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Abstract 
We expound in detail a method frequently used to reduce the Dirac equation in D-dimensional (D≥4) spherically 
symmetric spacetimes to a pair of coupled partial differential equations in two variables. As a simple application of 
these results we exactly calculate the quasinormal frequencies of the uncharged Dirac field propagating in the D-
dimensional Nariai spacetime. 

 
Keywords: Dirac field; Nariai spacetime, Spherically symmetric, Quasinormal modes. 
 

Resumen 
Exponemos con detalle un método frecuentemente usado para simplificar la ecuación de Dirac en espaciotiempos 
esféricamente simétricos en D-dimensiones (D≥4) a un par de ecuaciones diferenciales parciales en dos variables. 
Como una aplicación directa de estos resultados calculamos las frecuencias cuasinormales del campo de Dirac sin 
carga en el espaciotiempo D-dimensional de Nariai. 
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I. INTRODUCTION 
 
Recently in many research lines of theoretical physics the 
models in which the spacetime has more dimensions than the 
four dimensions observable in our daily experience have 
been studied extensively. The most analyzed models are 
those related to string theory [1]. Also the scrutiny of the 
properties and solutions of higher dimensional general 
relativity has attracted a lot of attention (see Ref. [2] and 
references therein). In several of these research lines we need 
to know the classical properties of the higher dimensional 
spacetimes to examine different phenomena. Therefore the 
investigation of these classical properties is an active 
research field. 

To analyze the classical properties of a given spacetime a 
common method is to use a field as probe [3, 4]. Thus in the 
past several scattering phenomena of classical fields were 
studied, in order to know how to calculate the physical 
parameters of the spacetime from the measured values of the 
physical quantities corresponding to the classical field. 

The quasinormal modes (QNMs) are solutions to the 
equations of motion for a classical field that satisfy the 
radiation boundary conditions that are natural in the 
spacetime in which the field is propagating [3, 4]. For 
example, in asymptotically flat black holes the boundary 
conditions of the QNMs are that the field is purely ingoing 
near the event horizon and purely outgoing near infinity [3]. 

For asymptotically anti-de Sitter black holes we impose the 
boundary condition that the field vanishes at infinity and is 
ingoing near the event horizon.  

It has been shown that the QNMs are a useful tool to 
calculate the physical parameters of a spacetime [3, 4]. 
Hence if we know the quasinormal frequencies (QNF) of a 
classical field we can infer the values of several physical 
quantities of the spacetime such as its mass, charge, and 
angular momentum [3]. Furthermore it has been proposed 
that the QNMs encode some information about the quantum 
properties of the black holes [5]. 

To compute the QNF of a classical field in a given 
spacetime the usual procedure is to reduce the equations of 
motion for the field to a radial ordinary differential equation 
(assuming a given dependence on the angular variables and a 
harmonic time dependence) and impose to the radial function 
the boundary conditions of the QNMs. 

Also notice that the reduced form of the equations of 
motion is useful (and sometimes necessary) to study many 
other classical or semiclassical phenomena. Thus we believe 
that at present time the understanding of the separability 
properties of the equations of motion for classical fields in 
higher dimensional curved spacetimes must be a relevant 
part in the education of a physicist. 

Motivated by these theories that assume a number of 
spacetime dimensions greater than four, the separability 
properties of the equations of motion for several classical 
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fields were studied in higher dimensional backgrounds. It 
was found that many of the well known results that are true 
for four-dimensional spherically symmetric spacetimes 
extend to D-dimensional (D≥4) spherically symmetric 
spacetimes. 

For example, the reduction of the equations of motion for 
Klein-Gordon, electromagnetic, and gravitational 
perturbations to ordinary differential equations which is true 
in four-dimensional uncharged spherically symmetric 
spacetimes [4], also is valid in D-dimensional uncharged 
spherically symmetric spacetimes, as showed in Refs. [6], 
[7]. Moreover for the coupled gravitational and 
electromagnetic perturbations the reduction of the equations 
of motion to Schrödinger type equations which is true in 
four-dimensional charged spherically symmetric 
backgrounds also is valid for D-dimensional charged 
spherically symmetric backgrounds [8].  

Although the study of the classical dynamics of fields in 
curved spacetimes (in four and D dimensions) is focused on 
boson fields [3, 4, 6, 7, 8], mainly on gravitational 
perturbations, we believe that the understanding of the 
classical dynamics of the fermion field in D-dimensional 
spacetimes is of great value, because the Dirac field 
sometimes behaves in a different way that the boson fields. 
For example, it is a well known fact that in the four-
dimensional Kerr black hole the fermion field does not show 
superradiant scattering [9, 10], unlike to boson fields [4]. 

For the Dirac equation, its separability properties in D-
dimensional spherically symmetric spacetimes were 
previously studied in Refs. [11, 12]. In these papers is shown 
that the Dirac equation reduces to a pair of coupled partial 
differential equations in two variables.1  

Owing to the past and future applications of the reduced 
system of partial differential equations for the Dirac equation 
in D-dimensional spherically symmetric spacetimes, we 
believe that the method used in Refs. [11] to reduce the 
Dirac equation to a pair of coupled partial differential 
equations deserves a detailed exposition, because this 
account may be practical and useful. Here we present the 
method in more detail than in the original references, that is, 
in the present work we explicitly write some mathematical 
steps omitted in Refs. [11, 12] (see also [15, 16, 17]).  

Notice that Section II is not an exhaustive review of the 
previous work on the dynamics of fermion fields in 
spherically symmetric spacetimes. Also observe that in this 
paper we do not consider in detail the mathematical 
properties of D-dimensional spinors, these can be studied in 
many books and papers (see for example Refs. [18, 19, 20]). 
We only write the essential properties of the spinors 
necessary to make the reduction of the Dirac equation to two 
coupled partial differential equations that we shall expound 
in Section II. 

