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A B S T R A C T

Permian red beds of the De La Cuesta Formation in the Sierra de Narváez (Paganzo Basin, northwestern 
Argentina) are essentially composed of sandstones associated with mudstones and subordinate conglomerates. 
Facies distributions and stacking patterns indicate that these sediments resulted from the interaction between 
aeolian and ephemeral fluvial systems, and are represented by aeolian dune, dry aeolian interdune and aeolian 
sand sheet, mudflat, wet aeolian interdune, and fluvial deposits. The De La Cuesta Formation is characterised 
by aeolian (erg) sequences alternating with non-aeolian (terminal alluvial fan – mudflat) sequences. Each erg 
sequence is bounded at its base by a regionally extensive sand-drift surface and at the top by an extinction surface. 
A number of architectural elements, including aeolian dunes limited by interdunes, grouped crescentic aeolian 
dunes, longitudinal dunes, and draa with superimposed crescentic dunes are recognised in the erg sequences. 
The sand sea developed during phases of increasing aridity, whereas non-aeolian deposition might have occurred 
during more humid phases. Thus, the styles of aeolian-fluvial interaction are considered to result from cyclical 
climatic changes. Within the drier hemicycles, the rhythmic alternation between draa deposits and aeolian dune 
and interdune deposits indicates higher frequency cycles that could be attributed to subtle climatic oscillations and/
or changes in sand supply and availability. The development of the Permian sand sea in the inland Paganzo Basin 
seems to be related to the growth of a volcanic chain to the west. This topographic barrier separated the Paganzo 
Basin from the Chilean Basin, located along the western margin of Gondwana and characterised by shallow 
marine carbonate sedimentation. The correlation between the Permian erg and the shallow marine carbonates 
suggests a regional warming period during the Middle Permian in western Gondwana. 
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INTRODUCTION 

One of the most important sedimentary records of the 
Upper Palaeozoic of South America is found in the 

Paganzo Basin, which extends over an area of nearly 
150,000 km2 in northwestern Argentina (Salfity and 
Gorustovich, 1983; Azcuy et al., 1999; Tedesco et al., 
2010).
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During the Permian, the Paganzo Basin was characterised 
by the deposition of continental red beds, which were 
documented by the pioneer works of Bodenbender (1911, 
1912) and Frenguelli (1944, 1946). From a lithostratigraphic 
perpective, these deposits are known as the De La Cuesta, 
Patquía, La Colina and Del Salto formations based on the 
areas of geographic occurrence (Turner, 1962; Cuerda, 
1965; Azcuy and Morelli, 1970; Quartino et al., 1971). 
These red beds form thick siliciclastic sequences that 
include important deposits of aeolian origin which have been 
analysed by Spalletti (1979), Limarino (1984, 1985), López 
and Clérici (1990), Limarino and Spalletti (1986), Sessarego 
(1986), Limarino et al. (1993) and López Gamundí et al. 
(1992). On the basis of micropalaeontological, ichnological 
and palaeomagnetic evidence, it has been determined 
that the sequences dominated by aeolian sedimentation, 
with associated ephemeral fluvial and lacustrine deposits, 
developed during the Middle to Late Permian (Aceñolaza 
and Vergel, 1987; Limarino and Césari, 1987; Limarino et 
al., 1993; Limarino and Spalletti, 2006; Krapovickas et al., 
2010). 

The present paper seeks to document the styles of 
aeolian-fluvial interaction within deposits of these Permian 
sequences that crop out in one of the northernmost areas of 
the Paganzo Basin (southwest of the Catamarca Province, 
Argentina) and to analyse their palaeogeographical-
palaeoclimatic relevance. 

GEOLOGICAL SETTING AND STRATIGRAPHY 

The Late Palaeozoic Paganzo Basin (Salfity and 
Gorustovich, 1983), located in northwestern and central 
Argentina (Fig. 1), is composed of a mostly continental 
terrigenous clastic infill of about 4,500m formed as a 
response to basin-forming tectonic processess, sea-level 
fluctuations and climatic changes (Fernández Seveso and 
Tankard, 1995; Limarino et al., 2006). In the Paganzo Basin, 
sedimentation took place from the Middle Carboniferous 
to the Early-Late? Permian (Limarino and Césari, 1985; 
Archangelsky et al., 1996), and the Permian record is 
characterised by a widespread development of siliciclastic 
red-bed successions (Limarino et al., 2006; Limarino and 
Spalletti, 2006). 

During the Permian, the Paganzo Basin was separated 
from the proto-Pacific active margin of western Gondwana 
by an important volcanic chain whose record is known as 
the Choiyoi Group (Groeber, 1946; Stipanicic et al., 1968; 
Yrigoyen, 1972). These magmatic rocks show changes 
through time. The older and basic rocks were formed under 
an Early Permian compressional orogenic phase linked to 
a shallowing episode of the palaeo-Benioff zone, while the 
acidic volcanic rocks of the younger Choiyoi Group were 

produced as a consequence of the cease of subduction and 
the gravitational collapse of the orogenic belt under an 
extensional regime (Martínez et al., 2006).

