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Abstract 
Considering the effect of geometric nonlinearity and uniformly distributed time-varying temperature, the bifurcation 
behaviors and chaotic phenomena of a bimetallic thin circular plate are investigated. First of all, the nonlinear dynamic 
equation for bimetallic plate is established and further reduced to Duffing equation of harmonic parametric excitation, 
from which the pitchfork bifurcation problem is discussed. Secondly, the critical conditions for occurrence of 
homoclinic and subharmonic bifurcations as well as chaos are studied theoretically by means of Melnikov function 
method. Finally, the chaotic motions are searched and simulated numerically with the application of Computer Algebra 
Systems Maple, and the Poincaré map and phase portrait are used to evaluate if a chaotic motion appears. The results 
indicate that there exist some chaotic motions in a heated bimetallic plate. 
 
Keywords: Bimetallic thin plate, Time-varying temperature, Melnikov function, Subharmonic bifurcation, Chaotic 
motion. 
 

Resumen 
Teniendo en cuenta el efecto de la no linealidad geométrica y la temperatura variando en el tiempo distribuida de manera 
uniforme, se investigan los comportamientos de bifurcación y el fenómeno caótico de una placa bimetálica delgada. En 
primer lugar, la ecuación dinámica no lineal para una placa bimetálica está establecida y se reduce a la ecuación de 
excitación paramétrica armónica de Duffing, a partir de la cual se discute el problema de bifurcación de horca. En 
segundo lugar, en teoría se estudian las condiciones críticas para la aparición de bifurcaciones homoclínicas y 
subarmónicas, así como el caos por medio del método de la función de Melnikov. Por último, se buscan movimientos 
caóticos que son simulados numéricamente con la aplicación de sistemas de álgebra computacional de Maple, y el mapa 
de Poincaré y la fase retrato se utilizan para evaluar si aparece un movimiento caótico. Los resultados indican que 
existen algunos movimientos caóticos en una placa bimetálica calentada. 
 
Palabras clave: Placa bimetálica delgada, temperatura dependiente del tiempo, función de Melnikov, bifurcación 
subarmónica, movimiento caótico. 
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I. INTRODUCTION  
 
The study of vibration for a thin plate is a very old issue. 
With the increasing development of nonlinear dynamics 
and the practical use of such plates in the last few decades, 
extensive analytical investigations, analogue and 
numerical simulations, as well as experimental 
observations have been dedicated to reveal the nonlinear 
bifurcational phenomena and chaotic characteristics of 
plates at large amplitude in previous publications. Yang 
and Sethna [1] used the averaging method to study the 
local and global bifurcations in parametrically excited 
nearly square plates, the results indicated the existence of 
heteroclinic loops and the occurrence of Smale horse and 
chaotic motion. Yang and Sethna [2] studied non-linear 
flexural dynamic behaviors of a nearly squared plate when 
the excitation frequency is close to one of the anti-
symmetric modes. Based on the studies in reference [1], 
Feng and Sethna [3] made use of a global perturbation 

method to study further the global bifurcations and chaotic 
dynamics of thin plates under parametric excitation, and 
obtained the conditions in which Silnikov-type homoclinic 
orbits and chaos can occur. Pai and Nayfeh [4] presented a 
general nonlinear theory for the studies on dynamics of 
elastic composite plates. Hadian and Nayfeh [5] used the 
method of multiple scales to analyze asymmetric 
responses of nonlinear clamped circular plates subjected to 
harmonic excitations. Shu et al. [6] employed a double-
mode approach to predict the chaotic motion of a large 
deflection plate by using a method of Melnikov[7]. Yeh et 
al. [8] characterized the conditions that can possibly lead 
to chaotic motion and bifurcation behavior for a simply 
supported large deflection thermo-elastic circular plate 
with variable thickness by utilizing the criteria of fractal 
dimensions, maximum Lyapunov exponents and 
bifurcation diagrams. Zhang [9] analyzed the global 
bifurcation and chaotic dynamics of a parametrically 
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excited rectangular thin plate and found the chaotic 
motion from numerical simulation. 

