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Abstract
The general solutions of the Schrodinger equation with a generalized Hulthén plus Manning-Rosen potential are
obtained in terms of the Jacobi polynomials by using the Nikiforov-Uvarov method.

Keywords: Schrdédinger equation, Hulthén potential, Manning-Rosen potential.
Resumen

Las soluciones generales de la ecuacion de Schrodinger bajo un potencial generalizado de Hulthén combinado con uno
de Manning-Rosen son obtenidas en términos de los polinomios de Jacobi mediante el uso del método de Nikiforov-

Uvarov.
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I. INTRODUCTION

Recently, there has been a growing interest in the study of
the Schrodinger equation for complex potentials. The
increasing interest in central potential models aims at an
extension of their physical and mathematical background.
Recently, considerable efforts have been paid to obtain the
exact solution of central problems. Different techniques have
been used in solving the above mentioned potentials such as
variational methods [1], numerical approaches [2], Fourier
analysis [3], semi-classical estimates [4] and Lie group
theoretical approaches [5, 6, 7, 8]. Recently, an alternative
method which is known as the Nikiforov-Uvarov method has
been introduced in solving the Schrodinger equation.

In this present paper we solve the Schrodinger equation
for a generalized Hulthén plus Manning-Rosen potential via
the Nikiforov-Uvarov method. We discuss the PT-symmetric
and non PT-symmetric solutions. Mathematically, the
combination of these two potentials is highly significant,
because one can easily deduce the energy eigenvalues of the
Hulthén potential [9, 10] and the Manning-Rosen potential
[11] from combined energy separately.

The plan of the paper is as follows. To make it self-
contained we give a brief review of the Nikiforov-Uvarov
method in Sec. II. In Sec. III, we discuss the Schrodinger
equation for Hulthén plus Manning-Rosen potential and
obtain its eigenvalue and eigenfunctions for the
corresponding Hamiltonian by the Nikiforov-Uvarov

Lat. Am. J. Phys. Educ. Vol. 3, No. 2, May 2009

ISSN 1870-9095

method. In Secs. IV and V, we discuss respectively the
solution of PT-symmetric [12, 13, 14, 15, 16, 17, 18, 19, 20,
21] and non PT-symmetric Hulthén potential plus Manning-
Rosen potential. In Secs. VI and VII, we discuss the
eigenvalues and eigenfunctions of the Hulthén potential and
the Manning-Rosen potential respectively. Sec. VIII, is kept
for conclusions and discussions.

Il. NIKIFOROV-UVAROV METHOD

According to a brief description of Nikiforov-Uvarov
method [22], the Schrodinger equation
v"(x)+(E -V (x))y(x)=0can be transformed to the
following generalized equation of hypergeometric type with
appropriate coordinate transformation, s = 5(x),

FG) i) F0)
o’ (s)

o(s)

v (s) + w(s)=0 O

where o(s) and &(s)are polynomials, at most of second
degree, and 7 (s) is a polynomial, at most of first degree. For

find the particular solution to Eq. (1), we set the following
wave function as a multiple of two independent parts

y(s)=p(s)y(s)- 2
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With this substitution Eq. (1) reduces to an equation of
hypergeometric type

a($)y"y(s)+7(s)y'(s)+ A(s)=0, 3)
provided the following conditions be satisfied:
') _7(s) 4)
p(s)  ol(s)
7(s) = F(s)+27(s), 7'(s)<0, )

A satisfies the following second-order differential equation

n(n—1)

A=A =-nt'(s) —Ta"(s)o (6)

The polynomial 7(s)with the parameter s and prime factors
show the differentials at first degree be negative. It is
worthwhile to note that A or ln are obtained from a
particular solution of the form y(s)= yn(s)which is a

polynomial of degree n. The other part y (s) of the

wavefunction (2) is the hypergeometric-type function whose
polynomial solutions are given by the Rodrigues relation
[22, 23]

n

C, d "
FRYE [0 () p(5)]:

O

V. (s)=

where C, being the normalization constant and the weight
function p(s) satisfies the relation as

d

~lo©pe) =r6)p)]: ®)
On the other hand, in order to find the eigenfunctions,
@,(s)and  (5) in Egs. (4) and (7) and eigenvalues A, in

