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ABSTRACT

In this paper we review some open questions in the context of the structure observed in narrow 
planetary rings, and summarize some recent results of our work directed to answer them. Using the 
scattering approach to narrow rings we have succeeded to reproduce some of their structural properties 
in a qualitative sense, using unrealistic toy models as examples. We obtain narrow rings which are 
non-circular and display sharp edges. In addition, these rings may have multiple components which 
may entangle in a complicated dynamically evolving way forming a braided structure, or may display 
strongly azimuthal dependent features such as arcs. The appearance of these structural properties can 
be understood in terms of the underlying phase space.

Key words: narrow planetary rings, strands, arcs, scattering approach.

RESUMEN

En este artículo hacemos una revisión de algunas de las preguntas que permanecen abiertas 
en el contexto de la estructura observada en los anillos planetarios delgados, y resumimos algunos 
resultados recientes de nuestro trabajo encaminados a responderlas. Usando el enfoque de la dispersión 
en anillos delgados hemos reproducido algunas de sus propiedades estructurales de forma cualitativa, 
usando modelos de juguete irrealistas como ejemplos. Hemos obtenido anillos delgados no circulares 
que muestran bordes bien definidos. Además, estos anillos pueden tener componentes múltiples que se 
enredan de manera complicada y evolucionan dinámicamente formando estructuras trenzadas, o pueden 
exhibir estructuras con una fuerte dependencia azimutal como arcos. La aparición de estas estructuras 
se puede entender en términos del espacio fase subyacente.

Palabras clave: anillos planetarios delgados, componentes múltiples (hebras), arcos, enfoque de la 
dispersión.
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INTRODUCTION: OBSERVATIONS

Saturn	rings	are,	since	their	discovery	by	Galileo	in	
1610,	one	of	the	most	puzzling	and	beautiful	features	of	
the	Solar	System.	For	a	long	time,	Saturn	had	the	special	
position	being	the	“ringed	planet”.	In	1977,	the	somewhat	
accidental	discovery	of	Uranus	rings	by	stellar-occultation	

measurements	(Elliot	et al.,	1977)	changed	this	view,	and	
led	to	a	renewed	interest	in	ring	systems.	The	main	reason	
for	this	was	that	the	Uranian	rings	turned	to	be	extremely	
different	from	those	of	Saturn:	They	are	narrow,	opaque,	
sharp-edged,	inclined	and	eccentric	(Elliot	and	Nicholson,	
1984; Esposito, 2002). To quote some figures (Murray and 
Dermott,	1999),	the	widest	ring	of	Uranus,	the	ε	ring,	is	
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Figure	2.	Structure	in	Saturn’s	F	ring.	These	four	images	taken	by	Cassini	of	Saturn’s	F	ring	show	the	“knotted”	structure	in	different	locations.	(PIA07522.	
Courtesy	NASA/JPL/Space	Science	Institute-Caltech).

and	around	the	outermost	ε	ring	of	Uranus;	these	discoveries	
represented a confirmation of the theory. The shepherding 
confinement involves angular momentum transfer between 
the	shepherd	moons	and	the	ring	particles,	self-gravity	and	
viscous	damping	due	to	inter-particle	collisions	(Borderies	
et al.,	1983).	While	the	full	scenario	for	shepherding	has	not	

20−96	km	wide	with	a	nominal	semi−major	axis	at	51,149	
km;	in	comparison,	the	main	rings	of	Saturn	are	a	few	
thousand kilometers wide. The Uranian rings were the first 
narrow	planetary	rings	discovered,	but	are	not	the	only	ones	
that	exist.	The	Pioneer	mission	and	the	Voyagers	uncovered	
other	narrow	ring	in	Saturn,	the	F	ring,	showing	an	amazing	
and	puzzling	structure;	occultation	measurements	pointed	
the	existence	of	rings	around	Neptune;	Jupiter’s	broad	rings	
were	also	discovered	(see	Esposito,	2002	for	a	detailed	
historical	account).	Figures	1-4	are	photographs	illustrat-
ing	some	examples	of	the	variety	of	structure	that	is	found.

These	discoveries	raised	a	number	of	new	ques-
tions,	most	of	which	remain	unanswered	(Esposito,	2002;	
Sicardy,	2005).	For	instance,	the	eccentricity	of	the	ε	ring	
is	0.0079;	Saturn's	F	ring	has	an	eccentricity	0.0026.	An	
eccentric	inclined	narrow	ring	like	the	ε	ring	is	expected	to	
circularize	and	spread	in	rather	short	time	scales,	tmax	~	108	
years,	which	is	“considerably	smaller	than	the	age	of	the	
solar	system”	(Esposito,	2002).	This	estimate	follows	from	
inter−particle	collisions,	drag	and	differential	precession.	
Therefore,	an	efficient	confinement	mechanism	must	
maintain	these	structural	properties	of	the	ring	over	longer	
time	scales	allowing,	among	other,	an	eccentric	 ring	
(Esposito,	2002).

