6.7%

5 0511 3.3% 2.8% 2.6%

5 0520 24.5% 25.1% 25.8%

5 0521 3.9% 3.2% 1.9%

5 0530 6.6% 6.6% 7.0%

5 0531 3.2% 2.8% 2.6%

6 0610 6.3% 6.2% 6.5%

6 0611 3.2% 2.7% 2.5%

6 0630 6.5% 6.4% 6.8%

6 0631 3.2% 2.7% 2.5%
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Table 3.3: Standard-error of the Absolute deviations

of the income distribution of each factor type

(2500 MC simulations from the EFH segmentos in CASEN 2003)

Aggregation area Factor percentiles dciles quintiles

1 CMD 1.7% 1.8% 2.1%

1 0101 1.5% 1.4% 1.6%

2 0200 1.5% 1.5% 1.5%

1 1101 1.5% 1.4% 1.5%

2 1200 1.3% 1.3% 1.4%

2 1201 1.3% 1.3% 1.3%

2 0210 2.0% 2.0% 2.1%

2 0211 1.4% 1.3% 1.4%

3 0310 1.7% 1.6% 1.8%

3 0311 1.1% 1.0% 1.2%

4 0410 1.5% 1.5% 1.7%

4 0411 0.9% 0.9% 1.0%

4 0430 1.5% 1.5% 1.7%

4 0431 0.9% 0.9% 1.0%

5 0510 1.4% 1.4% 1.6%

5 0511 0.9% 0.8% 0.9%

5 0520 1.2% 1.2% 1.2%

5 0521 0.8% 0.7% 0.8%

5 0530 1.5% 1.5% 1.6%

5 0531 0.9% 0.8% 0.9%

6 0610 1.4% 1.4% 1.6%

6 0611 0.9% 0.8% 0.9%

6 0630 1.5% 1.5% 1.6%

6 0631 0.9% 0.8% 0.9%
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Table 4.1: Q-1% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 8.0% 7.7% 7.3%

1 0100 3.4% 2.9% 2.5%

2 0200 18.2% 18.8% 19.3%

2 0201 1.6% 1.1% 0.5%

2 1200 19.4% 20.0% 20.5%

2 1201 19.5% 20.1% 20.5%

2 0210 4.8% 4.6% 4.6%

2 0211 2.9% 2.8% 2.8%

3 0310 3.7% 3.5% 3.4%

3 0311 1.9% 1.6% 1.5%

4 0410 3.2% 3.1% 3.0%

4 0411 1.4% 1.0% 0.7%

4 0430 3.3% 3.2% 3.1%

4 0431 1.4% 1.0% 0.8%

5 0510 3.4% 3.2% 3.1%

5 0511 1.4% 1.0% 0.6%

5 0520 21.8% 22.3% 23.1%

5 0521 2.3% 1.7% 0.4%

5 0530 3.5% 3.4% 3.3%

5 0531 1.4% 1.0% 0.6%

6 0610 3.2% 3.1% 3.0%

6 0611 1.4% 1.0% 0.6%

6 0630 3.3% 3.2% 3.2%

6 0631 1.4% 1.0% 0.6%
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Table 4.2: Q-10% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 9.5% 9.1% 8.8%

1 0100 5.1% 4.8% 4.7%

2 0200 19.7% 20.3% 21.1%

2 0201 2.2% 1.7% 1.1%

2 1200 20.6% 21.3% 22.0%

2 1201 20.7% 21.4% 22.0%

2 0210 6.5% 6.5% 6.7%

2 0211 4.1% 3.9% 4.3%

3 0310 5.1% 5.0% 5.1%

3 0311 2.7% 2.5% 2.6%

4 0410 4.6% 4.5% 4.6%

4 0411 2.2% 1.8% 1.6%

4 0430 4.7% 4.7% 4.9%

4 0431 2.2% 1.9% 1.7%

5 0510 4.6% 4.5% 4.6%

5 0511 2.1% 1.8% 1.5%

5 0520 22.9% 23.5% 24.3%

5 0521 2.9% 2.2% 0.9%

5 0530 4.8% 4.7% 4.9%

5 0531 2.1% 1.7% 1.5%

6 0610 4.5% 4.4% 4.4%

6 0611 2.1% 1.7% 1.4%

6 0630 4.6% 4.6% 4.7%

6 0631 2.1% 1.7% 1.4%
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Table 4.3: Q-25% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 10.5% 10.2% 9.9%