In the past decades, the researchers have conducted a 
number of studies on the nonlinear oscillations, 
bifurcations and chaos of thin plates undergoing periodic 
lateral or in-plane loading. However, the dynamics of 
nonlinear plates subjected to thermal loads has not 
received the same attention from investigators. Nowacki 
[10] derived and simplified the basic equations of 
thermoelastically coupled linear vibration in plates and 
solved the problem of transverse vibrations when the 
temperature field is the time harmonic function. Chang 
and Wan [11], Shu and his co-workers [12] extended the 
work of Nowacki toward nonlinear case for a rectangular 
plate and circular one respectively. Argyris and Tenek 
[13] simulated the nonlinear dynamic oscillations of 
laminated composite plates and shells under the action of a 
periodic heat load using the finite element method.  Han et 
al. [14] studied the chaotic motion of a clamped elliptic 
plate under lateral harmonic excitation and steady-state 
uncoupled temperature field, the critical condition for 
chaotic motion was given by Melnikov function method 
and the path to chaotic motion was discussed by sub-
harmonic theory. 

It becomes obvious from the view of past literature 
that the motion of a large deflection plate may sometimes 
lead to bifurcation and chaos. As specific combinations of 
parameters are varied, a plate displays a wealth of 
nonlinear phenomena. If a system falls into chaos, its 
behavior is difficult to predict and control. So identifying 
chaotic motion and avoiding its occurrence are of great 
importance. 

The present discussed bimetallic plates are widely used 
in precision instruments and micromachines. Much 
attention has received for the thermal stability problem of 
this kind of plates and shells [15, 16]. However, ther are 
few archival publications related to their chaotic motion 
and bifurcation behavior to the best of authors’ 
knowledge. Recently, the authors adopted the selection 
method of reference surface of coordinates suggested by 
Radkowski [17] to the nonlinear vibration problem of 
heated thin bimetallic plates and shells to obtained the 
compact control equations and further their periodic 
solutions from the perturbation-variational method [18, 
19], but still with no concern of their chaotic motion. 

The objective of this paper is to study the nonlinear 
dynamic behaviors and chaotic motion of a thin circular 
bimetallic plate which has suffered a finite axisymmetric 
deformation under time varying temperature. The 
governing equations are set up in forms similar to those of 
classical Von Kármán’s single-layered plates theory, these 
equations are further changed into dynamic version by 
Galerkin’s method. The qualitative behaviors of the 
unperturbed system are analysed for static temperature 
parameter. The critical conditions for subharmonic 
bifurcation and chaotic motion are established by 
Melnikov method. Numerical simulations are executed 
with the aid of Maple program, the results show that 
chaotic motion can occur in a heated bimetallic plate. 
 

II. DYNAMIC BASIC EQUATIONS 
 
Consider a bimetallic circular plate with its total thickness 
h  small in comparison with radius a  is composed of two 
thin homogeneous isotropic metallic plates bonded at the 
common surface, such that no slippage can occur. The 
clamped immovable edge condition for plate under time 
varying temperature ( )tT  is considered and the material 
properties of the plate are assumed to be independent of 
temperature. 

Let ih , iρ , iE and iα  be the thickness, mass density, 
Young’s modulus and thermal expansion coefficient of 
each layer. Here, 2,1=i  represent the upper and lower 
layer respectively. Assuming Poisson’s ratio νν =i  [16], 
then the distance of reference surface from the lower 
surface is obtained as [17] 
 

( )
2 2

1 1 1 1 2 2 2
0

1 1 2 2
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2

E h E h h E hh
E h E h

+ +
=

+
           (1) 

 
Based on Von Kármán’s theory, the dimensionless 
governing equations of axisymmetrically large amplitude 
vibration under a uniform spatial distribution temperature 
change ( )tT  can be derived from Hamilton’s principle as 
follows 
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By the redetermination of reference surface of coordinate, 
the above governing equations for double-layered plates 
are simplified into a form similar to those of classical 
single-layered plates theory. 