To	explain	the	structural	features	of	the	Uranian	rings,	
new models were introduced where the confinement was 
induced	by	nearby	moons.	Among	these	models	we	mention	
in	particular	the	shepherding	model	introduced	by	Goldreich	
and	Tremaine	(1979),	where	two	moons	around	the	ring	
were	proposed	to	bound	it.	The	Pioneer	and	Voyager	mis-
sions	detected	the	shepherd	moons	around	Saturn’s	F	ring	

Figure	1.	Uranus’	rings	and	the	“shepherd”	satellites	of	the	ε	ring	discov-
ered	by	Voyager	2.	The	image	was	taken	in	January	21	of	1986	(PIA01976.	
Courtesy	NASA/JPL/Space	Science	Institute-Caltech).	
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either	the	shepherds	are	there	but	are	too	small	to	be	de-
tected,	or	“some	physics	is	yet	to	be	understood”	(Sicardy,	
2005).	Saturn’s	F	ring	turned	out	to	have	a	very	rich	dy-
namical	structure	(Smith	et al.,	1981;	Smith	et al., 1982;	
Murray	et al., 1997):	besides	the	non-zero	eccentricity,	it	
displays	multiple	components	entangled	in	a	complicated	
way,	known	as	strands	and	braids,	showing	further	puzzling	
features	like	kinks	and	clumps.

Numerical	simulations	have	investigated	a	variety	of	
physical	interactions,	like	the	gravitational	perturbations	of	
shepherd	moons	on	circular	and	eccentric	orbits	(Giuliatti-
Winter	et al.,	2000;	Showalter	and	Burns,	1982),	effects	due	
to	the	action	of	embedded	moonlets	(Lissauer	and	Peale,	
1986),	and	ring	inter-particle	collision	effects	(Hänninen,	
1993;	Lewis	and	Stewart,	2000).	The	central	questions	
investigated	have	been	the	formation	of	structure	(strands,	
braids,	clumps)	and	their	short-term	stability.	While	these	
studies	have	led	to	interesting	predictions,	e.g.	the	formation	
of	channels	and	streamers	(Giuliatti-Winter	et al., 2000)	
which	have	been	recently	observed	by	Cassini	(Murray 
et al.,	2005),	there	is	no	self-consistent	approach	for	the	
confinement of narrow rings and their radial and azimuthal 
structure.	The	F	Saturn	ring	remains	as	the	most	fascinating	
and	puzzling	case.

The	present	paper	reviews	some	of	our	recent	work	on	
this	point,	namely,	a	self-consistent	scenario	for	the	occur-
rence	of	narrow	rings	and	the	appearance	of	structure;	we	
have called it the scattering approach. The first section is 
devoted	to	describe	the	basic	ideas	behind	our	approach.	The	
next	section	we	exemplify	the	emergence	of	structured	rings	
within	scattering	approach	using	an	unrealistic	toy	model.	
We	obtain	non-circular	narrow	rings	with	sharp	edges,	that	
may	display	multiple	components	and	arcs.	Our	results	are	
qualitative	so	far.	Yet,	the	approach	is	robust	and	consistent,	
and	can	be	applied	–with	the	intrinsic	complications	that	
this	entails–	to	more	realistic	situations.	A	following	sec-
tion	we	describe	the	relevant	phase–space	structures	upon	
which	our	dynamical	approach	is	based.	The	last	section	is	
devoted	to	our	conclusions	and	outlook.

THE SCATTERING APPROACH

Let	us	consider	the	(N+1)	-	body	full	Hamiltonian	
which	describes	the	motion	of	a	central	planet	of	mass	M0	,	
surrounded	by	Nm	moons	and	Nr	ring	particles	(N = Nm+Nr).	
In	an	inertial	frame	we	have	

	,									(1)

= H Km	+ V m-m	+ H Kr	+ V m-r	+ V r-r   .          (2)

In	Equation	(1),	 P i	is	the	linear	momentum	of	the	
i-th	particle,	with	i = 0 representing	the	central	planet,	 R
i	is	its	position	vector,	Mi	is	its	mass,	and	G is	the	gravita-
tional	constant.	Hence,	Ecuation	(1)	is	the	full	many-body	
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been	fully	understood	(Esposito,	2002;	Sicardy,	2005),	the	
presence	of	dissipation	seems	to	be	essential;	this	is	actu-
ally	needed	to	avoid	certain	singularities	(Ogilvie,	2007).	In	
addition,	the	formulation	assumes	that	the	ring	boundaries	
are	located	at	a	lower-order	resonance.

Yet, Saturn’s F ring does not fulfill the requirements 
to	apply	this	theory.	Moreover,	most	Uranian	rings	have	
no	associated	shepherd	moons	around	them	(Murray	and	
Thomason,	1990),	nor	some	narrow	eccentric	rings	of	
Saturn,	which	among	others	would	provide	an	explanation	
for	their	sharp	edges	(Murray	and	Dermott,	1999).	Thus,	

Figure	3.	Ringlets	in	the	Encke	gap.	(PIA08305.	Courtesy	NASA/JPL/
Space	Science	Institute-Caltech).