Recently the exact computation of the QNF for several 
higher and lower dimensional spacetimes has attracted a lot 
of attention, see [21]-[39] for some references in which an 
exact calculation of the QNF was carried out. As many 
                                                 
1 Notice that for the Dirac field some results valid in four-dimensional 
rotating black holes have been extended to rotating black holes in higher 
dimensions, see Refs. [13] for an incomplete list of references. For a review 
of the recent work on the separability properties for the equations of motion 
for several fields in higher dimensional spacetimes see Ref. [14]. 

exactly solvable models in theoretical physics, we believe 
that these examples are useful models and it is possible that 
they play a relevant role in future research. 

The Nariai spacetime is a vacuum solution to the 
Einstein equations with positive cosmological constant [40]. 
This spacetime is a simple solution to the field equations of 
general relativity. Owing to this simplicity of the Nariai 
solution, it is possible to calculate the values of several 
physical quantities in exact form. For example, for this 
spacetime in Refs. [39] were computed exactly the values of 
the QNF for Klein-Gordon fields and tensor type 
gravitational perturbations.  

Furthermore in the D-dimensional charged Nariai 
spacetime [8, 40], the QNF for the coupled gravitational and 
electromagnetic perturbations were calculated exactly in Ref. 
[38]. To our knowledge the result of the previous reference 
in the charged Nariai spacetime is the only exact calculation 
of QNF for the coupled electromagnetic and gravitational 
perturbations in higher dimensions. 

As an application for the reduced system of differential 
equations obtained in Section II for the Dirac field moving in 
D-dimensional spherically symmetric spacetimes, we exactly 
calculate the QNF of this field in D-dimensional Nariai 
spacetime [40]. These values of the QNF for the Dirac field 
extend those already published in Refs. [38, 39].  

In this paper we assume that the reader has a working 
knowledge of general relativity and differential geometry. 
Furthermore, in the following sections we use Einstein’s sum 
convention and understand sum on repeated indices (Latin 
and Greek indices), unless we explicitly state that in a given 
formula we do not understand sum on repeated indices. 

The paper is organized as follows. In Section II we 
present in detail the method of Refs. [11] (see also [15, 16, 
17]) that reduces the Dirac equation in D-dimensional 
spherically symmetric spacetimes to a pair of coupled partial 
differential equations in two variables. Using these results in 
Section III we exactly calculate the QNF of the Dirac field 
propagating in the D-dimensional Nariai spacetime. Finally 
in Section IV we discuss some related facts. 
 
 
II. DIRAC´S EQUATION IN D-DIMENSIONAL 
SPHERICALLY SYMMETRIC SPACETIMES 
 
As is well known in D-dimensional spherically symmetric 
backgrounds the Dirac equation 
 

                                 ,i mμ
μγ ψ ψ∇ =                          (1) 

 
reduces to a pair of coupled partial differential equations in 
two variables [11, 12, 15, 16, 17]. In this section we describe 
in detail the method of Refs. [11] frequently used to get this 
result. For a different method see Refs. [12]. 

Here we shall consider two -dimensional spacetimes M
and M  whose metrics g μν  and g μν  are conformal, that 
is2 
                                                 
2Notice that Greek indices stand for the coordinate indices, whereas the 
Latin indices stand for the frame indices. 
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                          2 ,g gμν μν= Ω                                (2) 
 
where Ω is a function of the coordinates. We point out that if 
the symbols μ

μγ ∇ , ψ , m and μ
μγ ∇ , ψ , m  denote the 

Dirac operator, the Dirac spinor, and the mass of the Dirac 
field corresponding to the spacetimes M  and M , 
respectively, then the following relations are satisfied [11, 
15, 16, 17]  

                  

( 1) / 2

( 1) / 2

,
,

.

D

D

m m

μ μ
μ μ

ψ ψ

γ ψ γ ψ

−

+

=Ω

∇ =Ω ∇

=Ω

                (3) 

 
It is well known that the previous results can be generalized 
when there are gauge fields [11], but in this paper we do not 
analyze this extension. As in formulae (3), in the rest of the 
present section a tilde stands for the quantities corresponding 
to the spacetime with metric gμν  and similarly for other 
symbols to be used. 

One way to obtain the results of formulae (3) is the 
following. When the metrics gμν  and gμν  are conformally 
related as in formula (2) and we define the basis of one-
forms ae  such that a b

abg e eμν μ νη=  and the basis ae  such that 
a b

abg e eμν μ νη=  where ab
abη η= = )1,...,1,1( −−diag  is the 

Minkowski metric [41, 42], we find that the one-forms ae  
and ae  satisfy  

.a ae e= Ω  
 
To get the relation between the connection one-forms a

bω  

and a
bω  corresponding to the basis of one-forms ae  and ae  

respectively, we recall that the connection one-forms a
bω  are 

determined by the first Cartan structure equation 
 

,a a b
bde eω= − ∧  

 
where the symbol ∧  stands for the wedge product [41], 
[42]. 

Using Statement36.1.6.1 of Ref. [41], we see that the 
one-forms a

bω  and a
bω  are related by  

 ( )( )1 ( ) ,ab ab b a a be e e eω ω= + Ω − Ω
Ω

            (6) 

                                                 
3Statement 6.1.6.1 of Ref. [41]: If any set of 2-forms Ac is given and {θc} is 
a dual frame basis then there exists a unique set of 1-forms χab such that  

0,b
a ab

b

A χ θ+ ∧ =∑     ab baχ χ=− .  

The 1-forms abχ  can be expressed by the formula 

,c
ab abc

c

χ χ θ=∑      ( )1 ,
2abc abc bac cabA A Aχ = − −   

where Aabc are the coefficients in the decomposition  

,

1 ,
2

a b
c cab

a b

A A θ θ= ∧∑         .cab cbaA A= −  

 
where ( )ae Ω  denotes the action of the vector b

a abe eη=  on 

the scalar function Ω . From expression (6) we get 
 

2

1 ( ( ) ( ) ),abc
abc b ac a bce eωω η η= + Ω − Ω

Ω Ω
         (7) 

 
where ( )abc ab ceω ω=  and similarly for abcω . 