The dimensionless quantities are related to the 
corresponding physical ones through the following 
relations. 

 
arR = ， ( )[ ] wDCW 2
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in which, r  is the radial coordinate, t  the time variable, 
δ  the damping coefficient, w  the deflection of reference 
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surface, ϕ  the stress function, 4∇  and J are two partial 
differential operators defined as 
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signify the effective extensional rigidity, flexural rigidity, 
first order thermal expansion coefficient and mass density, 
respectively(see references [18, 19] for detailed derivation 
of dimensionless governing equations). 

The following single mode expression for W , in the 
usual way, is assumed. 
 

( )22( , ) ( ) 1 ,W R A Rτ τ= −                  (6) 

 
which has already satisfied the boundary conditions of W  
in equations (4-5). 

Taking the time varying temperature to be of the form. 
 

0 cos .tλ λ λ ϖτ= +                     (7) 
 
Substituting equations (6-7) into compatibility equation 
(3) and noting the boundary condition of ϕ , the solution 
for stress function may be arrived as 
 

( ) ( )3 5 7 25 3 2 1 .
1 6 1 3 6

R R R R R A
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λ ν τ
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Substitution of equations (6-8) into equation (2), and 
application of Galerkin’s method yield a nonlinear 
differential equation for A  as 
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Let 0=α , one obtains the critical dimensionless 
temperature at which the plate is in buckled state 
 

( )16 1 .crλ ν= −  
 
For the convenience of analysis, the new transformations 
of variables and parameters are introduced as 
 

2
1

-
2
1

γαxA = ， 2
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1

αεημ = ， .Q fε α=  
 
With this new notation, equation (9) be rewritten to the 
following equivalent system of first order equations 
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where dots define differentiation with respect to τ , ε  is a 
small parameter. 
 
 
III. QUALITATIVE ANALYSIS FOR 
UNPERTURBED SYSTEM 
 
Apart from the ε -term, equations (10) becomes a 
unperturbed system, with Hamiltonian 
 

( ) 12 2 41 1 1, .
2 2 4

H x y y x x hα α −= − + =       (11) 

 
Such an equation describes a pitchfork bifurcation, and for 
different values of h , it indicates different dynamic 
behavior. Here three cases for the changes of static 
temperature parameter 0λ  are discussed as follows. 
 
1. For crλλ <0  or 0<α , only one fixed point ( )0,0 , 
which is a center, exists in unperturbed system. The 
typical orbit is a closed periodic one that indicates the 
nonlinear oscillation in the neighborhood of the stable 
equilibrium position. 

Following references [20, 21], the closed orbit 
involving the fixed point is 
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With its period 
 

( )24 1 2 .kT k K k= −  
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Here ( )kK  is the complete elliptic integral of the first 
kind and ( )21,0∈k , satisfies  

( ) ( ) ( )2222 2112 kkkkh −−= , is its modulus. sn , cn  and 
dn  are the Jacobi elliptic functions. As 0lim

21
=

→
kk

T , 

π2lim
0

=
→ kk

T , 0dd <kTk , so ( )π2,0∈kT  decreases 

monotonically with k , and the increase in energy of the 
periodic orbit yeilds the decrease in its period. 
 
2. For crλλ >0  or 0>α , ( )0,0  becomes a hyperbolic 
saddle, connected by two homoclinic orbits, each 
surrounding the two new centers ( )0,1± , Small oscillation 
around ( )0,1±  when 0<h  and large oscillation when 

0>h  are observed. For 0=h , one obtains the two 
homoclinic orbits (here and henceforth, only the orbits in 
right half of phase space are discussed). 
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o
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τ τ
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                  (13) 

 
When ( )10，∈k  satisfies ( ) ( ) ( )222 21- kkkh −= , one 
gets a one-parameter family of periodic orbits within each 
of homoclinic orbit. 
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the period of these orbits is ( )kKkTk

222 −= , and 
0dd >kTk , that is to say, kT  increases monotonically 

with k , when 1→k , ( ) ∞→kK , kT will approach 
infinity as a limit. 