Figure	4.	Neptune	rings	and	Adam’s	arcs	as	seen	by	Voyager	2	 in	
August	of	1989.	 (PIA01493.	Courtesy	NASA/JPL/Space	Science	
Institute-Caltech).
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problem	with	gravitational	interactions	and	Equation	(2)	is	
a	convenient	rearrangement:	HKm	is	the	Hamiltonian	for	the	
keplerian	two-body	interaction	among	the	moons	and	the	
planet,	and	H Kr	is	the	corresponding	one	among	the	ring	
particles	and	the	central	planet.	The	term	V m-m	represents	the	
moon-moon	gravitational	interaction,	V m-r	is	the	moon-ring	
particle interaction and, finally, V r-r	is	the	ring	particle–ring	
particle	interaction.	In	Equation	(1)	we	have	considered	
purely	gravitational	interactions;	as	we	shall	see,	our	ap-
proach	is	quite	general	for	conservative	interactions.	The	
assumption	of	purely	gravitational	interactions	is	common	
because	the	interesting	structural	properties	observed	are	not	
related	with	sub-micron	size	(dust)	particles	where	radiation	
forces	and	electromagnetic	interactions	are	indeed	impor-
tant.	For	example,	in	Saturn’s	F	ring,	initial	photometric	
work	on	Voyager’s	data	indicated	that	this	ring	consists	of	a	
core	of	centimerter-size	particles	surrounded	by	micron	and	
sub-micron	material	(Showalter	et al.,	1992);	later	analysis	
on	the	data	gathered	during	Saturn’s	ring	plane	crossing	
in	1995	suggested	that	the	ring	material	is	dominated	by	
a	population	larger	than	~10	mm	with	a	lower	cut	off	of	
0.3–0.5	mm	(Bosh	et al.,	2002).

In	the	planetary	case,	there	is	a	clear	ordering	of	the	
masses,	M0 ≥ Mm ≥Mr	,	with	Mm/M0	~10-8–10-4	and	Mr/Mm	
even	smaller.	Here,	Mm	is	a	typical	mass	for	the	moons	and	
Mr characterizes	the	mass	of	the	ring	particles.	Therefore,	
in a first order approximation, we may neglect the contribu-
tions	from	V r-r	,	which	are	of	second	order	in	Mr	.	Physically,	
this	amounts	to	ignore	any	effects	due	to	ring	inter-particle	
collisions.	Moreover,	due	to	the	mass	scales	of	the	problem,	
the	effect	of	individual	ring	particles	in	the	motion	of	the	
planet	or	the	moons	can	be	neglected.	This	suggests	to	treat	
the	motion	of	the	individual	ring	particles	as	a	restricted	
n-body	problem.	The	motion	of	the	central	planet	and	the	
moons	is	solved	consistently	in	a	full	many-body	calcula-
tion.	For	the	motion	of	the	particles	of	the	ring	a	solution	
of	this	many-body	problem	is	used,	which	introduces	an	
explicit	 time	dependence.	Therefore,	 the	ring-particle	
Hamiltonian	can	be	written	as

(3)

where	V0	refers	to	the	dominating	interaction	with	the	central	
planet	(H Kr ),	and	Veff		is	the	effective	interaction	due	to	the	
planetary	moons.	The	explicit	time	dependence	in	Equation	
(3) is related to the specific solution of the full planet–moons 
problem	used.	This	is	usually	a	kind	of	oscillatory	motion	
of	the	moons	around	the	central	planet.	Therefore,	such	a	
solution	introduces	an	intrinsic	rotation	in	Equation	(3),	
which	in	the	best	case	is	periodic	or	quasi-periodic.	The	
restricted	three-body	problem	is	an	example	of	Equation	
(3),	where	the	intrinsic	rotation	is	precisely	the	circular	or	
elliptic	motion	of	the	two-body	Kepler	problem	between	
the	planet	and	the	moon.

We	consider	now	the	dynamics	of	the	Hamiltonian	
Equation	(3).	We	shall	be	interested	in	those	phase–space	

H = 2
1 P 2 + V X   t V X t0 eff( , ) ( , )+H = 2
1 P 2 + V X   t V X t0 eff( , ) ( , )+

regions	that	are	dominated	by	scattering	trajectories,	i.e.,	
by trajectories that escape to infinity. Despite of the domi-
nance	of	unbound	orbits,	trapping	is	dynamically	possible.	
Notice that scattering trajectories define a precise physical 
mechanism	for	the	particles	to	escape	from	the	neighbor-
hood	of	the	planet–moons	system,	which	may	then	create	
structure	in	the	ensemble	of	non-escaping	ring	particles;	
hence	the	name	of	scattering approach (Benet	and	Merlo,	
2004;	Merlo	and	Benet,	2007).	For	simplicity	we	describe	
the	case	of	two	degrees	of	freedom,	emphasizing	that	the	
following	considerations	can	be	generalized	to	more	degrees	
of	freedom.