Thus if the symbol c∇  stands for the covariant 
derivative of a spinor, that is, [18, 42] 

 

              1
4

a b
c c abce ω γ γ∇ = +                          (8) 

where cγ  stands for the D-dimensional gamma matrices that 
satisfy [18, 19, 20] 
 

               2 ,a b b a abγ γ γ γ η+ =                            (9) 
 

and we also observe that a aγ γ= . Taking into account the 

previous results and if we take sψ ψ= Ω  then it is possible 
to show that the D-dimensional Dirac operator 
 

                               ,c
cγ ψ∇                                      (10) 

 
transforms into [11, 15, 16, 17]  
 

(1 ( )
4

 c
c abc a bce eμ

μγ ψ γ ω η⎡∇ = Ω + Ω + Ω⎢⎣
 

                        )( ) a b s
b ace η γ γ ψ⎤− Ω Ω⎦                      (11) 

       
1 ( )

4 2
c c a b c s

c abc c
De eγ ω γ γ γ γ ψΩ −⎡ ⎤= Ω + − Ω Ω⎢ ⎥⎣ ⎦

 

        
1

1

4

s
s c c a b

c abceγ ψ ω γ γ γ ψ
+

+ Ω
= Ω +  

                          
1( ) .

2
s c

c
De sγ ψ−⎛ ⎞+Ω Ω −⎜ ⎟

⎝ ⎠
 

Taking ( 1) / 2s D= −  in the previous formula we finally get 
the result 
 

             ( 1)/2 .Dμ
μ

μ
μγγ ψ ψ+= Ω ∇∇                     (12) 

 
This expression and ( 1) / 2Dψ ψ−= Ω  are the first two results 
of formulae (3). The result given in expressions (3) for the 
mass m immediately follows from the previous formulae for 

μ
μγ ψ∇  and ψ . 

In the following paragraphs we study the Dirac equation 
in the D-dimensional spherically symmetric spacetimes with 
coordinates ( , , )it r φ , where 1,2, ,( 2)i D= … − , and whose 
line elements we write in the form 
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  2 2 2 2 2 2 2

2( ) ( ) ( ) ,Dds F r t G r rd d H dr −= − − Σ     (13) 
 
where ( )F r , ( )G r , and ( )H r  are functions only of the 

coordinate r , the symbol 2
2Dd −Σ  stands for the line 

element of a ( 2)D − -dimensional invariant base space 

which depends only on the coordinates iφ . 
To simplify the Dirac equation in a spacetime whose 

metric takes the form (13), we factor out the function 2( )H r  
in the line element (13) and define 

 

                            
2

2
2 ,

( )
dsds

H r
=                              (14) 

where4  
 

2 2
2 2 2 2

22 2 .D
F Gds g dx dx dt dr d
H H

μ ν
μν −= = − − Σ   (15) 

 
Next we use the results (3) to find the relation among the 
quantities ψ , μ

μγ ψ∇ , m, and ψ , μ
μγ ψ∇ , ψ , m , 

corresponding to the spacetimes with line elements 2ds  of 
formula (13) and 2ds  of expression (15). We point out that in 
the line element (15) the first two terms depend only on the 
two coordinates t, r, and the term 2

2Dd −Σ  depends only on 

the ( 2)D−  coordinates iφ . 
As a basis of one-forms for the spacetime with metric 

(15) we choose [11, 15, 16, 17] 
 

              ( ) ( )( , ) ( , ) ( , ) ,t t
t re e r t f r t dt f r t dr= = +  

 
        ( ) ( )( , ) ( , ) ( , ) ,r r

t re e r t g r t dt g r t dr= = +        (16) 

 
              ( ) ( ) ,i i i j

k j ke e h dφ φ φ= =  
 
where , , 1,2, , 2i j k D= … − . We prefer this basis because 
many of the connection one-forms are equal to zero, for 
example, the connection one-forms tjω  and rjω . 

It is convenient to observe that in D even dimensions the 
gamma matrices are square matrices of dimension 

/2 /22 2D D×  whereas in D odd dimensions these are of 
dimension ( 1)/2 ( 1)/22 2D D− −× [18, 19, 20]. Thus if in the D-
dimensional spacetime with metric (15) we use the 
representation of the gamma matrices [11, 15, 16, 17, 19], 

 
         ( 2 )/21 0 0 0 1 2

,Dtγ σ σ σ σ σ −= ⊗ ⊗ ⊗ …= ⊗ I
 

 

                                                 
4 We shall write the functions F(r), G(r), and H(r) simply as F, G, and H, 
respectively. In general, we shall use a similar convention for the functions 
that we shall define in the following paragraphs. 

        ( 2 )/22 0 0 0 2 2
,Dr i iγ σ σ σ σ σ −= ⊗ ⊗ ⊗ …= ⊗ I  

  

1 3 1 0 0 3 1̂,iγ σ σ σ σ σ γ= ⊗ ⊗ ⊗ …= ⊗               (17) 

 
      2 3 2 0 0 3 2ˆ , iγ σ σ σ σ σ γ= ⊗ ⊗ ⊗ …= ⊗  
 
       3 3 3 1 0 3 3ˆ ,iγ σ σ σ σ σ γ= ⊗ ⊗ ⊗ …= ⊗  

          
   2 3 2ˆ ,D Dγ σ γ− −=…= ⊗  
 
where ( 2 )/22 D−I  is the identity matrix of dimension 

( 2)/2 ( 2)/22 2D D− −× , the symbol ⊗  stands for the direct 
product [18, 19], 1̂γ , 2γ̂ , …, 2ˆDγ −  are a representation of 
the gamma matrices for a ( 2)D− -dimensional space with 
signature ( , , )− … −  and 
 

                 
0 1

1 0 0 1
, ,

0 1 1 0
σ σ

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

         
2 3

0 1 0
, ,

0 0 1
i

i
σ σ

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

               (18) 

 
that is, 1σ , 2σ , and 3σ  are the Pauli matrices. 