Eq. (6), we need to calculate the functions:

7(s) = [U'(S) - ?(S)j + (U'(S) - ?(S)jz —&(s)+ko(s)r O
)T 2

k=A4-7'(s). (10)

In principle, since 7 (s)has to be a polynomial of degree at

most one, the expression under the square root sign in (9)
can be arranged to be the square of a polynomial of first
degree [22]. This is possible only if its discriminant is zero.
Thus, the value of k obtained from the equation (9) can
substituted in equation (10). The energy eigenvalues are
obtained from equations (6) and (10).
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I11. HULTHEN PLUS MANNING-ROSEN
POTENTIAL

The generalized Hulthén potential plus Manning-Rosen
potential is given by

—2ax

V(x)=—V, le—z +¥, cosech,*(ax) +; coth, (ax). (1)
e

Where the deformed hyperbolic functions is defined as:

x x —Xx

X -2
. e’ —qe e’ +qge
sinh =8 "49¢ cosh xz—q,
q 2 q
sinhqx
tanhqx—
cosh, x

The Schrodinger equation becomes

—2ax

2
a VorlE+y,——-
x l_q ax
v, cosechqz(ax) —V; coth (ax) ]l// =0, 12)
where 7i =2m =1. Setting the following notations
E V. —2ax
e=——"sf =—(>0), i=123, s=e ", (13)
44* 2 44° >9)
with & > O(E < 0) for bound states, Eq. (12) becomes
d’y  1-gs dy 1 )
+ —+ —q e+ B)+
ds> s—qs> ds (s—qs’)’ [ {q &+ 55)
9B, —24p)js” +2q(e + B;) +
(B, =24, ~4B)ls (e + Bl =0 (14)
After the comparison of Eq. (14) with Eq. (1), we have
T(s)=1-gs,o(s)=s—gs” and
F(s)=—la* (e + B+
q(B, - 2Qﬂ3)}52 + {2Q(5 +5)+
(B =24, 4P —(e+ ). (19
Substituting these polynomials into Eq. (9), we have
s 1
7)== 22| B, - uPygs-2e+ )]
If k =(B, —2qp, —4B,)+ uge+ B, P. (16)
Where 4 =+1,-1and p_ |; 106 _ [} 4>
q qa’
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For bound state solutions, it is necessary to choose

w9) ==L - Loyer B, - uprgs -2+ 5]

Ifk:(ﬂ1_29ﬂ3_4ﬂz)+ﬂq e+ pP. a7

The following track in this selection is to achieve the
condition 7'(s) < 0. Therefore 7(s)becomes

2(s)=1+2\Je+ B, —[2+2e+ B, —uPlgs. (18)

and then its negative derivatives become

7'(s)=—-2+2/e+ B, — uPlgs -

Therefore from Egs. (6) and (10) we have

A=A=n2+2e+f, —uPlg+n(n+lg, (19)
and
A=(B —2qp, —4B,) + ng\¢ + B, P
3 @et f Py 20)

Comparing Eqgs. (19) and (20) we have
n2+2\e+f, —uPlg+n(n+1l)g=
(B =29, —4p,) + 1gy & + p; P

3 -2 @e+ i - )

2(2n+1—,uP)m+n(n+l)+%—

(n—'—l\JﬂP: B —2qp;, —4p5, ,
2 q

= 4Q2n+1-uP)\Je+ f, + 2n+1—uP)’ =
4(ﬂ1 _Zqﬂs _4ﬂz)
q

-1+P*

Substituting the values of 5, B>, f; € and P we obtain the

energy eigenvalues:
4V,
ga’

2
E =-" Hznﬂ—
4
29V

+V,
[2n+l 7 1+4VJ
\j qa
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n>0,q >1. From the Egs. (5), (8), and (15) we obtain the
weight function

pls) =5 (1= gs) ™" (22)
and from Egs. (4), (15), and (17) we have
Lo

p(s) = sV P (1-gs) 270 (23)

Now using the properties of Jacobi Polynomial [22, 23]

=)"(1=x)“A+x)" d”
2"n! d

P (x) = S (R (EE A

Hence

n 2erhs (o N-uP
P(2\/T/z3 yP)(l 2gs) = (—29)"s (1-gs) «

n!
a e 1 sy ] 24)

The wave functions are obtain from Egs. (2), (7), (22-24)

I-u 1+4—V;
W, (x) =N, (1= qs)[ ]

(2\e+p5,—u l+—
P “(1-2gs)

n

(25)

where N, is normalization constant.