The study area is located to the north of the Paganzo 
Basin, in the eastern sector of Sierra de Narváez and to the 
west of the Fiambalá city (Fig. 1), at the northernmost end 
of the Famatina Range. This area was extensively studied 
by Turner (1958, 1967) who gave the name of the De La 
Cuesta Formation to a 1,600m thick Permian sedimentary 
succession. This unit rests indistinctly on Carboniferous 
deposits that belong to the Agua Colorada Formation or on 
Ordovician-Silurian granitoids of the Narváez Formation 
forming part of the Famatinian Magmatic Cycle (Rapela 
et al., 1999; Dahlquist et al., 2008; Castro et al., 2008) 
(Fig. 2). The De La Cuesta Formation is essentially 
composed of brick-red sandstones of variable grain-size 
which, according to Turner (1967), are associated with 
reddish and yellowish marls, conglomerate layers, and 
intercalations of basaltic agglomerates and tuffs. 

López and Clérici (1990), whilst researching the 
Permian sequence in this region, recognised three 
sedimentary associations in vertical terms. The lower one is 
characterised by fluvial meandering and ephemeral stream 
deposits; the middle section is characterised by a range of 
aeolian-fluvial system interactions (the subject of study 
of this research), and the upper association is interpreted 
as a lacustrine succession which includes siliciclastic and 
evaporitic facies. In the last interval, Aceñolaza and Vergel 
(1987) found Permian microflora which can be correlated 
with the Cristatisporites biozone. 

Location map of the study area. In the insert, main Upper 
Palaeozoic tectonic elements and location of the Paganzo Basin.
FIGURE 1
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METHODOLOGY 

For this investigation, sedimentological studies were 
carried out in the area where the Sierra de Narváez is 
crossed by the Chaschuil River, between the places of 
Gallina Muerta to the southwest and Las Angosturas to 
the northeast, where excellent outcrops of Permian red 
beds are developed (Figs. 2 and 3). Methods included the 
analysis of texture, composition, sedimentary structures 
(including the orientation of directional structures) and 
lithosome geometry with the aim of defining observational 
facies, facies associations and architectural patterns. The 
synthetic profile of the studied succession is illustrated in 
Figure 4. 

FACIES ASSOCIATIONS 

Five facies associations have been defined in the De 
La Cuesta Formation: 1) aeolian dunes, 2) dry aeolian 
interdune and aeolian sand sheet, 3) mudflat, 4) wet 

aeolian interdune, and 5) ephemeral fluvial systems 
(Fig. 4). 

Aeolian dunes

The presence of aeolian dune deposits in the Permian 
red beds of the Paganzo Basin is known from the works of 
Spalletti (1979), Limarino (1984), Limarino and Spalletti 
(1986), Sessarego (1986), López Gamundí et al. (1992) 
and Limarino et al. (1993). This facies association is made 
up of well sorted fine- to medium-grained sandstones with 
rounded to well-rounded grains and large scale cross-bedded 
sets, with variable thickness from 0.3m to 5m (2.3m mean 
thickness). When sections parallel to the transport direction 
are observed, two types of cross-bedded sets are recognised: 
one in which the cross-laminae show a strongly tangential 
base, and the other in which the cross-laminae are planar. 
Laminae developed by grain flow, grain fall and aeolian 
ripple migration have been identified in cross-bedded sets 
(Hunter 1977). Grain flow laminae have a steep inclination angle 
(20º to 24º), are relatively thick (5 to 30mm) and massive, and 
are composed of medium-grained sand (Fig. 5A). The grain fall 
laminae are made up of well sorted, very fine- to fine-grained 
sand, and they have a steep inclination angle and a much 
thinner thickness, which does not exceed 5mm (Fig. 5A). 
By contrast, the translatent ripple laminae are equally thin 
(1 to 3mm); they are composed of fine- to medium-grained 
sand and are preferably located in the lower sections of 
the cross-bedded sets with tangential geometry. Thus, it is 
common for cross-bedded strata to show a vertical trend in 

Geological sketch map of the Sierra de Narváez region. The 
study area is located to the west and southwest of Las Angosturas.
FIGURE 2

General view of the Permian red beds (De La Cuesta 
Formation) at Sierra de Narváez. The cliff to the left is approximately 
9m high.

FIGURE 3
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which there is a transition from a low-inclined lower section 
with translatent ripple laminae to an upper section in which 
grain flow and grain fall laminae alternate. In addition, 
cross-bedded sets with convolute lamination were randomly 
identified. 

