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Abstract 
Starting from Einstein´s equations of General Relativity we obtain the Hilbert Action. We show this, considering the 

metric tensor and the Christoffel symbols as independent variables. 
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Resumen 
A partir de las ecuaciones de Einstein de la Relatividad General obtenemos la Acción de Hilbert. La demostración 

considera al tensor métrico y a los símbolos de Christoffel como variables independientes.  
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I. INTRODUCTION 

 
The equations of the gravitational field were derived almost 

simultaneously by Einstein [1] and Hilbert [2] in November 

1915. Einstein based his discovery in two principles: (i) the 

principle of general covariance, and (ii) the principle of 

equivalence. Essential requirements necessary to obtain his 

theory is that, in the absence of gravitational fields it should 

reduce to the special theory of relativity and that, in the limit 

of weak gravitational fields, Newtonian theory is recovered. 

In Einstein´s theory both the effects of gravitation and the 

geometry of space-time are described in terms of the metric 

tensor . The equations, in the absence of 

nongravitational fields, are [3] 

 

 

 

Where and  are the Ricci curvature tensor, the 

scalar of curvature and the enrgy-momentum tensor of 

matter fields, respectively. The Ricci tensor is related to the 

Riemann-Christoffel curvature tensor  by , 

with 

 

 

 

We employ the notation of a comma for partial derivative; 

then, for example 

 

 

 

The Christoffel symbol  is given in terms of  and its 

derivatives as 

 

 

 

Then, an expression like this must be substituted for each 

Christoffel symbol in (2). In terms of the metric tensor, the 

Ricci tensor is given by 

 

 

 

 

 

 

Where, in the last line, we have to interchange the indexes ν 

and λ of the first two summands. Contracting the free 

indexes with the metric tensor we obtain the Ricci scalar 

.  

The tensor is the inverse of in the sense that 

 and they have null covariant derivative 
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Here we employ the semicolon notation for the covariant 

derivative; then, for example 

 

 

 

Hilbert deduced Eqs.(1) from a variational principle, with an 

action given by 

 

 

 

The choice for  is based on the following consideration: 

since  is the invariant volume element the 

Lagrangian density  can be written as  times a 

scalar, where  is the determinant of the metric 

tensor. Furthermore, the metric can be set equal to its 

canonical form, and its first derivatives set to zero at any 

point, any nontrivial scalar must involve at least second 

derivatives of the metric. Thus, the only scalar we could 

construct from the Riemann tensor, which is in fact second 

order in the derivatives of the metric, is the Ricci scalar. 

Then, Hilbert figured that the simplest choice for is 

 

 

 

The equations of motion (1) come out from the variation of 

(6) with respect to the variation of the metric tensor . 

The algebra to do this is quite complicated [4]. In many 

texts on General Relativity we find the use of one or both 

methods, briefly described above, for deducing the 

Einstein’s equations. 

On the other hand, it has been shown in [5] that it is 

possible to obtain the Lagrangian function from the 

equations of motion. This works well for the case of 

Maxwell equations. However, when one apply the method 

to (1) to obtain (7), we find that an easier procedure is to 

consider variations of the Christoffel symbols as 

independent variables along with the metric tensor. This 

remit us to the variational Palatini method to obtain (1), 

where both  are independent variablers. In the 

next section we will do this. 

 

 

II. HILBERT LAGRANGIAN FROM 

EINSTEIN´S EQUATIONS 
 

As a first step we multiply (1) by , where  is 

the variation of the metric tensor, and integrate over  

 

 

 

Our goal is to construct the variation of the Hilbert action 

 

 

We will use a set of known results involved in the study of 

General Relativity [3]. The identity [3, 7] 

 

 

 

and the definition of the scalar  allow us to rewrite (8) as 

 

 

 

 

 

We observe that in the first integral of Eq.(10), the term 

 is lacking to get the variation of the Hilbert 

action (9) 

 

 

 

This term can be constructed as follows. From the property 

in Eq.(5), and the result [3, 7] 

 

 

 

We obtain 

 

 

Then, we can write the identity 

 

 

 

Now, we multiply (13) by the variation of the Christoffel 

symbol  and integrate over the volume of space-time 

 

 

 

Where 

 

 

 

With the  given in terms of the metric tensor and its 

derivatives, as in (3). Recalling that , we 

integrate by parts to transform (14) into 

 

 

 

Some surface terms have been set to zero by making the 

variations  vanish at the boundary surface. From the 

definition of the Ricci tensor, we obtain 
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After a long algebra, we can rewrite (17) as 

 

 

 

Substitution of this result in (16) leads to 

 

 

 

Finally we add Eqs. (10) and (19) to obtain 

 

 

 

 

which is 

 

 

 

The first term is, as expected, the variation of Hilbert´s 

action and the corresponding integrand is Hilbert’s 

Lagrangian. 

 

 

III. CONCLUSIONS 
 
We have applied the method of reversing Hamilton’s 

principle of Ref. [5] to obtain Hilbert’s Lagrangian from the 

equation of motion of the Gravitational Field. We assume, 

for the sake of simplicity, that the metric tensor and the 

Christoffel symbols are independent variables. We believe 

that the deduction presented in this paper, can be used in 

undergraduate and graduate courses on General Relativity to 

obtain Hilbert Lagrangian. The price to pay in this method 

is that the beauty analysis of the properties of this 

Lagrangian are not discussed up to this stage. This can be 

done once we know the explicit form of . 
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