For	two	degrees	of	freedom	scattering	Hamiltonian	
systems,	the	dynamics	can	be	understood	through	the	peri-
odic	orbits	of	the	system,	which	are	the	organizing	centers	
of	the	dynamics,	and	their	associated	invariant	structures	
in	phase–space.	It	is	beyond	the	scope	of	this	presentation	
to summarize the theory of chaotic scattering. Suffice it to 
say that, first, phase–space is the natural object to analyze 
the	dynamics	and,	second,	despite	of	the	dominant	role	
of	unbounded	trajectories,	strictly	bounded	trajectories	
may	form	a	set	of	positive	measure	under	certain	stability	
conditions.	The	latter	holds	because	periodic	orbits	ap-
pear	generically	through	saddle–center	bifurcations.	That	
is,	as	a	parameter	of	the	system	is	varied	(e.g.,	the	Jacobi	
integral	in	the	circular	restricted	three-body	problem	is	
reduced),	two	new	periodic	orbits	appear,	one	is	stable	and	
the	other	unstable.	The	invariant	manifolds	of	the	unstable	
periodic	orbit	bound	a	region	in	phase–space	around	the	
stable	periodic	orbit,	so	trajectories	close	enough	to	the	
stable	periodic	orbit	remain	close	to	it	for	all	future	times.	
That	is,	test	particles	with	initial	conditions	inside	these	
phase–space regions will not escape to infinity along scat-
tering	trajectories.	Further	reduction	of	the	Jacobi	integral	
sets	in	a	period	doubling	bifurcation	cascade,	where	the	
elliptic	point	becomes	inverse	hyperbolic;	eventually,	the	
horseshoe	structure	is	locally	hyperbolic,	which	implies	
that	the	set	of	trapped	orbits	(periodic	and	aperiodic)	is	of	
measure	zero.	These	results	are	generic	for	autonomous	
two	degrees	of	freedom	scattering	Hamiltonians	(Benet	
and	Seligman,	2000;	Benet,	2001);	for	systems	with	more	
degrees	of	freedom	there	are	theorems	which	establish	the	
conditions	to	have	some	effective stability,	i.e.,	trapped	
motion is proven for very long but finite times (Jorba and 
Villanueva,	1997a,	1997b).

In	the	intervals	of	the	Jacobi	integral	where	there	is	
a	stable	periodic	orbit,	the	manifolds	of	the	unstable	orbit	
define barriers which confine dynamically the	motion	of	the	
ring	particles.	Such	trapping	actually	takes	place	around	
the	central	planet	due	to	the	intrinsic	rotation	implicit	in	
Equation	(3).	The	trapped	orbits	thus	remain	close	to	the	
stable	periodic	orbit,	not	escaping	irrespectively	of	whether	
the	actual	motion	is	periodic,	quasi-periodic	or	even	chaotic.	
As	mentioned	above,	this	holds	generically	for	time-inde-
pendent	two	degrees	of	freedom	scattering	systems;	for	more	
degrees	of	freedom	effective	dynamical	trapping	has	been	
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Figure 5. a) Example of a ring of non-interacting particles for the scattering billiard system on a circular orbit, in an inertial reference frame. The figure 
is	obtained	by	projecting	the	phase	space	location	of	an	ensemble	of	particles	(inside	the	trapping	region)	onto	the	X-Y		space,	at	a	given	time.	b)	Detail	
of	a	region	of	the	ring.	The	black	lines	are	the	analytical	estimates	based	on	the	stability	properties	of	the	organizing	periodic	orbit.

observed	(Merlo	and	Benet,	2007;	Benet	and	Merlo,	2008).	
Generically	here	implies	that	these	results	only	depend	on	
the local properties of phase–space and not on the specific 
interaction.	This	makes	the	whole	scattering	approach	robust	
in	a	strict	mathematical	sense,	which	physically	allows	to	
include	other	small	conservative	perturbations	not	included	
initially	in	Equation	(1),	as	for	instance	the	oblateness	of	
the	planet.

We	focus	on	the	whole	interval	of	Jacobi	integral	
where	such	dynamically	trapped	motion	takes	place.	We	
consider	an	ensemble	of	independent	ring	particles,	i.e.,	
non-interacting	test	particles,	with	essentially	arbitrary	
initial	conditions	at	t = 0  that belong to the specific interval 
where	trapped	motion	exists.	The	particles	whose	initial	
conditions	lie	outside	the	region	of	trapped	motion	(for	the	
specific value of the Jacobi integral) will rapidly escape to 
infinity along a scattering trajectory. In contrast, those par-
ticles	within	the	region	of	trapped	motion	stay	dynamically	
confined to trajectories close to the central periodic orbit. 
The	distinction	among	these	two	types	of	initial	conditions	
is	sharp.	Therefore,	letting	the	system	evolve	for	some	time,	
a	ring	is	obtained	by	projecting	into	the	X-Y		space	at	a	given	
(fixed) time the phase–space location of all the ring particles 
of the ensemble that are dynamically confined. 

From	these	considerations	some	important	structural	
properties	of	the	ring	follow.	First,	the	ring	displays	sharp	
edges,	since	the	distinction	between	trapped	particles	and	
escaping	particles	is	clear	after	rather	short	times.	Second,	
the	rings	are	in	general	eccentric	since	the	motion	of	each	
particle	of	the	ring	is	close	to	the	organizing	periodic	orbit,	
which	typically	displays	some	eccentricity	in	a	rotating	
frame.	Third,	the	narrowness	of	the	ring	can	be	understood	
from	the	fact	that	the	region	in	phase–space	corresponding	
to	dynamically	bounded	motion	is	typically	very	small	
(Benet	et al., 1998),	as	well	as	the	interval	of	values	of	the	

parameter	where	the	reference	periodic	orbit	is	stable	(Benet	
and	Merlo	2004).	

We	emphasize	that,	despite	the	qualitative	nature	of	
these	results,	these	structural	properties	are	observed	in	
real	narrow	planetary	rings,	and	some	of	them	are	not	fully	
understood	(Esposito,	2002;	Sicardy,	2005).