Using the basis of one-forms (16) and the representation 
for the gamma matrices given in formulae (17), in the 
spacetime with line element 2ds of formula (15) we find that 

the D-dimensional Dirac operator μ
μγ ∇  becomes5 [11, 15, 

16, 17] 
 

1 2
1 2

t r D
t r D

μ
μγ γ γ γ γ −

−∇ = ∇ + ∇ + ∇ +…+ ∇  

            ( 2 )/2
(2 ) (2 )

2
ˆ ˆ( ) D

t D r D
t rγ γ −= ∇ + ∇ ⊗ I                       (19) 

            1 ( 2) 2 ( 2)
3 1 2ˆ ˆ( )D D D

Dσ γ γ− − −
−+ ⊗ ∇ +…+ ∇  

            ( 2 )/22 32
[ ],DD diμ μ

μ μγ σ γ− Σ= ∇ ⊗ − ⊗ ∇I  
 

where (2 )
,

D
t r∇  and ( 2)D

i
−∇  stand for the covariant 

derivatives of a spinor in two and ( 2)D−  dimensions 

respectively, ˆ tγ  and ˆ rγ  are a representation of the gamma 

matrices in two dimensions, 2D
μ

μγ ∇  is the Dirac operator 
on the two-dimensional spacetime whose line element is 
 

                   
2 2

2 2 2
2 2 2 ,D

F Gds dt dr
H H

= −                  (20) 

 

                                                 
5

In formulae (19) there is no sum on the repeated indices t, r, and D-1. 
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and d
μ

μγ Σ∇  is the Dirac operator on the ( 2)D− -

dimensional submanifold with line element 2
2Dd −Σ  and with 

signature ( , , )+ … + . 

For many relevant spacetimes 2
2Dd −Σ  is the line element 

of a ( 2)D − -dimensional sphere, but this is not the only 
option, also the quotients of hyperbolic spaces are possible 
[36, 37, 43]. 

Taking the spinor ψ  of the spacetime with line element 
(15) in the form 

 
            2( , , ) ( , ) ( ),i D ir t r tψ φ ψ χ φ= ⊗                    (21) 

 
where 2 ( , )D r tψ  is a two-spinor on the spacetime with line 

element 2
2 Dds  of formula (20) and the functions ( )iχ φ  

satisfy 
 

                  ,d
μ

μγ χ κχΣ∇ =                            (22) 
 
that is, χ  and κ  denote the eigenfunctions and eigenvalues 
of the Dirac operator on the manifold with line element 

2
2Dd −Σ  [44]. From formula (19) we obtain that the spinor 

ψ  of expression (21) satisfies 
 

       2 3 2[ ] .D Diμ μ
μ μγ ψ γ σ κ ψ χ∇ = ∇ − ⊗         (23) 

 
Thus in the D-dimensional spherically symmetric spacetime 
with line element (13) the Dirac equation (1) reduces to 
 

       2 2 3 2 2( ) .D D Di imHμ
μγ ψ κ σ ψ∇ = − I             (24) 

 
Next, from the two-dimensional line element 2

2 Dds  of Eq. 

(20) we define the line element 2
2 Dds  by 

 
2 22

2 2 2 2
2 22 ,D D

F G Fds dt dr ds
H F H

⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

    (25) 

 
and using the results (3) we obtain that the two-spinor 2Dψ  

of the spacetime with line element 2
2 Dds  satisfies the 

equation 
 

    2 2 3 2 2( ) ,D D D
F i imH
H

μ
μγ ψ κσ ψ∇ = − I           (26) 

 
where 2D

μ
μγ ∇  stands for the Dirac operator on the two-

dimensional spacetime with line element 2
2 Dds  defined in 

formula (25). 
Taking the variable y  as 
 

                             ,dy G
dr F

=                                    (27) 

 
we find that Eq. (26) becomes6  

  2 3 2 2( ) ( ) ,t y
t y D D

F i imH
H

γ γ ψ κσ ψ∂ + ∂ = − I    (28) 

where tγ  and yγ  are a representation of the gamma 
matrices in two spacetime dimensions. 

Here for the two-dimensional gamma matrices tγ  and 
yγ  we use the representation [11, 15, 16, 17] 

 

    
0 1 0 1

, ,
1 0 1 0

t yγ γ
−⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (29) 

 
to find that in the D-dimensional spherically symmetric 
spacetime with line element (13) the Dirac equation (1) 
reduces to 
 

            2 2 1,t r
F Fi i F
G H

ψ ψ κ μ ψ⎛ ⎞∂ − ∂ = −⎜ ⎟
⎝ ⎠

            (30) 

 

1 1 2,t r
F Fi i F
G H

ψ ψ κ μ ψ⎛ ⎞∂ + ∂ = − +⎜ ⎟
⎝ ⎠

 

 
where the functions 1ψ  and 2ψ  are the components of the 

two-spinor 2Dψ , that is 

 

                                1
2

2

.D

ψ
ψ

ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                              (31) 

 
Thus we get that in the D-dimensional spherically symmetric 
spacetime with line element (13) the Dirac equation (1) 
reduces to the pair of coupled partial differential equations in 
the variables t and r given in Eq. (30). This system of two 
coupled partial differential equations in two variables is the 
main result that we state in this section and it was previously 
obtained in Refs. [11, 12]. 

It is convenient to notice that in D-dimensional de Sitter 
spacetime, whose line element in static coordinates takes the 
form (13), when we write Eqs. (30) for this spacetime we 
obtain Eqs. (11) of Ref. [33] that we obtain by using the 
results of Refs. [12] to reduce the Dirac equation. 

Although we study spherically symmetric backgrounds 
in D ≥ 4 dimensions, we think that the results obtained in this 
section also are valid in three-dimensional spacetimes whose 
metric can take the form (13). We cannot compare in 
straightforward way the reduced system of partial differential 
equations presented in this section with that of Ref. [45] 
because in the previous reference a different basis of one-
forms was chosen. 