1 0100 6.2% 5.9% 6.0%

2 0200 20.6% 21.2% 22.0%

2 0201 2.7% 2.2% 1.6%

2 1200 21.4% 22.2% 22.8%

2 1201 21.5% 22.2% 22.9%

2 0210 7.7% 7.7% 8.0%

2 0211 4.9% 4.7% 5.1%

3 0310 6.0% 6.0% 6.2%

3 0311 3.3% 3.1% 3.2%

4 0410 5.4% 5.4% 5.7%

4 0411 2.7% 2.3% 2.2%

4 0430 5.6% 5.6% 5.9%

4 0431 2.7% 2.3% 2.3%

5 0510 5.4% 5.3% 5.6%

5 0511 2.6% 2.2% 2.0%

5 0520 23.7% 24.3% 25.0%

5 0521 3.3% 2.6% 1.4%

5 0530 5.6% 5.6% 5.9%

5 0531 2.6% 2.2% 2.0%

6 0610 5.3% 5.2% 5.5%

6 0611 2.6% 2.2% 1.9%

6 0630 5.5% 5.5% 5.8%

6 0631 2.6% 2.2% 1.9%
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Table 4.4: Q-50% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 11.5% 11.3% 11.2%

1 0100 7.6% 7.2% 7.5%

2 0200 21.7% 22.3% 23.0%

2 0201 3.4% 2.8% 2.3%

2 1200 22.3% 23.0% 23.8%

2 1201 22.4% 23.1% 23.8%

2 0210 9.1% 9.1% 9.5%

2 0211 5.7% 5.5% 6.0%

3 0310 7.2% 7.1% 7.4%

3 0311 4.1% 3.8% 4.0%

4 0410 6.5% 6.4% 6.8%

4 0411 3.3% 2.9% 2.8%

4 0430 6.7% 6.7% 7.1%

4 0431 3.3% 2.9% 2.9%

5 0510 6.4% 6.3% 6.7%

5 0511 3.2% 2.8% 2.6%

5 0520 24.5% 25.0% 25.7%

5 0521 3.9% 3.1% 1.9%

5 0530 6.6% 6.6% 7.0%

5 0531 3.2% 2.8% 2.6%

6 0610 6.3% 6.2% 6.5%

6 0611 3.1% 2.7% 2.5%

6 0630 6.5% 6.4% 6.8%

6 0631 3.1% 2.7% 2.5%
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Table 4.5: Q-75% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 12.7% 12.5% 12.7%

1 0100 8.9% 8.5% 8.9%

2 0200 22.7% 23.2% 24.0%

2 0201 4.1% 3.5% 2.9%

2 1200 23.2% 23.9% 24.6%

2 1201 23.3% 23.9% 24.7%

2 0210 10.4% 10.4% 10.9%

2 0211 6.7% 6.4% 7.0%

3 0310 8.3% 8.2% 8.6%

3 0311 4.8% 4.5% 4.8%

4 0410 7.5% 7.4% 7.9%

4 0411 4.0% 3.5% 3.5%

4 0430 7.7% 7.7% 8.1%

4 0431 4.0% 3.5% 3.6%

5 0510 7.4% 7.4% 7.8%

5 0511 3.8% 3.3% 3.1%

5 0520 25.4% 25.9% 26.5%

5 0521 4.4% 3.7% 2.5%

5 0530 7.6% 7.6% 8.1%

5 0531 3.8% 3.3% 3.2%

6 0610 7.2% 7.2% 7.6%

6 0611 3.8% 3.3% 3.0%

6 0630 7.4% 7.5% 7.9%

6 0631 3.7% 3.3% 3.1%
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Table 4.6: Q-90% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 13.9% 13.8% 14.2%