STRUCTURE IN NARROW RINGS USING THE 
SCATTERING APPROACH

In	this	section	we	review	some	results	on	the	struc-
ture	of	the	rings	obtained	using	the	scattering	approach	on	
a specific toy model. Our toy model is a planar scattering 
billiard	on	a	Kepler	orbit,	an	impenetrable	disk	rotating	
around	a	given	point	on	a	circular	or	elliptic	Kepler	orbit.	
A	thorough	description	of	the	model	can	be	found	in	Merlo	
and	Benet	(2007).	This	model	is	unrealistic;	yet,	it	is	the	
most	simple	realization	of	Equation	(3),	it	can	be	studied	to	
some	extent	analytically	and,	most	important,	the	qualitative	
results	obtained	display	consistently	most	–if	not	all–	the	
structural	properties	observed	in	the	narrow	planetary	rings.	
The	rings	we	obtain	are	narrow,	non-circular,	sharp-edged,	
may	display	several	components	which	are	braided,	and	may	
also	display	non-continuous	rings	formed	by	a	number	of	
arcs.	It	is	encouraging	to	note	that	such	an	unrealistic	system,	
which	only	emphasizes	the	importance	of	considering	scat-
tering	dynamics,	can	display	such	qualitative	resemblance	
to	the	structures	observed	in	real	planetary	rings.	Similar	
results	have	been	obtained	in	other	systems,	including	the	
circular	restricted	three	body	problem	(Merlo	and	Benet,	
2007) and in a consistent implementation using five bodies 
(Olmedo,	2007)	.

We	begin	with	the	scattering	billiard	moving	on	a	
circular	orbit.	In	a	frame	rotating	with	the	disk	the	new	
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Figure	6.	Detail	of	the	ring	when	the	disk	moves	on	an	eccentric	Kepler	orbit	with	eccentricity	a)	ε	=	0.0001		and	(b)	ε	=	0.00167.	Note	the	change	in	the	
scales	among	the	frames	and	with	respect	to	Figure	1b.

Hamiltonian	becomes	time	independent	and	is	therefore	
a	conserved	quantity,	the	Jacobi	integral.	In	Figure	5a	we	
plot	a	ring	(grey	region)	obtained	in	this	case;	the	shaded	
region	is	the	hard	disk;	Figure	5b	shows	an	enlargement	of	
a region of the ring. In these figures the continuous black 
lines	are	analytical	estimates	given	by	the	stability	properties	
of	the	central	stable	periodic	orbit	(Benet	and	Merlo,	2004);	
as	shown,	they	give	excellent	estimates	of	the	boundaries	
of	the	ring.	The	ring	is	narrow,	eccentric	and	does	display	
sharp	edges.	In	an	inertial	frame,	the	ring	rotates	around	the	
origin	maintaining	its	shape;	this	is	due	to	the	circular	sym-
metry	of	the	problem.	Note	that	in	this	system	the	motion	of	
each	ring	particle	is	strictly	rectilinear	between	consecutive	
encounters with the disk, where it is specularly reflected in 
a	local	reference	frame	(Meyer	et al., 1995).	No	encounters	
with	the	disk	lead	to	escape	of	the	particle.	

When	the	keplerian	orbit	of	the	disk	has	eccentric-
ity	ε ≠ 0, the time dependence of the problem cannot be 

removed	except	by	extending	the	effective	number	of	
degrees	of	freedom	in	the	usual	way;	then,	the	system	has	
more	than	two	degrees	of	freedom.	Figure	6a	shows	an	
enlargement	of	a	region	of	the	ring	obtained	when	the	disk	
moves	on	a	keplerian	ellipse	with	eccentricity	ε	=	0.0001;	
Figure	6b	shows	a	detail	of	the	ring	corresponding	to	ε	=	
0.00167.	First,	we	observe	that	the	rings	are	narrower	than	
the	obtained	one	when	the	disk	moves	on	a	circular	orbit.	
However,	the	most	striking	feature	of	the	rings	displayed	is	
the	fact	that	they	are	actually	divided	in	two	or	more	distinct	
components,	known	as	strands.	These	strands	are	entangled	
along	the	azimuthal	angle	(measured	from	the	contact	point	
with	the	disk),	forming	a	braided	structure.	The	motion	of	
the	ring	particles	is	such	that,	a	ring	particle	whose	initial	
conditions	belong	to	a	certain	ring	component	stays	in	that	
component	afterwards.	In	terms	of	the	phase–space,	this	
implies	that	each	component	belongs	to	an	independent	
phase–space region; this interpretation will be confirmed 
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The	dynamics	of	such	multiple-component	rings	is	
rich	and	interesting.	In	Figures	7	we	present	the	whole	
ring	at	distinct	times	measured	as	a	fraction	of	the	period	
of	the	disk,	Td	=	2p	 ,	for	ε = 0.00167. In these figures, 
the	horizontal	axis	represents	the	polar	angle	measured	
anti-clockwise	from	the	point	in	contact	with	the	disk;	
the	vertical	axis	corresponds	to	the	radial	displacement	
with	respect	to	the	average	radial	distance.	First,	we	note	
in	Figures	7	the	clear	azimuthal	dependence	on	the	radial	
displacement. Moreover, the figures show that each ring 
component,	which	maintains	its	individuality,	undergoes	
changes	in	their	structure	independently	of	the	others.	
The	azimuthal	dependence	manifested	in	Figures	7	is	a	
consequence	of	the	broken	symmetry	which	a	non-zero	
eccentricity	induces.