 
                                                 
6 Notice that in Eq. (28) there is no sum on the repeated indices t and y. 
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III. QUASINORMAL MODES OF THE DIRAC 
FIELD IN THE D-DIMENSIONAL NARIAI 
SPACETIME  
 
As we previously mentioned, the QNF are complex 
quantities that depend on the physical parameters of a 
spacetime. Thus if we know the QNF we can infer the values 
of several physically relevant quantities of the spacetime. 
For many relevant backgrounds, for example, Schwarzschild 
and Kerr black holes, it is not possible to calculate the values 
of their QNF in exact form, we must use approximate or 
numerical methods [3]. 

Nevertheless, at present time we know many higher and 
lower dimensional spacetimes whose QNF were computed 
exactly in Refs. [21]-[39]. The systems that allow exact 
computations of some physical parameters have the 
advantage that we can analyze in more detail their properties 
and verify in a simple setting some predictions of the 
physical theories. Hence we believe that these examples 
deserve a detailed study. Doubtless these models will be 
useful in future research. 

As an elementary application for the coupled system of 
partial differential equations (30) for the Dirac field 
propagating in the D-dimensional spherically symmetric 
spacetimes that we present in the previous section, here we 
exactly compute the QNF for this field in the D-dimensional 
Nariai spacetime which is a simple vacuum solution of the 
Einstein equations with positive cosmological constant. 

The line element of the D-dimensional Nariai 
background is [40] 

 

   
2

2 2 2 2 2
22

dd (1 )d d ,
(1 ) D

rs r t a
r

σ
σ −= − − − Σ

−
      (32) 

 
where 

                           ( 1) ,Dσ = − Λ                                 (33) 
 

2
2Dd −Σ  is the line element of a ( 2)D− -dimensional unit 

sphere, the constant 2a  is equal to  
 

                      2 ( 3) ,
( 1)

Da
D

−
=

− Λ
                              (34) 

 
and the constant Λ is related to the cosmological constant. If 

0σ >  then the metric (32) has two cosmological horizons at 
[40] 
 

                         1 .r
σ

= ±                                   (35) 

 
In the following we assume that the radial coordinate 

( 1 / , 1 / )r σ σ∈ − + . 
We note that the D-dimensional Nariai spacetime (32) 

has the following features [40]: (a) it has a geometry 
2

2
DS −×S , where 2S  stands for the two-dimensional de 

Sitter spacetime and 2D−S  denotes the ( 2)D− -dimensional 
sphere, (b) it is spherically symmetric, homogeneous, and 
locally static, (c) it is geodesically complete. Owing to the 
D-dimensional Nariai spacetime (32) is spherically 
symmetric, its metric can be written in the form (13) with the 
functions F, G, and H equal to 

 

      2 1/21 (1 ) , .F r H a
G

σ= = − =             (36) 

 
We define the QNMs of the Nariai spacetime as the modes 
that are purely outgoing near both horizons [38], [39]. We 
also notice that the results of this section are an extension of 
those already published in the previous two references for 
coupled gravitational and electromagnetic perturbations, 
Klein-Gordon fields and tensor type gravitational 
perturbations. 

To compute the QNF of the uncharged Dirac field that is 
propagating in the D-dimensional Nariai spacetime (32), we 
first write in this spacetime the reduced system of partial 
differential equations (30) for the Dirac equation in D-
dimensional spherically symmetric spacetimes. We get the 
following system of partial differential equations 

 
2 2 1/2

2 2 1(1 ) , (1 )t r
ir r im
a
κψ σ ψ σ ψ⎛ ⎞∂ − − ∂ = − −⎜ ⎟

⎝ ⎠
 

(37) 

 2 2 1/2
1 1 2(1 ) (1 ) ,t r

ir r im
a
κψ σ ψ σ ψ⎛ ⎞∂ + − ∂ = − − +⎜ ⎟

⎝ ⎠
 

 
where κ  are the eigenvalues of the Dirac operator on the D-
dimensional sphere, that is, ( ( 2) / 2)i l Dκ = ± + − , where 

0,1, 2,l = … , [44].  

If we take the components 1ψ  and 2ψ  of the two spinor 

2Dψ  of formula (31) as 
 

                                   1 1( )e ,i tR r ωψ −=  
 

                 2 2( )e ,i tR r ωψ −=                             (38) 
 
then Eqs. (37) transforms into the coupled system of 
ordinary differential equations 
 

          2 2
2(1 ) dRr i R

dr
σ ω− +     

                  2 1/2
1(1 ) ,iKr im R

a
σ ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 

             2 1
1(1 ) dRr i R

dr
σ ω− −                     (39) 

                     2 1/2
2(1 ) ,iKr im R

a
σ ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 

 



The Dirac equation in D-dimensional spherically symmetric spacetimes 

Lat. Am. J. Phys. Educ. Vol. 3, No.3, Sept. 2009 584 http://www.journal.lapen.org.mx 
 

where we define the quantity K κ= − . Moreover, defining 
the following quantities z rσ= , ˆ /ω ω σ= , ˆ /m m σ=

and /iK aλ σ= , we find that Eqs. (39) become 
 

          2 2 1/22
2 1ˆ ˆ(1 ) (1 ) ( ) ,dRz i R z im R

dz
ω λ− + = − +       

 

      2 2 1/21
1 2ˆ ˆ(1 ) ( ) .1 ( )dRz i R z im R

dz
ω λ− − = − −     (40) 

 
Also notice that ( 1,1)z∈ − . 

Next, we define (as in Chandrasekhar book's [4]) 
 

                    ˆ
arctan ,mθ

λ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                          (41) 

that is 
 
 2 2ˆ co s( ),mλ λ θ= +  
 

                         2 2ˆ ˆ sin( ),m mλ θ= +                        (42) 
 
and taking 
 
 /2

1 1e ,iR Rθ−=  
 
                                   /2

2 2 ,eiR Rθ=                              (43) 
 
we see that Eqs. (40) reduce to 
 

 2 2 1/22
2 1ˆ(1 ) (1 ) ,N

dRz i R z R
dz

ω α− + = −
 

 

       2 2 1/21
1 2ˆ(1 ) (1 ) ,N

dRz i R z R
dz

ω α− − = −          (44) 

 
where 2 2ˆN mα λ= + . 