The development of texturally mature sandy deposits 
forming cross-bedded strata with grain flow, grain fall laminae, 
and translatent ripples suggests that they are residual deposits 
from aeolian dunes (Kocurek and Dott, 1981). Moreover, layers 
with synsedimentary deformation could have been caused by 
the collapse of the upper sectors of the dunes because of sand 
dampening and a consequent decrease in their internal friction 
angle (Mountney and Thompson, 2002). 

Dry aeolian interdune and aeolian sand sheet

This association is composed of sandstones with fine to 
coarse textural variations and moderate sorting. 

Individual layers, each 0.3 to 0.7m thick, show markedly 
tabular geometries with important lateral continuity and a 
characteristic horizontal inner lamination of even low angle. 
These laminae are less than 10mm thick (Fig. 5B) and 
commonly show an inverse graded structure in which there 
is a vertical change from very fine-grained sand to medium- 
and/or coarse-grained sand. Isolated cross bedded sandstone 
sets of relatively low angle (about 10º) and thickness between 
0.1 and 0.2m usually appear in these sequences. 

General sedimentolo–gical log of the aeolian-fluvial deposits. This figure also shows the vertical distribution of the main aeolian architectural 
elements.
FIGURE 4
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Inversely graded layers of low angle with horizontal 
laminae are interpreted as translatent strata with subcritical 
climbing formed by the migration of aeolian ripples 
(Hunter, 1977). The thin cross-bedded sandstone bodies 
that intercalate in these successions are interpreted as 
residual or truncated deposits from protodunes and/or 
isolated aeolian dunes of limited lateral extent (Trewin, 
1993; Mountney et al., 1999). 

Thin sedimentary bodies of this facies association are 
intercalated and show transitional passages to cross-bedded 
strata which are attributed to the aeolian dunes association 
(Fig. 5C). This is why they are regarded as dry interdune 
and/or interdraa deposits formed in areas in which 
development of aeolian dunes was inhibited (Kocurek and 
Nielson, 1986; Kocurek and Havholm, 1993). In addition, 
similar facies have been previously described in Permian 
red bed sequences from the Paganzo Basin by Limarino 
(1984), Limarino and Spalletti (1986), López Gamundí et 
al. (1992) and Limarino et al. (1993). 

It is worth noting that in only one case does this 
association constitute a succession of more than 4m thick, 
in which there is amalgamation of tabular sandstone 
bodies (Fig. 5D). Despite the fact that the sandstones 
show characteristics very similar to those described 
above, the presence of bioturbation, especially horizontal 
traces, should be emphasised. There are also irregular 
laminations of less than 10mm thick, which are regarded 

as adhesion structures caused by the adherence of sand 
grains on humid surfaces (Kocurek and Fielder, 1982; 
Crabaugh and Kocurek, 1993). Furthermore, it is common 
to observe water-escape structures and bedding surfaces 
with linguoid current ripples which represent the local 
reworking of aeolian sands by ephemeral streams (Fig. 
6A). This deposit is interpreted as an aeolian sand sheet 
(Fryberger et al., 1979; Scherer et al., 2007; Delorenzo 
et al., 2008), which develops when there is a decrease in 
the contribution of sand to desert systems (Fryberger et 
al., 1979; Clemmensen and Abrahamsen, 1983; Kocurek 
and Nielson, 1986; Clemmensen and Dam, 1993), or a 
decrease in sand availability due to a rise in the water table 
and consequent sand dampening (McKee, 1979; Mountney 
et al., 1998; Veiga et al., 2002). 

Mudflat

This association is composed of red mudstones related 
to thin sandstone layers and heterolithic intervals of the 
same colour that constitute successions exceeding 2.5m 
in thickness. Mudstone intervals are mostly internally 
massive although, in some cases, horizontal and convolute 
laminations are developed. Mud cracks are common, 
whereas symmetrical ripple forms are less so. Sandstone 
and heterolithic intercalations constitute thin and laterally 
continuous layers. The most prominent structures are cross-
laminations attributed to linguoid ripple migration and 
horizontal laminations (at times distorted by water escape) 

A) Grainflow and 
grainfall cross-lamination  in 
aeolian dune deposits. B) 
Horizontal lamination formed 
by climbing translatent strata 
in dry interdune. C) Interbedded 
dry interdune deposits and 
isolated medium-scaled cross-
bedded sets (protodunes). D) 
General view of the aeolian 
sand sheet deposits. 

FIGURE 5
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defined by textural alternations of fine- and very fine-
grained sand as well as fine-grained sand and mudstone. 

Fine-grained deposits are considered as the product of 
suspension fall-out from water bodies lately subjected to 
desiccation processes. Their deposition could be ascribed 
to very shallow water bodies that developed during periods 
of episodic flooding in mudflat environments (Kelly 
and Olsen, 1993; Sadler and Kelly, 1993; Spalletti and 
Colombo, 2005). Sandstone bodies and heterolithic pairs 
formed by thin alternations of mudstones and fine-grained 
sandstones are attributed to the spasmodic non-channelised 
flooding of an ephemeral fluvial system (Williams, 1971; 
Picard and High, 1973; Tunbridge 1981, 1984). 