Figure	6	also	manifests	a	subtle	dependence	upon	
the	value	of	ε.	This	is	further	illustrated	in	Figure	8,	where	
we	plot	the	corresponding	enlargement	of	a	region	of	the	
ring	obtained	for		ε = 0.00168. Comparing this figure with 
Figure	6b,	we	observe	that	one	of	the	ring	components,	the	
innermost	in	Figure	8,	has	completely	disappeared	and	a	
non-continuous	ring	has	appeared.	Such	“patches”	or	arcs,	
are	actually	found	everywhere	in	the	ring.	Their	structure	
obviously	recall	us	some	clumpy	behavior	observed	in	
some	narrow	rings	in	Saturn	and	the	famous	Adam’s	arcs	
in	Neptune.	The	fact	that	for	ε	=	0.00167	we	had	three	
components	and	now	there	are	only	two	and	the	arcs,	can	
misleadingly	be	interpreted	as	a	bifurcation	which	breaks	
one	ring	component	in	many	arcs.	Yet,	a	thorough	search	
was	carried	out	and	our	results	indicate,	as	it	was	shown	
already	in	Figure	6b	by	the	dark	spots,	that	these	arcs	are	
indeed	observed	for	values	of		ε	where	the	third	component	
is	still	present.	These	arcs	appear	from	a	ring	componet;	
small	changes	on	ε preserves	them.	This	therefore	rules	out	
the	idea	that	arcs	follow	from	a	bifurcation	that	destroys	
individual ring components. We finally observe that also in 
the	ring	of	Figure	8	there	are	arcs	immersed	in	the	outermost	
ring	component.

The	above	results	indicate	that,	using	the	scattering	
approach,	we	indeed	obtain	rings	which	are	narrow,	non-
circular,	and	have	sharp	edges.	These	properties	follow	
naturally	from	the	phase–space	structures	considered	within	
the	scattering	approach,	i.e.,	the	properties	of	the	regions	of	
trapped motion that appear literally as islands in the infinite 
ocean	of	escaping	trajectories.	In	addition,	these	rings	may	
display	properties	which	show	an	azimuthal	dependence:	
They	may	display	multiple	components	which	are	entangled	
and	form	braids,	and/or	a	number	of	localized	arcs.	The	
dynamical	behavior	becomes	richer	with	new	time	scales	
which	are	much	shorter	than	the	period	of	the	rotating	poten-
tial.	These	structural	properties	are	observed	in	distinct	real	
narrow	planetary	rings.	While	all	the	results	presented	above	
have	been	illustrated	using	a	toy	model,	a	simple	billiard	
system	rotating	on	a	Kepler	orbit,	the	scattering	approach	
is	robust,	and	it	can	be	applied	to	more	realistic	situations	
(Merlo	and	Benet,	2007;	Olmedo,	2007).

latter.	It	is	worth	mentioning	here	that	Saturn’s	F	ring	is	
precisely	an	example	of	ring	with	multiple	components	
which, in addition, does not fulfill the requirements of the 
sheperding	theory	(Esposito,	2002).

Figure	7.	Whole	ring	represented	using	polar	coordinates	(see	text),	when	
the	disk	moves	on	an	eccentric	Kepler	orbit	with	ε	=	0.00167.	Each	frame	
represents	different	times	t	expressed	as	fractions	of	the	orbital	period,	
Td = 2�. (a) t =	Td/10;	(b)	t =	3Td/10	;	(c)	t =	Td/2	.	Note	how	the	different	
ring	components	entangle,	forming	a	braided	structure.
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Figure	9.	Poincaré	surface	of	section	displaying	the	structure	of	phase	space	for	the	scattering	billiard	on	a	circular	orbit	(two	degree	of	freedom).	(a)	
Typical	structure	found	after	the	saddle–center	bifurcation.	The	black	and	red	curves	are	the	manifolds	of	the	unstable	periodic	orbit;	they	bound	a	region,	
which contains the stable periodic orbit, where trajectories cannot escape to infinity. (b) Phase-space structure when both periodic orbits are unstable. 
While there are orbits that never escape, the probability of finding them is zero.

PHASE–SPACE CONSIDERATIONS

In	this	section	we	shall	describe	the	phase–space	
structures	upon	which	the	scattering	approach	is	based.	
We	shall	characterize	the	underlying	changes	that	can	take	
place	when	the	Hamiltonian	has	more	than	two	degrees	of	
freedom,	which	are	thus	responsible	for	the	appearance	of	
multiple	components	and	arcs.	