From the previous equations we get that the decoupled 
ordinary differential equations for the functions 1R  and 2R  
are equal to 

 

 
22 2

11 1 1
2 2 2 2 2

ˆ ˆ( ) 0,
1 (1 ) 1

N Rd R dR i z Rz
dz z dz z z

αω ω−
− + − =

− − −
 

(45) 

 
22 2

22 2 2
2 2 2 2 2

ˆ ˆ( ) 0.
1 (1 ) 1

N Rd R dR i z Rz
dz z dz z z

αω ω+
− + − =

− − −
 

 
To solve Eqs. (45) we make the change of variable 
 

                       1 ( 1),
2

y z= +                                    (46) 

 
with (0,1)y∈  and the ansatz 
 
 1 1

1 1(1 ) ( ),B CR y y S y= −  
 
                         2 2

2 2(1 ) ( ),B CR y y S y= −                 (47) 
 
where 

 
1

ˆ 1
2 2

,
ˆ

2

i

B
i

ω

ω

⎧ +⎪
⎪

= ⎨
⎪
⎪ −
⎩

 

                              
1

ˆ 1
2 2

,
ˆ

2

i

C
i

ω

ω

⎧− +⎪
⎪

= ⎨
⎪
⎪
⎩

                             (48) 

                                
2

ˆ
2

,
ˆ 1

2 2

 

i

B
i

ω

ω

⎧
⎪
⎪

= ⎨
⎪
⎪− +
⎩

 

                            
2

ˆ
2

,
ˆ 1

 

2 2

 

i

C
i

ω

ω

⎧ −⎪
⎪

= ⎨
⎪
⎪ +
⎩

 

 
to find that the functions 1( )S y  and 2 ( )S y  must be 
solutions of the hypergeometric differential equation [46] 

 
2

2(1 ) ( ( 1) ) 0,
d

d f dfy y c a b y abf
dy y

− + − + + − =    (49) 

with parameters (the lower indices 1 or 2 determine if the 
parameter correspond to the function 1( )S y  or to the 

function 2 ( )S y ) 
 
    1 1 1 ,Na B C iα= + +  
 
    1 1 1 ,Nb B C iα= + −  
 
                               1

1 1 22 ,c C= +                                       (50) 

 
     2 2 2 ,Na B C iα= + +  
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      2 2 2 ,Nb B C iα= + −  
 
                               1

2 2 22 .c C= +  
 
In the following we study the function 1R  (we obtain similar 

results for the function 2R ). Also we take the quantities 1B  

and 1C  as 1 ˆ / 2B iω= −  and 1 ˆ / 2C iω= . From the previous 

results we see that if the parameter 1c  is not an integer, then 

we write the function 1R  as [46] 
 
 ˆ ˆ/2 /2 /2

1 1 2 1 1 1 1e (1 ) ( , ; ; )i i iR y y F a b c yθ ω ω− − ⎡= − ⎣D     (51) 

 ˆ1/2 /2
1 2 1 1 1 1 1 1( 1, 1;2 ; ) ,iy F a c b c c yω− ⎤+ − + − + − ⎦E

 
 
where 1D  and 1E  are constants. 

At this point we note that the tortoise coordinate for the 
D-dimensional Nariai spacetime is equal to [38, 39, 40] 

 

          
2

1 arctanh( ),
1

drx z
rσ σ

= =
−∫

               (52) 

 
where ( , )x∈ −∞ +∞  and from expression (46) we get 
 
 2 and         as , e ,  xx y σ→ −∞ ≈  
 

          2as ,      1 e .xx y σ−→ +∞ − ≈                       (53) 
 
Thus near the horizon at 1 /r σ= −  (that is as x→−∞ ) 
the function 1R  (51) behaves as 
 

            1 1 1e e e .i x i x xR ω ω σ−≈ +D E                      (54) 
 
In the D-dimensional Nariai spacetime to satisfy the QNMs 
boundary condition near 1 /r σ= − , that is, the function 

1R  behaves as exp( )i xω−  if the tortoise coordinate goes to 

minus infinity x→−∞ , we take 1 0=D  in formula (54) 

and therefore the function 1R  becomes 
 
            ˆ ˆ/ 2 / 2 1/ 2 / 2

1 1e (1 ) i i iR y yθ ω ω− − −= −E  

        2 1 1 1 1 1 1( 1, 1;2 ; )F a c b c c y× − + − + −            (55) 

             ˆ ˆ/2 /2 1/2 /2
1 2 1 1 1 1e (1 ) ( , ; ; ).i i iy y F yθ ω ω α β γ− − −= −E  

 
We recall that if the quantity γ α β− −  is not an integer then 
the hypergeometric function 2 1 ( , ; ; )F uα β γ  satisfies [46] 
 

2 1
( ) ( )( , ; ; )
( ) ( )

F u γ γ α βα β γ
γ α γ β

Γ Γ − −
=
Γ − Γ −

 

                   2 1( , ; 1 ;1 )F uα β α β γ× + + − −              (56) 

 
( ) ( ) (1 )

( ) ( )
u γ α βγ α β γ

α β
− −Γ Γ + −

+ −
Γ Γ

 

             2 1( , ; 1 ;1 ).F uγ α γ β γ α β× − − + − − −  
 
Thus if the quantity 1 1 1γ α β− −  is not an integer, then using 
formula (56) we write the radial function (55) as 
 