Wet aeolian interdune 

The deposits in this facies association are very similar 
to those of the mudflat association, with the peculiarity that 
they are thinner deposits (maximum thickness of 0.6m) 
intercalated between aeolian dune deposits (Fig. 6B). 
These intervals are characterised dominantly by massive 
or laminated mudstones associated with thin intercalations 
of siltstones and very fine- to fine-grained sandstones with 
horizontal and ripple cross-lamination. Some intervals of this 
facies association are composed of thin layers (0.3 to 0.5m) 
of fine-grained sandstones with trough cross-stratification 
produced by the stream reworking of aeolian deposits. 

Ephemeral fluvial systems

Fluvial channel deposits have been widely recognised 
and described in the Permian red beds of the Paganzo 
Basin (Spalletti, 1979; Limarino, 1985; López Gamundí 
et al., 1989; Pérez et al., 1993, among others). However, 
they are not predominant in the studied sections. They 
consist of texturally heterogeneous beds, ranging from 
medium-grained clast-supported conglomerates (with 
rounded pebbles of up to an average size of 30mm) 
to very fine-grained sandstones. The conglomerate 
beds are thick (over 1.5m) and show the common 
imbrication as well as horizontal laminations and low-
angle cross-bedded sets (Fig. 6C). Sandstones vary in 
grain size from coarse- to fine-grained. They show the 
amalgamation of internally massive thick layers (0.8 
to 1.7m) followed by beds with horizontal lamination 
and/or low angle cross-stratification (Fig. 6D). Trough 
and planar cross-bedded strata are very scarce. These 
coarse-grained deposits show two architectural 
patterns: a more frequent one which has a significant 
lateral continuity of tabular layers, and a less frequent 
one characterised by a strong lenticular (channelised) 
geometry. In both cases, they are limited by sharp 
surfaces over which thin muddy intraconglomerates 
usually appear. Furthermore, a mudstone level with 
mud cracks is usually preserved at the top of many 
sandstone strata. 

A) Linguoid ripples 
at the surface of reworked dry 
interdune deposits. B) Massive 
mudstones in wet interdune 
deposits. C) Close view of 
coarse-grained sheetflood 
deposits (ephemeral fluvial 
facies association). D) General 
view of gravelly and sandy 
non-channelised ephemeral 
fluvial deposits. 

FIGURE 6
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The most regionally continuous bodies are interpreted to 
be the deposits of unconfined sheet splays or poorly confined 
fluvial flows (Picard and High, 1973; Olsen, 1987; North 
and Taylor, 1996; Mountney et al. 1998), whereas the most 
lenticular ones result from channel fills, suggesting greater 
incision and avulsive abandonment. Intraconglomerates 
composed of muddy chips indicate erosive processes of 
fine-grained overbank deposits which accumulated in 
interchannel areas. Although inner textural variations 
are not observed in sandstone strata, mudstone levels 
preserved towards the top of some of these units reflect a 
marked upward fining trend in these fluvial deposits. This 
gradual vertical evolution indicates the waning stage of 
flooding and decreasing velocity of flows towards lower 
flow-regime conditions. The development of massive 
strata is interpreted as the product of hyperconcentrated 
flows with sand overload and turbulence suppression, 
whereas gravels and sands with horizontal and low 
angle laminations reflect transportation processes of 
high-regime flow rates. Both features suggest that the 
sedimentary processes were produced by high capacity, 
fast and episodic currents (Bordy and Catuneanu, 2002; 
Scherer et al., 2007). 

Medium scaled trough cross-bedded sets are more 
common in sandstone lenticular bodies. They are 
interpreted as the deposits of very shallow sandy bedload 
channels, typical of the distal portions of the braided plains 
that characterise the fluvial systems of arid regions (Miall, 
1996; Talbot et al., 1994; Scherer et al. 2007). 

Aeolian deposits consist of low-relief bedforms (zibars, 
sand shadows ?) and protodunes commonly intercalated in 
fluvial deposits. These associations have been identified 

by Langford (1989) and Tripaldi and Limarino (2008) in 
aeolian-fluvial interaction sequences. 

ARCHITECTURE OF AEOLIAN DEPOSITS 

In the study area, aeolian deposits constitute sedimentary 
sequences alternating with non-aeolian sediments. Such 
aeolian sequences have been referred to by Wilson (1973) 
as erg sequences. Such sets are limited at the base and on 
the top by sharp and subhorizontal surfaces, which can 
be followed laterally over great distances. According to 
Clemmensen and Tirsgaard (1990), the basal bounding 
surfaces are known as sand-drift surfaces (Fig. 7) and their 
origin is attributed to regional scale deflation processes 
(Rodríguez López et al., 2008). The presence of bioturbation, 
intense cementation areas and mud cracks suggest aeolian 
deflation down to the level of the capillary zone (Loope, 1988; 
Havholm and Kocurek, 1994; Mountney and Howell, 2000) in 
inland continental areas (Kocurek et al., 2001; Mountney, 
2006). The surface developed on top of the erg sequences 
constitutes another significant discontinuity, marking the 
decline or disappearance of the sand sea, which is referred 
to as the extinction surface in this work.