We	begin	with	the	phase–space	of	a	two	degree	of	
freedom	Hamiltonian	scattering	system,	with	and	without	

a	region	of	trapped	motion.	As	mentioned	above,	a	generic	
scenario	for	the	appearance	of	periodic	orbits	in	Hamiltonian	
systems	is	the	so	called	saddle–center	bifurcation.	Generic	
here	implies	that	the	same	scenario	holds	for	a	large	variety	
of	interactions;	the	relevant	aspects	are	the	local	properties.	
The	saddle–center	bifurcation	occurs	when,	by	varying	a	
parameter	of	the	system,	two	new	periodic	orbits	are	created,	
one	of	them	is	stable	and	the	other	unstable.	In	simple	terms,	
it	occurs	when	the	solution	of	a	quadratic	equation	changes	
from	having	complex	roots	to	real-valued	solutions.	Just	
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Figure	8.	Detail	of	the	ring	when	the	disk	moves	on	an	eccentric	Kepler	orbit	with	eccentricity	ε	=	0.00168	.	The	innermost	ring	component	of	Figure	2b	
has	disappeared,	and	a	discontinuous	ring	formed	by	patches	or	arcs	is	now	apparent.	Note	that	the	outermost	component	also	displays	the	occurrence	
of	other	set	of	arcs.
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after	the	bifurcation,	the	stable	and	unstable	manifolds	of	
the	unstable	periodic	orbit	bound	a	region	around	the	stable	
periodic	orbit	(Figure	9a).	Out	of	this	region	unstable	motion	
dominates and, if the unstable fixed point is the outermost 
in	phase–space,	the	corresponding	(scattering)	trajectories	
escape to infinity. On the contrary, trajectories whose initial 
conditions	lie	inside	cannot	escape	from	a	vicinity	of	the	
stable fixed point and are therefore dynamically trapped. 
By	further	varying	the	parameter,	the	central	stable	periodic	
orbit	typically	becomes	unstable	through	a	period-doubling	
cascade.	The	phase–space	changes	topologically	(Figure	
9b),	and	may	become	eventually	completely	hyperbolic.	
For	two	degrees	of	freedom	Hamiltonian	systems	this	can	
be	quantitatively	characterized	by	computing	the	trace	of	
the	matrix	that	describes	the	linearized	dynamics	around	
a	periodic	orbit.	When	the	absolute	value	of	the	trace	is	
less	than	2,	the	periodic	orbit	is	stable	and	a	region	of	
bounded	motion	exists;	otherwise,	both	periodic	solutions	
are	unstable.	These	elementary	facts	were	used	to	construct	
the	analytical	estimates	displayed	in	Figure	5	(see	Benet	
and	Merlo,	2004).

For	more	than	two	degrees	of	freedom,	the	topologi-
cal	constrains	that	imply	that	the	manifolds	of	the	unstable	
orbit define a bounded region around the stable one cease 
to	apply.	Arnold	diffusion	follows	from	this.	This	is	par-
ticularly	important	since	the	explicit	time	dependence	in	
Equation (3) yields an effective phase–space of five dimen-
sions.	Yet,	there	are	theorems	that	provide	conditions	for	
the	existence	of	effective	bounded	motion	around	stable	
tori	(Jorba	and	Villanueva,	1997a,b).	In	order	to	obtain	a	
graphical	representation	of	the	changes	in	phase–space,	we	
shall	describe	the	parametric	behavior	of	a	relative	measure	
of	the	phase–space	volume	which	is	occupied	by	trapped	
trajectories.	This,	as	we	shall	show,	allows	us	to	understand	
the	appearance	of	structure	in	the	rings.	

In	order	to	understand	the	appearance	of	the	strands	
or	arcs	we	need	a	way	of	characterizing	the	phase–space	
regions	of	trapped	motion	in	a	global	way.	A	convenient	
form	of	achieving	this,	in	particular	when	the	number	of	
degrees	of	freedom	is	more	than	two,	is	to	consider	the	
relative	phase–space	volume	occupied	by	the	regions	of	
trapped	motion	(in	the	sense	of	effective	stability)	in	terms	
of	a	parameter.	For	the	scattering	billiard	in	a	circular	orbit	
this	quantity	can	be	parameterized	in	terms	of	the	Jacobi	
integral.	Yet,	the	Jacobi	integral	is	not	conserved	for	non-
zero	eccentricity.	We	have	therefore	opted	to	use	the	average	
time	between	consecutive	collisions	with	the	disk,	〈Δt〉.	Note	
that this quantity is equivalent to the average first-return 
time	to	a	Poincaré	section,	which	may	be	used	in	a	more	
general	context.	In	Figure	10	we	present	the	structure	of	
the	relative	phase–space	volume	for	(a)	ε	=	0	and	(b)	ε	=	
0.0001;	the	corresponding	rings	are	illustrated	in	Figures	5	
and	6a,	respectively.

In Figure 10a we observe at certain specific values of 
〈Δt〉 that	the	phase–space	volume	of	the	region	of	trapped	
motion	is	reduced	drastically.	It	can	be	shown	that	the	

location	where	such	abrupt	reduction	takes	place	is	given	
by	a	resonant	condition	on	the	stability	exponents,	i.e.,	in	
the	(complex)	phase	of	the	eigenvalues	of	the	linearized	
dynamics,	and	are	not	related	to	the	occurrence	of	rational	
ratios	among	any	relevant	orbital	periods	(Benet	and	Merlo,	
2008;	Benet	and	Merlo,	2009);	the	structure	of	Figure	
10a	for	two	degrees	of	freedom	Hamiltonians	is	universal	
(Contopoulos	et al., 1999;	Contopoulos et al.,	2005).	The	
structure	of	the	histogram	uncovers	important	aspects	of	
the dynamics; in particular, the fine scale “jumps” mark the 
destruction	of	certain	invariant	curves	as	the	parameter	is	
changed	(Simó	and	Vieiro,	2009).	These	invariant	curves,	
if	they	exist	bound	the	motion	of	some	outlying	chaotic	
regions;	otherwise	such	trajectories	escape	along	scattering	
trajectories.	This	occurs	also	around	any	secondary	satellite	
islands,	which	accounts	for	the	self-similar	structure	(see	
Simó	and	Vieiro,	2009).