1 0100 10.1% 9.7% 10.2%

2 0200 23.5% 24.1% 24.8%

2 0201 4.8% 4.2% 3.6%

2 1200 24.1% 24.7% 25.4%

2 1201 24.1% 24.7% 25.5%

2 0210 11.8% 11.6% 12.2%

2 0211 7.6% 7.3% 7.9%

3 0310 9.4% 9.2% 9.8%

3 0311 5.6% 5.2% 5.5%

4 0410 8.5% 8.3% 8.9%

4 0411 4.6% 4.0% 4.1%

4 0430 8.7% 8.6% 9.2%

4 0431 4.6% 4.1% 4.2%

5 0510 8.3% 8.2% 8.8%

5 0511 4.4% 3.9% 3.7%

5 0520 26.2% 26.6% 27.3%

5 0521 5.0% 4.2% 3.0%

5 0530 8.6% 8.5% 9.1%

5 0531 4.4% 3.8% 3.7%

6 0610 8.2% 8.0% 8.6%

6 0611 4.3% 3.8% 3.6%

6 0630 8.4% 8.3% 8.9%

6 0631 4.3% 3.8% 3.6%
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Table 4.7: Q-99% Absolute deviations of the income distribution

of each factor type (2500 MC simulations)

Aggregation area Factor percentiles dciles quintiles

1 CMD 16.1% 16.2% 16.9%

1 0100 12.2% 11.8% 12.2%

2 0200 25.2% 25.7% 26.4%

2 0201 6.1% 5.3% 4.7%

2 1200 25.3% 25.9% 26.7%

2 1201 25.4% 25.9% 26.7%

2 0210 14.0% 13.9% 14.3%

2 0211 9.2% 8.7% 9.4%

3 0310 11.5% 11.0% 11.7%

3 0311 7.0% 6.4% 6.8%

4 0410 10.2% 9.9% 10.7%

4 0411 5.8% 5.1% 5.1%

4 0430 10.4% 10.2% 10.9%

4 0431 5.8% 5.1% 5.1%

5 0510 9.9% 9.7% 10.4%

5 0511 5.4% 4.8% 4.6%

5 0520 27.4% 27.9% 28.6%

5 0521 5.9% 5.1% 3.9%

5 0530 10.1% 10.1% 10.7%

5 0531 5.4% 4.8% 4.7%

6 0610 9.8% 9.6% 10.2%

6 0611 5.3% 4.8% 4.5%

6 0630 10.0% 9.9% 10.5%

6 0631 5.3% 4.8% 4.5%
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Table 5 - Distribution of Education

National - Persons

Education CASEN06 EFH07 - CMD EFH07 - 0531 CASEN09

Below high school 37.4% 32.3% 37.6% 37.9%

Some high school 39.2% 38.1% 39.2% 40.7%

Some College 16.1% 19.1% 15.5% 14.3%

Post-graduate 7.3% 10.5% 7.7% 7.1%

Total 100.0% 100.0% 100.0% 100.0%

Table 6 - Distribution of Age

National - Persons

Age CASEN06 EFH07 - CMD EFH07 - new CASEN09

0/17 27.2% 26.0% 26.5% 27.0%

18/24 12.5% 13.0% 12.2% 13.1%

25/34 13.6% 14.0% 12.7% 13.2%

35/44 14.5% 13.8% 13.2% 13.5%

45/54 12.7% 13.7% 14.3% 13.5%

55/64 9.1% 9.3% 9.8% 9.1%

65/+ 10.4% 10.1% 11.2% 10.5%

Total 100.0% 100.0% 100.0% 100.0%

Table 7: Unemployment rates

2007 Q4

Chile RM

INE 7.2% 7.1%

EFH CMD 6.5% 5.8%

EFH 0531 7.3% 6.7%
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