When ( )121 ，∈k  satisfies  

( ) ( ) ( )2222 12-1 −= kkkkh , one gets another one-
parameter family of periodic orbits outside the homoclinic 
orbit. 
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now the orbits period becomes ( )kKkTk 124 2 −= , and 
still 0dd >kTk . 
 

3. For crλλ =0  or 0=α , only one nonhyperbolic fixed 
point ( )0,0  exists in unperturbed system, so crλλ =0  or 

0=α  is a pitchfork bifrcation point. 
 
IV. MELNIKOV FUNCTION METHOD FOR 
PERTURBED SYSTEM 
 
For a pair of given prime integers m  and n , as in 
reference [21], the Melnikov function of subharmonic 
orbits satisfies the resonance condition Ω= nmTk π2  in 
perturbed system (10) is expressed by 
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where 0τ  is the reference time. When ( )0τn
m

M  has 
simple zero, the parameters η  and f  satisfies 
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( ) ( )1

2

,
,

, m

J m nf R
J m nη

> = Ω     (16) 

 
which gives the necessary condition for occurring 
subharmonic bifurcation in system. Here ( )ΩmR  defines 
the threshold value for subharmonic periodic solution of 
order m . In the following, the bifurcation thresholds for 
three type of periodic orbits described by equations (12), 
(14) and (15) are given and discussed based on the results 
obtained in references [20, 21]. 

For the Melnikov function of periodic orbits (12), 1J  
and 2J  in equation (16) are computed and expresses by 
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                 (18) 
 
Here ( )kE  is the complete elliptic integral of the second 
kind, ( ) ( )kKkK ′=′  the associated complete elliptic 
ingrals of the first kind, where k ′  is termed the 
complementary modulus and is related to k  by 

21 kk −=′ . 
From the above two equations and the related theorem 

of Melnikov method, one can concludes that when 1=n  
and ( ) ( ) ( ) ( )Ω=> 1

21 1,1, mRmJmJf η , the subharmonic 
periodic solution with even order exists in the system. It 
has already been verified by Li [21] that for a given 
external exciting frequency Ω , the number of 
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subharmonic bifurcation of even order that the perturbed 
system experiences is less than [ ] 2Ω , here [ ]Ω  is 
integer part of Ω . 

With an analogous analysis for periodic orbits (14), in 
the present case, 
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in which, F~  and E~  are the elliptic integrals of the first 
and second kind respectively. Thus when 1=n  and 

( ) ( ) ( ) ( )Ω=> 2
21 1,1, mRmJmJf η , the subharmonic 

periodic solution of order m  exists in the system. The 
same analysis for periodic orbits (15) concludes that when 
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the subharmonic periodic solution with even order exists 
in the system. 

In a similar manner, the Melnikov function for 
homoclinic orbits (13) is easily given and explicity 
computed by 
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the Melnikov function has a simple zero and consequently 
the stable and unstable manifolds of the saddle intersect, 
this implies that there exists a horseshoe in Poincaré map, 
and the system may converts periodic motion into chaotic 
motion. Here ( )Ω∞R  is defined as the threshold value for 
chaotic motion. 

In the space of parameters ( )ηf,Ω  or ( )ηϖ f, , 
the function ∞R  is the limit curve separating the choatic 
zones from the non-chaotic zones. This will be discussed 
numerically in the next section. 

So far, four thresholds, ( )1
mR , ( )2

mR , ( )3
mR  and ∞R , 

have obtained for the perturbed system from the above 
theortical analysis, and only subharmonic bifurcation of 

1=n  will appear. In case of 0>α , when ∞→m  

(namely 1→k ), 0→h , the following relation exists for 
each fixed Ω . 