The De La Cuesta Formation erg sequences consist 
of several architectural elements whose schematic 
representation is illustrated in Figure 8. These sedimentary 
bodies are defined in accordance with the following 
characteristics: relationship between dune and interdune 
facies associations, scale and degree of amalgamation of 
cross-bedded units, characteristics of cross-stratification 
foresets, orientation of these structures and characteristics 
of bounding surfaces of varied hierarchy. 

Aeolian dune and interdune elements 

These are characterised by cross-bedded units ranging 
in thickness from 1 to 3m, which generally alternate with 
0.2 to 0.5m intervals that correspond to the dry aeolian 
interdune association. The cross-bedded bodies display 
forms that range from nearly tabular to wedge-like with 
a crescentic geometry in which a progressive increase in 
set thickness can be observed in a paleaeowind direction. 
This particular morphology arises where groups of cross-
bedded sets are bounded at their base by a surface with 
a smooth but persistent inclination opposed to that of the 
cross-bedded structures. According to Kocurek (1981, 
1996) and Mountney and Howell (2000), these surfaces 
are attributed to the migration of primary bedforms and 
are know as interdune surfaces. Cross-bedded layers 
show different geometries, ranging from planar foresets 
to tangential ones with maximum inclination angles of 
20º to 25º which constitute lee-side slipfaces of aeolian 
bedforms. 

Sand-drift surface (S-DS) separating playa lake deposits 
below from aeolian dune deposits above. The white bar is 1m thick.
FIGURE 7
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A very special type of aeolian dune, which belongs to 
this architectural style, is the one made up of cross-bedded 
strata with important internal reactivation surfaces (Brookfield 
1977) developed over dune slipfaces. Within these strata, 
foresets constitute packages limited by concave-up internal 
surfaces, which define subsets and are inclined towards the 
net sand transport direction with variable angles (Fig. 9). Their 
presence in aeolian deposits has been attributed to important 
changes in wind orientation and/or dune migration rhythm 
(Kocurek, 1988; Mountney and Jagger, 2004). The resultant 
aeolian deposits (Fig. 9) are characterised as scalloped dunes 
(Kocurek, 1991; Kocurek et al., 1999). 

Grouped crescentic aeolian dunes 

This architectural element corresponds to overlapping 
cross-stratified sets of aeolian origin. Some of these bodies, 
especially those with planar cross-laminae, show a highly 
persistent orientation of the internal structures (Figs. 4 and 10). 
For this reason, they are considered to result from the migration 
and stepping of transverse aeolian dunes. The surfaces 
limiting the sets define two main geometries. In the first and 
more common one, the surfaces are parallel or subparallel, 
indicating that the stepping angle is nearly constant (Fig. 10). 
In the second and less common one, the surfaces that limit 

Aeolian dunes
limited by interdunes

Wind direction

Solitary tabular cross-bedded sets (dune deposits)
alternating with horizontal laminated

sandstones (dry interdune deposits)

Grouped tabular cross-bedded sets showing
similar dip direction of foreset (two-dimensional
dunes with similar angle of climbing)

Grouped or solitary scalloped cross-bedded
sets (dune deposits with variable
migration rhythm) alternating with horizontal
laminated sandstones (dry interdune deposits)

Grouped wedge-shaped cross-bedded sets
exhibiting similar dip directions of foresets
(two-dimensional dunes with variable angle
of climbing).

Grouped wedge-shaped cross-bedded sets
showing highly variable dip directions of foresets.
Trough cross-bedded sets occur in some cases
(three-dimensional dunes).

Grouped or solitary, giant-scale, tabular
cross-bedded sets (draa) alternating with
tabular medium-scale cross-bedded units (dunes).

Highly complex stacking of wedge-shaped
cross-bedded sets with zig-zag geometry
(longitudinal dunes).

Grouped crescentic
aeolian dunes

Longitudinal dunes

Draa with superimposition
of crescentic dunes

Schematic sketches of the main aeolian architectural elements defined in the De La Cuesta Formation.FIGURE 8
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the sets intersect frequently, which suggests that the stepping 
angle varies in accordance with changes in wind speed or sand 
supply rate (Rubin and Hunter, 1983; Mountney and Howell, 
2000; Tripaldi and Limarino, 2005). 