IV.PT-SYMMETRIC POTENTIAL

In this case, we set the potential parameters in Eq. (11) as V7,
V, Vi, ¢ ERand a €IR (a — ia)then Eq. (11) becomes

cos(2ax) — q —isin(2ax)

V(x)=-V,
=" 1+ g% —2q cos(2ax)

—2g+(+4g%) cos(2ax) —i(l—gq )s1n(2ax)
(1+¢* —2gcos(2ax))’

V. 1—g* —2igsin(2ax) (26)
1+¢*> —2gcos(2ax)

47,

Then V (x) satisfies the relation (PT)V (x)(PT)™" =V (x)
where PxP~' = —x, PpP~' =—p =TpT ', TAT " = —id,

The energy eigenvalues of the potential (26) are

2
E =2 Hznﬂ yh—w}r
4 qa
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Vl_2qV3 +V.

30
[2n+1 U /1—4Vj
qa
condition for 7 is

PR A L
2\ ga® o 2 qga® 2

Eq. (27) is not similar to Eq. (21). Hence eigenvalues are
2 2

always real for V, < %and complex for V, > %. The

27

corresponding eigenfunctions are

Wiy ¥
2 qa®
—gs) x

(ZM —u fi-22y
“(1-2gs),

v, (=477
(28)

where A, is normalization constant.

V. NON PT-SYMMETRIC POTENTIAL

Now let us take the potential parameters as consider the case,
Vo, g €R,and Vi, Vi,a €EIR(WV, — iV,,V, - iV,,a —> ia)
Then potential (11) takes the form

s1n(2ax) +i(cos(2ax) — q)

V(x)=-
1+ g% —2gcos(2ax)

-2q+(1+gq )cos(2ax) —i(l—gq )sm(2ax)
(1+¢q* —2gcos(2ax))*

2q sm(2ax) +i(l—q%) (29)
1+g° —2gcos(2ax)

4V,

3

Then V' (x) is non PT -symmetric. The energy eigenvalues

are
2
E = onsr—pufi-H2]| _
4 qa
2
| V. —2qV, V. (30)
e 7, —-2i—.
T 2nt1- y\/l— 1
qa

But it has real and imaginary parts. However, the energy
spectrum is not seen at the imaginary part of the energy
eigenvalues, since it is independent of 7 . The corresponding
eigenfunctions are
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—p 125
v (x)=B s (1- qs)[ q“'jx

4V
(2\e=ips,—u 1*72

P aa’ (1-2¢gs), @)

where B, is normalization constant.

VI. HULTHEN POTENTIAL

Setting V,=V,=0, the potential (11) becomes the Hulthén
potential [9, 10]

—2ax

V(x)=-V, e ¢ . (32)

—2ax

The energy eigenvalues and wave functions of this potential
are obtained from Eqs. (21), (25) setting z = —1

2
E =—a’|n+ Vl n>0,g>1, 33)
" 4qa’(n+1)
v, (5)=C,s" (1-gs)P>*V(1-2gs). (34

where ¢ is normalization constant. Egs. (33) and (34) are

6]. For 6 =2aand V, = Z’e5 Eq. (33) is
consistent with [24].

We are now going to consider different forms of
generalized Hulthén potential, viz at
least one of the parameters is purely imaginary. When

a —iaand V|,q €R then Eq. (32)

consistent with [1

becomes
V(x) = - cos(Zax) q
1 +q° —2gcos(2ax)
sin(2ax) (35)
"1+ ¢? - 2g cos(2ax)
Then (PT)V (x)(PT)™" =V (x) . The real positive energy
eigenvalues are given by
2
2 4
E =a’|n+l+———| 921, (36)
4qa”(n+1)
if and only if
n=0,1,2,.. <l Lz—l. 37
2\ ga

Next we set V, —iV,, a >iaand ¢ €R, then Eq. (32)
takes the form
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V(x) =V, Zsm(Zax)
1+q° —2qcos(2ax)
1 q— COS(Zax) . (3 8)
1+¢* —2g cos(2ax)
Such a potential is non-P7T -symmetric potential. The
complex energy eigenvalues are given by
2 4 2 W
Enz—a ﬁ_(}’l‘i‘l) —1i 5| (39)
16g°a”(n+1) 2qga

But it has real plus imaginary energy spectra. We consider
the real part of energy eigenvalues an acceptable result is

obtained when ; < 1 Lz —1. However, the energy
2 V qa

spectrum is not seen at the imaginary part of energy
eigenvalues, since it is independent of 7.