 
( ) ( ) ( ) ( ) ( )Ω=Ω=Ω ∞∞→∞→

RRR mmmm

32 limlim             (24) 

 
which means that in this case, the thresholds of 
subharmonic bifurcation will tend to the thresholds of 
chaotic motion, the nonlinear dynamic system enters 
chaotic motion in the horseshoe sense through 
subharmonic bifurcation of infinite times with ηf  
increasing gradually. 
 
 
V. NUMERICAL RESULTS AND DISCUSSIONS 
 
Numerical analyses are carried out only for the case of 

0>α , that is, the case for parameters of static 
temperature components are greater than their critical 
values. It is instructive to examine the behavior of the 
chaotic threshold ∞R  as functions of the static 
temperatures parameters 0λ  and excitation frequencies 
parameters Ω  or ϖ . A typical plot of ∞R vs. ϖ  for 
some fixed values of 0λ  is shown in Figure 1, from which 
one sees that ( )ϖ∞R  graph exhibits a similar shape of 
parabola. Furthermore, ∞R  has a single minimum at minϖ  
, the most chaotic frequency. This value can be computed 
exactly by solving the transcendental equation 

0dd =Ω∞R  for Ω , which gives the value of 

1.219132=Ω  or αϖ 1.219132=  as the root of this 
transcendental equation, and further the minimum of ∞R  
be found as ( ) 0.9479879=Ω∞R . Figure 1 also permits 
understanding how the parameter 0λ  influences the 
chaotic parameter region, for low values of excitation 
frequency, 0λ  does not affect ∞R  appreciably; for high 
values of excitation frequency, the probability of chaotic 
motion is increase with 0λ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. R ϖ∞ ∼  graph. 
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Further investigations for equation (10) are developed by 
means of computer simulation with the application of 
Computer Algebra Systems Maple to find the possible 
chaotic solution [22]. The Poincaré map and phase portrait 
as well as time-displacement history technique are 
examined and the chaotic response is distinguished in this 
way from a regular one. A special group of dimensionless 
parameters include  

3.0=ν ， crλλ 21.0 = ， 62.4=ϖ ， 15.3=tλ ，

2.0=μ  are taken as an example, and the criterion of 

Melnikov is satisfied in this case. The corresponding 
system features are numerically simulated with 6000 
computation points and depicted in Figure 2. It is found 
from Figure 2 that the chaotic characteristic appears, the 
time-displacement histroy shown in Figure 2(a) is 
irregular, the phase portrait in Figure 2(b) is intertwisted, 
neither repeatable nor regular, the Poincaré map in Figure 
2(c) reflects a complex chaotic attractor, thus we say that 
this is chaotic motion. 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. Chaotic motion: (a) time-displacement history; (b) phase portrait; (c) Poincaré map. 
 
The results of numerical simulation illustrate that a large 
deflection motion of the heated bimetallic plate possess 
complex aperiodic behavior under various values of μ 、

λ 、 ϖ , more detailed numerical results will not be 
exhibited here. 
 
 
VI. CONCLUSIONS 
 
The basic equations governing the nonlinear vibration of 
bimetallic circular plates under uniformly distributed time-
varying temperature are developed. These equations are 
similar to those of classical single-layered plates theory by 
redetermination of reference surface of coordinate. The 
critical conditions for occurrence of homoclinic and 
subharmonic bifurcations as well as chaos are studied 
theoretically by means of Melnikov function method. The 
chaotic motions are simulated numerically with the Maple 
program which shows the complex aperiodic behavior of 
bimetallic circular plates under various physical 
parameters. 
 
 
REFERENCES  
 
[1] Yang, X.L., Sethna, P.R., Local and global 
bifurcations in parametrically excited vibrations of nearly 
square plates, International Journal of Non-linear 
Mechanics, 26:199-220 (1991). 
[2] Yang, X. L., Sethna, P. R., Non-linear phenomena in 
forced vibrations of a nearly square plate: Antisymmetric 
case, Journal of Sound and Vibration 155, 413-441 (1992). 
[3] Feng, Z. C., Sethna, P. R., Global bifurcations in the 
motion of parametrically excited thin plate, Nonlinear 
Dynamics 4, 389-408 (1993). 