Conversely, other aeolian bodies are characterised by 
a greater variability in foreset azimuths (Fig. 4), which 
normally have a three-dimensional architectural pattern with 
tangential laminae in sections parallel to the palaeowind and 
trough laminae in transverse sections. These features are 
interpreted to be the depositional product of aeolian dunes 
that had curved crestilines (Rubin, 1987; Mountney 2006) 
which is why they are attributed to barchanoid ridges. 

The surfaces bounding each cross-bedded layer can 
show different geometries. The most frequent surfaces 
are those that dip slightly towards the direction of the 
cross-laminae. They can be regarded as a variety of 
superimposition surfaces (Fig. 10) formed in response to 
changes in the migration of successive crescentic aeolian 
dunes. Cross-bedded sets limited by concave-up surfaces 
on top are uncommon, suggesting out of phase stepping 
of aeolian dunes (Rubin, 1987) or deflation effects in the 
stoss-face of migrating dunes. 

Longitudinal dunes 

This architectural element has a very complex pattern 
as it consists of the overlapping of a series of cross-bedded 
sets that reach a thickness of up of 10m and are associated 
with sandy levels formed by low angle layers due to the 
migration of aeolian ripples. One distinct feature is that 
adjacent or overlapped cross-bedded strata have fairly 
discontinuous wedged and lenticular geometries. Front 

layers are inclined in two preferential directions with 
a 100º separation (Fig. 4) and they create a very typical 
zig-zag pattern in the outcrop. They also present a diverse 
morphology, including slightly tangential, trough, and 
wedge laminae (Figs. 8 and 11). The last features are limited 
by a lower bounding surface with a steep inclination angle, 
internal layers whose dip matches that of the basal surface, 
and an upper stratification plane with a marked truncation 
(Fig. 11). 

Consequently, these deposits are due to the migration 
and vertical accretion of small-scale longitudinal (Bagnold, 
1941) or linear (Tsoar, 1989; Bristow et al., 2000) aeolian 
dunes. The zig-zag pattern and marked bimodality of 
foreset orientation are ascribed to deflection of aeolian 
currents oblique to crest orientation in seif linear dunes 
(Tsoar, 1982, 1983; Chakraborty, 1993; Bristow et al., 
2000). Cross-bedded sandstones formed by migration of scalloped 

dunes.
FIGURE 9

Superimposed cross-bedded sets representing grouped 
crescentic aeolian dunes. SS: superimposition surface; IRS: internal 
reactivation surface; IS: interdune surface; WID: wet interdune deposits; 
DID: dry interdune deposits. (See Fig. 4 for location).

FIGURE 10
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Draa with superimposed crescentic dunes 

These sedimentary deposits are characterised by 
6 to 20m thick sequences composed of two elements. 
The lower one corresponds to tabular cross-bedded 
megasets of up to 8m thick, consisting of more than 2cm 
thick tangential foresets (Fig. 12). The upper element is 
composed of an amalgamation of aeolian cross-bedded 
strata of smaller scale (no greater than 1m) and tabular 
geometry (Fig. 12). The cross-laminae are consistently 
oriented in the same direction and they also coincide 
with that of the underlying cross-bedded megaset (Figs. 
4 and 12). From the foregoing discussion it follows 
that they result from the stepping of crescentic aeolian 
dunes similar to the ones described by Rodríguez-López 
et al. (2008). However, there are also small isolated 
cross-bedded intercalations (0.2-0.3m) that present an 
opposite or oblique orientation (protodune) and that 
step over draa leeward faces. 

The surfaces bounding each cross-bedded set can 
present different geometries (Figs. 12 and 13). The most 
frequent ones are surfaces that are inclined downwind 
with variable angles (Figs. 12 and 13). Kocurek (1996) 
has characterised such surfaces as superimposition 
surfaces, and attributes them to aeolian dune migration 
towards the lee-side of aeolian macroforms (draa), with 
poor development of slipfaces. However, the fact that the 
same effect could be achieved when aeolian dune trains 
migrate in a sense that is oblique to the forward direction 
of draa should be borne in mind (Tatum, 2007). It should 
be pointed out that, in some cases, these superimposition 
surfaces show a steep inclination angle (over 20º), 
which is why it is assumed that they represent the direct 
migration of aeolian draa and/or dunes over an inactive 
avalanche face of a previous draa (Fig. 13). 

 Zig-zag cross-stratified sets representing the deposit of a 
longitudinal (linear) aeolian dune. (See Fig. 4 for location).
FIGURE 11

Draa deposit showing a lower giant-scaled cross-bedded 
set covered by thinner aeolian cross-bedded units formed by migration 
of superimposed aeolian dunes. The monolith is 1m high. DS: deflation 
surface; IRS: internal reactivation surface; SS: superimposition surface. 
(See Fig. 4 for location).