VII. MANNING-ROSEN POTENTIAL

Setting , =0, the potential (11) becomes the Manning-
Rosen potential
V(x) =V, cosech,’ (ax) +V; coth, (ax)- (40)

The energy eigenvalues and wave functions of this potential
by setting x4 =1

2

2
E =-2|on+1- 1+4V§ -
4 qa

n

2

%(2n+1— 1+4V2

2

qa

-2
J 120,21, (41)

1[1— l+4—VZJ
v, (x)=D, sV (1- qs)2 a“

(42)

where D, is normalization constant. When g — jg and
V,,Vs,qeR, then  V(x) the
(PTV (x)(PT)"' =V (x). The positive energy eigenvalues

are then given by
ar, Y
z].
qa

-2
2
%[2n+1— 1—4—%] ,n>0,g>1, (43)
\/ qa
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4
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2V, 4
n<lw—;+\/1— Vi—}
2|V a qa

Which is consistent with [25]. Also for ¥V, —iV,,
V,,a,q €R, the potential (40) is PT -symmetric under the
spatial reflection P_)M— x, and in that case
a
eigenvalues are
2 v, )
E, =2 |on+1- 142 | 4
4 qa
Ve )
= 2n+1- [1+—=| ,n=20,g21, (44)
4 qa

Again for V,,V;,a,q €IR, the potential (40) is non-PT -

symmetric potential. The energy eigenvalues are given by

2
AL
qga’

n

2
E :a—[2n+l—
4

2

)
2
V—3(2n+1— l—ﬁ] ,n>0,g>1. (45)
4 qa

Setting V, =V, =0, then Eq. (11) is known as Scarf
potential [25].

VIIl. CONCLUSION

In this paper, the Schrodinger equation with Hulthén plus
Manning-Rosen potential has been solved by using the
Nikiforov-Uvarov method. Some interesting results
including complex PT7-symmetric and non-P7-symmetric
versions of the Hulthén potential and the Manning-Rosen
potential have also been discussed. Energy eigenvalues for
the Hulthén potential and the Manning-Rosen potential have
been presented separately. It is shown that the results are in
good agreement with the ones obtained by others. We have
plotted the Hulthén plus Manning-Rosen potential, the
Hulthén potentials, real and imaginary part of PT-symmetric
Hulthén potentials and the Manning-Rosen potential for
different parameter Values. Figure 3 and 4 show that there is
a periodic behavior of the P7-symmetric Hulthén potential
and there is a real energy spectrum due to unbroken P7-
symmetry. In figure 5, the Manning-Rosen potential is
presented.
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FIGURE 1. Hulthén plus Manning-Rosen potential for
V=64V, =0.64,V, =40,a=1,9 =4.

FIGURE 2. Hulthén potential for Vl =64,a=1,q=4.

'\\\\\\\@\ 'ﬁ% Sl
.-r.,-.-"" '\ iy ‘ o ﬁ""tﬂ
Wiz 3 2103 ’;’W@ \%&gﬁiﬁﬂﬁ%@

)
W
& ¥ @" i
j "‘\{“‘\‘\‘\ \\\ ‘ 2 ﬁ. l" il\
' \\“&}‘%4 3 ﬂi""’\‘:ﬁ‘“&
&“Mﬂ W “}:‘{"&i@

i

o

FIGURE 3. Real part of PT-symmetric Hulthén potential for
Vi=64,a=1q9=4.
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FIGURE 4. Imaginary part of PT-symmetric Hulthén potential for
Vi=64,a=1,q=4.

FIGURE 5. Manning-Rosen potential for
V,=0.64,V; =40,a=1,9g =4
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