   ˆ/2 1/2 /2 1 1 1 1
1 1

1 1 1 1

( ) ( )e
( ) ( )

i iR yθ ω γ γ α β
γ α γ β

− − ⎡Γ Γ − −
= ⎢Γ − Γ −⎣
E  

   ˆ /2
2 1 1 1 1 1 1(1 ) ( , ; 1 ;1 )iy F yω α β α β γ−× − + + − −  

        ˆ1/2 /21 1 1 1

1 1

( ) ( ) (1 )
( ) ( )

iy ωγ α β γ
α β

+Γ Γ + −
+ −

Γ Γ
           (57) 

        ]2 1 1 1 1 1 1 1 1( , ; 1 ;1 ) .F yγ α γ β γ α β× − − + − − −  
 
Therefore as x→+∞ , taking into account expressions (53), 
we see that the function 1R  is approximately equal to 
 

          1 1 1 1
1

1 1 1 1

( ) ( ) e
( ) ( )

i xR ωγ γ α β
γ α γ β

Γ Γ − −
≈
Γ − Γ −

 

                1 1 1 1

1 1

( ) ( ) e e .
( ) ( )

i x xω σγ α β γ
α β

− −Γ Γ + −
+

Γ Γ
          (58) 

 
The boundary condition for the QNMs of the D-dimensional 
Nariai spacetime imposes that the function 1R  behaves in 
the form exp( )i xω  as x→+∞ . Thus to satisfy the 
boundary condition of the QNMs for Nariai spacetime near 

the horizon at 1/r σ= +  we must cancel the second term 
in formula (58). One way is to exploit the zeros of the terms 
1/ ( )xΓ  which are located at x n=− , 0,1,2,n = …. Hence to 
satisfy the boundary condition near the horizon at 

1/r σ= +  we must impose the condition 
 

                   1 1or, ,n nα β=− = −                  (59) 
 
which imply that the QNF of the Dirac field in D -
dimensional Nariai spacetime are determined by the 
expression 
 

                      1ˆ .
2

 N i nω α ⎛ ⎞= ± − +⎜ ⎟
⎝ ⎠

                        (60) 

 
A similar computation for the radial function 2R  also yields 
the QNF of formula (60). 

Taking into account that 
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2

2 2 2
2

(2 2)ˆ ˆ ,
4N

l Dm m
a

α λ
σ

+ −
= + = +         (61) 

 
we find that in the D-dimensional Nariai spacetime (32) the 
QNF of the Dirac field are equal to 
 

 
2

2
2

(2 2) 1ˆ .
4 2

l Dm i n
a

ω σ σ
σ

+ − ⎛ ⎞= ± + − +⎜ ⎟
⎝ ⎠

 (62) 

 
In our notation the previously calculated QNF for Klein-
Gordon field and tensor type gravitational perturbation are 
written as [39] 
 

 ( )1/23
4( 3) 1 .

2

D

KG

l l D
i n

a
ω σ

−+ − − ⎛ ⎞= ± − +⎜ ⎟
⎝ ⎠

 (63) 

 
We point out that for l = 0 the QNF (63) of the Klein-Gordon 
field are purely imaginary. This fact was not noted in Ref. 
[39]. 

When in the D-dimensional charged Nariai spacetime 
studied in Ref. [38] we take the electric charge of the 
spacetime equal to zero, for electromagnetic and 
gravitational perturbations of vector type we get their QNF 
are equal to 

 

( )1/23 13
4( 3) 1 ,

2

D

V

l l D
i n

a
ω σ

−
+ + − + ⎛ ⎞= ± − +⎜ ⎟

⎝ ⎠  (64)
 

( )1/ 25 11
4( 3) 1 ,

2
 

D

V

l l D
i n

a
ω σ

−
− + − − ⎛ ⎞= ± − +⎜ ⎟

⎝ ⎠
 

 
whereas for electromagnetic and gravitational perturbations 
of scalar type their QNF are 
 

( )1/23
4( 3) 1 ,

2

D

S

l l D
i n

a
ω σ

−
+ + − − ⎛ ⎞= ± − +⎜ ⎟

⎝ ⎠
  (65) 

 
9( 3) 1/2

4( ( 3) ) 1 .
2

D

S
l l D i n

a
ω σ

−
− + − − ⎛ ⎞= ± − +⎜ ⎟

⎝ ⎠
 

 
Notice that in Refs. [38, 39] to calculate the QNF (63), (64), 
and (65) of the D-dimensional Nariai spacetime the result for 
the QNF of Pöschl-Teller potential was used. The QNF of 
this potential were previously computed in the paper by 
Ferrari and Mashhoon [47]. 

It is convenient to observe that for identical values of D, 
n, and Λ  the imaginary part of the QNF (62) for Dirac field 
is identical to the imaginary part of the QNF for gravitational 
and electromagnetic perturbations of vector type and scalar 
type (formulae (64) and (65)), and for Klein-Gordon fields 
and tensor type gravitational perturbations (formula (63)) 
already computed in Refs. [38, 39]. Thus the decay time 

1/ m( )τ ω= I  is the same for fermion and boson fields 
studied here and in Refs. [38, 39]. Also we point out that for 

the QNMs of these fields the decay time does not depend on 
the angular momentum number l. 

For Dirac field the real part of the QNF (62) show some 
differences with respect to real part of QNF for Klein-
Gordon, electromagnetic, and gravitational perturbations 
(63), (64), and (65). We think that the source of these 
differences is that in the present section we study the Dirac 
field, whereas in Refs. [38, 39] the fields studied are 
massless boson fields. 

From formula (62), we obtain that for the massless Dirac 
field (Weyl field) its QNF are equal to 

 

              
2 2 1 .

2 2
l D i n

a
ω σ+ − ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
                 (66) 

 
Even in this case the real part of the QNF (66) shows a 
different dependence on the angular momentum number that 
the real part of the QNF for Klein-Gordon, electromagnetic, 
and gravitational perturbations. The imaginary part is equal 
to that of the Dirac field. Thus for Dirac field in the D-
dimensional Nariai spacetime the decay times of its QNMs 
do not depend on the mass. 