FIGURE 12
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DISCUSSION 

Two major depositional systems can be defined in 
the analysed Permian sedimentary sequence of the Sierra 
de Narváez. These systems show closely related vertical 
relationships. On the one hand, a set of aqueous sediments 
suggests the development of an ephemeral system of 
a terminal alluvial fan type which ended in a shore or 
mudflat environment (Olsen, 1987; Kelly and Olsen, 1993; 
Collinson, 1996; Bull, 1997; Bourke and Pickup, 1999; 
Tooth, 2000). On the other hand, large aeolian sand deposits 
constitute strong evidence of sand sea system formation, 
i.e. ergs (Glennie, 1970; McKee, 1979; Loppe, 1985). 

The interaction between aeolian and fluvial systems 
can respond to cyclical changes in climatic conditions, 
accommodation space and location of the water table 
(Mountney et al., 1999; Veiga et al., 2002; Mountney, 
2006). They may also represent several locations within 

the sedimentary basin with dominance of fluvial deposits 
in up-wind sections and aeolian deposits within the erg 
(Mountney and Jagger, 2004; Veiga and Spalletti, 2007). 

It seems that the Permian aeolian deposits of Sierra 
de Narváez were most likely conditioned by temporal 
variations in climatic conditions (Kocurek, 1998; Swezey, 
2003) in a markedly arid context. In this regard, a 
progressive increasing aridity at regional scale has been 
cited for the Middle to Upper Permian in several areas of 
south-western Gondwana (López Gamundí et al., 1992; 
Scherer, 2000; Limarino and Spalletti, 2006; Nardi Dias 
and Scherer, 2008). 

The development of deflation sand-drift surfaces that 
overlie ephemeral fluvial and playa lake deposits, and of 
extinction surfaces, located on top of sand sea records 
constitutes significant evidence of the aforementioned 
climatic variability. As shown in Figure 10, the location of 

Wind-perpendicular section showing superimposed giant-scaled cross-bedded sets interpreted as draa deposits, covered by thinner aeolian 
cross bedded units. SS: superimposition surface; IRS: internal reactivation surface; IS: interdune surface. (See Fig. 4 for location).
FIGURE 13
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key surfaces and the vertical stacking of facies associations 
allow us defining large scale cycles that attain several 
meters in thickness (Fig. 14). More humid hemicycles, 
with a shallow water table position, contributed to the 
development of extinction surfaces and the dominance of 
terminal fan - mudflat deposits, associated with marginal 
aeolian facies or aeolian sand sheets (Swezey, 2003; 
Mountney and Jagger, 2004; Mountney, 2006). The 
hemicycles represented by the onset and development of 
erg systems correspond to drier and windier environmental 
conditions. The decrease in the water table position 
during these periods may be related to a relative eustatic 
fall (Soreghan et al., 2002) or to overfeeding conditions 
(high value in the relationship between sand supply and 
basin subsidence). Thus, the development of drier climatic 
conditions could have led to flat sand-drift surfaces and to 
a greater availability of fluvial sands to be mobilised by 
the wind whilst vegetation coverage decreased in density 
(Kocurek, 1998; Mountney and Howell, 2000; Veiga et al., 
2002; Swezey, 2003; Mountney, 2006). The establishment 
of the aeolian system over the above mentioned surfaces 
could have been essentially determined by sand supply and 
availability, and by the capacity of the wind to transport 
the sand (Kocurek and Lancaster, 1999). An important 
sand supply provided by ephemeral fluvial systems could 
therefore have been the main source of texturally mature 
materials for the Permian erg development. 

It is also worth noting that, especially in drier 
hemicycles, shorter-term rhythms are defined, in which 
there is a dominant element of draa deposits alternating 
with one another in which dune and interdune deposits are 
characteristic (Fig. 14). Although these higher frequency 
cycles could be attributed to subtle climatic changes, 
they could also be due to variations in sand supply and 
availability. 

As regards the Paganzo Basin and neighbouring areas, 
the significant episode of environmental desiccation with 
conditions that favoured the development of aeolian 
deposits seems to be closely related to the growth of the 
important volcanic chain represented by the Choiyoi Group 
(Groeber, 1946; Stipanicic et al., 1968; Yrigoyen, 1972). 
This barrier, which was palaeogeographically significant, 
divided the western margin of Gondwana into two areas 
(Fig. 15A). The western area (Chilean Basin) received a 
strong marine influence that gave rise to milder conditions; 
and the eastern area (Paganzo Basin) had a marked inland-
style with a much drier climate, related to the rain shadow 
effect produced by the growth of the volcanic chain (Fig. 
15A). Furthermore, this topographic highland isolated the 
Paganzo Basin from marine transgressions during the Late 
Early Permian despite the persistence of a relatively high 
sea level position (Haq and Schutter, 2008) during this 
period. 

Schematic representation of the sedimentary log showing 
the main bounding surfaces (sand-drift surfaces and extinction 
surfaces). Note hemicycles resulting from alternation of wetter and 
drier periods. 