[4] Pai, P. F.，  Nayfeh, A. H., A nonlinear composite 
plate theory, Nonlinear Dynamics 2, 445-477 (1991). 
[5] Hadian, J., Nayfeh, A. H., Modal interaction in 
circular plates, Journal of Sound and Vibration 142, 279-
292 (1990). 
[6] Shu, X., Han, Q., Yang, G., The double mode model of 
the chaotic motion for a large deflection plate, Applied 
Mathematics and Mechanics 20, 360-364 (1999). 
[7] Melnikov, V. K., On the stability of the center for time 
periodic motion, Transactions of the Moscow 
Mathematical Society 12, 1-57 (1963). 
[8] Yeh, Y. L., Chen, C. K., Lai, H., Y., Chaotic and 
bifurcation dynamics of a simply supported thermo-elastic 
circular plate with variable thickness in large deflection. 
Chaos, Solitons and Fractals 15, 811-829 (2003). 
[9] Zhang, W., Global and chaotic dynamics for a 
parameterically excited thin plate, Journal of Sound and 
Vibration 239, 1013-1036 (2001). 
[10] Nowacki, W., Dynamic Problems of Thermoelasticity, 
(Noordhoff, Leyden, 1975). 
[11] Chang, W. P., Wan, S. M., Thermomechanically 
coupled nonlinear vibration of plates, International Journal 
of Nonlinear Mechanics 21, 375-389 (1986). 
[12] Shu, X., Zhang, X., Zhang, J., Thermoelastic free 
vibration of clamped circular plate, Applied Mathematics 
and Mechanics 21, 647-654 (2000). 
[13] Argyris, J. H., Tenek, L., Nonlinear and chaotic 
oscillations of composite plates and shells under periodic 
heat load, Computer Methods in Applied Mechanics and 
Engineering 122, 351-377 (1995). 
[14] Han, Q., Zhang, N., Yang, G., Chaotic motion of a 
nonlinear thermo-elastic elliptic plate, Applied 
Mathematics and Mechanics 20, 960-966 (1999). 
[15] Wittrick, W. H., Myers, D. M., Blunden, W. R., 
Stability of a bimetallic disk, Quarterly Journal of 
Mechanics and Applied Mathematics 6, 15-31 (1953). 



Yong-Gang Wang, Dan Li and Jing Wang 

Lat. Am. J. Phys. Educ. Vol. 3, No. 1, Jan. 2009 44 http://www.journal.lapen.org.mx 

 

[16] Liu, R. H., Nonlinear thermal stability of bimetallic 
shallow shells of revolution, International Journal of 
Nonlinear Mechanics 18, 409-429 (1983). 
[17] Radkowski, P. P., Buckling of thin single- and multi-
layer conical and cylindrical shells with rotationally 
symmetric stresses. In: Haythornthwaite, R. M. editor. 
Proceedings of the 3rd US Congress of Applied 
Mechanics. New York: ASME, pp. 443-449, (1958). 
[18] Wang, Y. G., Dai, S. L., Nonlinear vibration of 
heated bimetallic thin circular plates, Journal of Tsinghua 
University 43, 218-221 (2003) (in Chinese). 
[19] Wang, Y. G., Dai, S. L., Nonlinear vibration of 
bimetallic circular thin plates under stationary thermal 

loads. In: Chien WZ editor. Proceedings of the 4th 
International Conference on Nonlinear Mechanics. 
Shanghai: Shanghai University Press, pp. 499-503 (2002). 
[20] Hu, N. Q., Wen, X. S., Chen, M., Application of the 
Duffing chaotic oscillator model for early fault diagnosis-
basic theory, International Journal of Plant Engineering 
and Management 7, 67-75 (2002). 
[21] Li, J. B., Chaos and Melnikov Method, (Chongqing 
University Press, Chongqing, 1989) (in Chinese). 
[22] Lynch, S., Dynamical Systems with Applications 
Using Maple, (Birkhäuser, Boston, 2001). 
 

 
 