Taking into account the results for QNF (62), (63), (64), 
(65), and (66) of the D-dimensional Nariai spacetime, we 
note that their real and imaginary parts show an explicit 
dependence on the dimension D of the spacetime (the 
imaginary part through the parameter σ  of formula (33)). 
For all the fields whose QNF have been calculated and for a 
given mode number n we infer that the decay time decreases 
as the dimension of the spacetime D increases. The 
dependence of the oscillation frequency on the spacetime 
dimension D is more complicated, it first decreases and then 
increases as D increases. Moreover for l ≥ 3 and for the same 
values of D, l and n the oscillation frequencies of the 
massless Dirac field (66) are greater than the oscillation 
frequencies for Klein-Gordon, electromagnetic, and 
gravitational perturbations of formulae (63), (64), and (65). 

As the harmonic time dependence is of the form 
exp( )i tω−  (see formulae (38)), in order to have stable QNMs 
we need that m( ) 0ω <I . We notice that for QNF of formula 
(62) m( ) 0ω <I , thus the QNMs of the Dirac field decay in 
time. Also for Klein-Gordon, electromagnetic, and 
gravitational perturbations a similar result is true (see 
formulae (63), (64), and (65)), therefore we assert that the D-
dimensional Nariai spacetime is perturbatively stable under 
the propagation of these classical fields. 

To finish this section, we note that in Refs. [38, 39] is 
shown that the radial differential equations for Klein-Gordon 
fields, tensor type gravitational perturbations, and coupled 
electromagnetic and gravitational perturbations reduce to 
Schrödinger type equations with a Pöschl-Teller potential of 
the form 

 
                

2
( ) ,

cosh ( )
UV x

xσ
=                           (67) 

 
where the value of the constant U  depends on the 
perturbation type (see Refs. [38, 39]). 
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V

Following the procedure of Chapter 10 in Ref. [4] we 
transform Eqs. (39) into a pair of Schrödinger type equations 
with potentials equal to 

 
2

2
2

2

(2 2) ˆ
4

( )
cosh ( )

l D m
a

V x
x

σ
σ

σ±

⎛ ⎞+ −
+⎜ ⎟

⎝ ⎠=                        (68) 

                

1/22
2

2

2

(2 2) ˆ sinh( )
4

.
cosh ( )

l D m x
a

x

σ σ
σ

σ

⎛ ⎞+ −
+⎜ ⎟

⎝ ⎠±  

 
We observe that these potentials are of Morse type (see 
Table I of Ref. [48]). 

For plots of the potentials (67) and (68) see Figures 1 and 
2. We note that for identical values of D, Λ , and l the shape 
of the potentials (67) and (68) is similar, only observe that 
the height of Pöschl-Teller potential is smaller than the 
height of Morse potentials. Notice that in Figure 1 is plotted 
the Pöschl-Teller potential corresponding to the QNF Vω

+ , 
but for Pöschl-Teller potentials (67) corresponding to the 
QNF Vω

− , Sω + , Sω
− , and KGω  also is true that for identical 

values of D, Λ , and l their height is smaller than the height 
of Morse potential (68). 
 
 
IV. CONCLUDING REMARKS 
 
The D-dimensional Nariai spacetime studied in Section III is 
uncharged. Notice that there is a charged generalization of 
the D-dimensional Nariai spacetime, only we need to replace 
the quantity σ  of formula (33) by [8, 40] 
 

2 2

2( 2)

( 3)( 1) ,Q D

D QD
a

σ −

−
= − Λ−                (69) 

 

 
FIGURE 1. Plot of Pöschl-Teller potential V of Eq. (67) 
corresponding to ω+

V, where we take D=5, Λ=1, and l=3. 
 
and the parameter a  of expression (34) is replaced in the 
charged case by Qa  which is a solution to the equation 

         
2

2 2( 2)

( 3) ( 3)( 1) ,D
Q Q

D D QD
a a −

− −
= − Λ +                 (70) 

 
where Q  is related to the electric charge of the spacetime. 
 

 
 
FIGURE 2. Plot of Morse potentials V+ (solid line) and V- (dashed 
line) of Eq. (68), where we take ˆ 0m = , D=5, 1Λ= , and l=3. 
 
Supported in our mathematical analysis of the problem for 
the uncharged Nariai spacetime, we assert that in the charged 
D-dimensional Nariai spacetime the QNF of the uncharged 
Dirac field are determined by formulae (62), only we must 
replace in these formulae the values of the quantities σ  and 
a  by Qσ  and Qa , respectively.  

For identical values of the parameters D, Λ , and n, 
Morse potentials (68) and Pöschl-Teller potentials (67) have 
QNF with identical imaginary parts, that is with identical 
decay times, even when for identical values of D, Λ , and l 
the height of Pöschl-Teller potential is smaller than the 
height of Morse potentials (see Figures 1 and 2). We believe 
that to find the source of this coincidence is an interesting 
question.  

Also, in Ref. [49] was shown that for sufficiently late 
times the radial functions of Pöschl-Teller potential (67) 
form a complete basis. Owing to similarity of the plots for 
both potentials (see again Figures 1 and 2), to study if a 
similar result is valid for Morse potential (68) deserves a 
detailed investigation.  

As we previously comment a similar reduction to that of 
Section II works for charged Dirac fields propagating in the 
D-dimensional charged spherically symmetric spacetimes 
[11]. We believe that a good exercise is to calculate the QNF 
of the charged Dirac field propagating in the D-dimensional 
charged Nariai spacetime to extend the results of Refs. [38, 
39] and the previous section. 

As we observe in Introduction section, the results on the 
separability of the Dirac equation in the four-dimensional 
Kerr black hole generalize to some D-dimensional rotating 
black holes [9, 13]. We believe that the extension of the 
results obtained in these references to the metrics of 
Plebanski-Demianski-Klemm type [50] deserve a detailed 
analysis. Furthermore the study of the separability properties 
of the equations of motion for gravitational and 
electromagnetic perturbations in the D-dimensional Myers-
Perry metrics of Ref. [51] is a relevant problem. 
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