FIGURE 14
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As accounts with many present day world deserts, 
another possibility is that the development of the Permian 
sand sea of the Paganzo Basin would be related to a high-
pressure system. These systems and the correlative arid 
belts form at low latitudes, between 20 and 40 degrees from 
the equator; however, the palaeogeographic reconstruction 
of the Permian Pangea (Fig. 15B) clearly shows that the 
Paganzo Basin was located at higher latitudes, in the cool 
temperate palaeoclimatic belt (Tabor and Poulsen, 2008).

The aeolian outcrops of Sierra de Narváez area 
play a major role in estimating the regional extension 
of the aeolian sand sea, and in establishing the regional 
relationships with non-aeolian sequences located to the 
west (Chile) and northwest (northern Argentina). The 
location of the outcrops of the Sierra de Narváez enables 
us to extend the aeolian sand sea towards the northernmost 
sector of the Paganzo Basin. Thus, the aeolian sand sea 
could have covered a minimum area of 85,000 km2. As 
shown in Figure 15A, only the eastern flank of the Paganzo 
Basin seems to have been dominated by fluvial deposits, 
probably because of the humid conditions owing to the 
proximity to the Sierras Pampeanas upland. 

From a palaeogeographic viewpoint, the Permian 
outcrops of Sierra de Narváez link the aeolian deposits 

of the Paganzo Basin to those located to the west, in the 
volcanic segment (Choiyoi arc) and in the Chilean Basin. 
The aeolian succession studied in this paper is located to 
the southeast of the Arizaro Formation (Aceñolaza et al., 
1972), which crops out in the north of Argentina close to the 
boundary with Chile (along the Choiyoi volcanic segment). 
The aeolian deposits seem to be contemporaneous with the 
Upper Member of the Arizaro Formation, which consists 
of marine fossil invertebrate bearing limestones. Moreover, 
the Permian aeolianites could be correlated with marine 
carbonates of the Chilean Basin known as the La Cantera 
Member of the Huantelauquén Formation (Muñoz-Cristi, 
1973). Thus, the aeolian sand sea deposits of the Paganzo 
Basin and the shallow marine carbonates accumulated 
to the west suggest the existence of warm arid/semiarid 
conditions along the western margin of Gondwana during 
the Middle Permian. 

CONCLUSIONS 

As a result of the sedimentological study of the Permian 
De La Cuesta Formation outcrops in Sierra de Narváez 
it is possible to recognise facies associations belonging 
to aeolian dunes, dry aeolian interdune and aeolian sand 
sheet, mudflat, wet aeolian interdune and ephemeral fluvial 
systems. 

Aeolian deposits, which constituted erg sequences 
dominated by dune facies associations, were limited at the 
base by sand-drift surfaces, and at the top by extinction 
surfaces. 

The main architectural elements recognised in the erg 
sequences are aeolian dune and interdune deposits, grouped 
crescentic aeolian dunes, longitudinal dunes, and draa with 
superimposed crescentic dunes. 

Two main deposition systems: a terminal alluvial fan - 
mudflat, and a sand sea or erg are defined in the De La 
Cuesta Formation. These systems are ascribed to temporal 
variations in climatic conditions that led to considerable 
changes in the water table position and, hence, in the 
accommodation and supply of sands susceptible to aeolian 
mobilisation. 

Climatic changes are evident in large scale cycles in 
which hemicycles bounded by deflationary sand-drift 
surfaces and extinction surfaces are recognised. Ephemeral 
fluvial and mudflat deposits prevailed in more humid 
hemicycles, and erg sequences developed during drier 
hemicycles. 

It is possible to recognise alternation between grouped 
dune (draa) accumulations and simple dune sets separated 

A) Palaeogeographic sketch of the Paganzo Basin and 
neighbouring areas during the Lower-Middle Permian. B) Lower 
Permian (Cisuralian) global palaeogeography and climatic belts (Tabor 
and Poulsen, 2008). Note the location of the Paganzo Basin in the Cool 
Temperate Belt.

FIGURE 15
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by interdune elements in drier hemicycles. These lower 
scale cycles are attributed to less intense and shorter climatic 
variations and also to changes in sand contribution and to 
its availability for aeolian transportation and deposition. 

The positive relief represented by the Choiyoi 
Group volcanic chain would have played a critical 
palaeogeographical role not only in the generation of 
arid conditions in the continental inland, but also in the 
development of a Permian erg even in conditions of high 
global sea level positioning. Palaeocurrent data indicate 
that wind transport direction was mainly towards the 
NNE and NE, therefore the volcanic chain would have 
controlled the characteristics of the air flow, acting as an 
effective climatic barrier for storm systems. The presence 
of deposits characterised by various styles of aeolian - 
fluvial interaction to the southwest of the province of 
Catamarca (northwest Argentina) enables us to estimate an 
approximate area of 85,000 km2 for the Permian desert of 
the Paganzo Basin. 
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