In	Figure	10b,	which	corresponds	to	ε	=	0.0001,	we	
observe	in	general	some	qualitative	resemblance	with	the	
case	ε	=	0	(Figure	10a).	However,	instead	of	a	localized	
drastic	reduction	of	the	phase–space	volume	of	the	trapped	
region	as	displayed	in	Figure	10a,	in	the	present	case	a	true	
gap	is	observed	in	the	histogram.	The	gap	appears	around	
certain	stability	resonances	once	the	eccentricity	ε	is	non-
vanishing,	and	is	due	to	nonlinear	effects	(Benet	and	Merlo,	
2008).	Exciting	such	stability	resonance	divides	the	regions	
of	trapped	motion	in	two	disjoint	regions.	These	gaps	are	
actually	responsible	for	the	appearance	of	multiple	strands:	
If	the	gap	is	wide	enough,	the	regions	of	trapped	motion	
are,	in	a	sense,	distant	in	phase–space,	and	their	projec-
tion	onto	the	X-Y	plane	yields	a	ring	with	two	independent	
strands.	Then,	the	appearance	of	multiple-component	ring	
follows	from	higher-dimensional	and	nonlinear	effects.	For	
a	thorough	description	of	the	dependence	of	the	histograms	
on	〈Δt〉 upon	ε see	Benet	and	Merlo	(2009).

The	last	point	we	shall	address	here	is	related	to	
the	appearance	of	arcs.	Intuitively,	we	expect	that	arcs	
are	the	result	of	projecting	phase–space	regions	which	
resemble	chains	of	bubbles.	To	understand	their	appear-
ance	we	must	mention	that,	e.g.,	for	ε	=	0.00167,	there	are	
exactly	149	arcs	along	the	whole	ring.	Furthermore,	the	
exact configuration of the arcs in the X-Y 	space	(labeled	
in	an	arbitrary	way)	is	repeated	after	229	bounces	with	the	
disk.	These	observations	suggest	that	the	appearance	of	
arcs	is	linked	with	the	mean	motion	resonance	149:229.	
Recent	results	confirm	this,	which	has	also	served	to	
find other occurrences of arcs (Benet and Merlo, 2009). 
Such	resonances	introduce	a	strong	azimuthal	dependence	
on	certain	trapping	regions	in	phase–space;	this	seems	to	
create,	in	such	a	higher	dimensional	phase–space,	chains	
of	isolated	islands	where	trapping	takes	place,	which	seems	
to	be	an	extension	of	the	Poincaré-Birkhoff	theorem	for	
two degrees of freedom systems. We shall finally note that 
Adam's	arcs	in	Neptune	are	understood	through	the	occur-
rence	of	eccentricity	and	inclination	resonances	(Namouni	
and	Porco,	2002).
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CONCLUSIONS AND OUTLOOK

In	this	paper	we	have	reviewed	some	of	the	open	
problems	related	to	the	stability	and	structure	of	planetary	
narrow	rings,	and	described	a	general	and	self-consistent	
approach	to	understand	these	issues,	the	scattering	approach.	
Our	approach	is	based	on	the	local	structure	of	phase–space	
around	stable	(periodic	or	quasi-periodic)	solutions	in	
regions	where	scattering	dominates	the	dynamics.	The	
corresponding	structure	in	phase–space	allows	for	a	set	of	
positive	measure	to	exhibit	dynamically	trapped	motion,	
i.e. a non-zero probability to find a structure resembling 
a	ring.	The	basic	idea	is,	simply,	what	we	see	is	what	is	
dynamically	trapped	and	the	structure	is	precisely	uncovered	
by	what	it	has	escaped,	i.e., it is created by the confining 

mechanism.
We	have	illustrated	our	approach	using	an	unrealistic	

toy	model.	Our	results,	which	have	only	a	qualitative	
value,	show	the	occurrence	of	narrow	non-circular	rings,	
with	sharp	edges,	which	may	display	multiple	components	
and	arcs.	The	interest	should	not	be	the	example	used,	but	
the	fact	that	the	scattering	approach	is	robust.	The	results	
obtained	in	such	an	unrealistic	system	are	encouraging,	
precisely	because	of	the	qualitative	agreement	with	the	
observations.	The	structure	that	appears	is	understood	
in	terms	of	the	local	properties	of	phase–space	which	is	
dominated	by	scattering	trajectories.	This	approach	can	be	
taken	over	using	more	realistic	Hamiltonian	models	which	
certainly	include	gravitational	interactions.	We	are	working	
along	these	lines.

Figure	10.	Histograms	of	the	average	time	between	consecutive	collisions	with	the	disk	for	an	ensemble	of	ring	particles	for	the	scattering	billiard	on	a	
Kepler	orbit	with	(a)	ε	=	0	and,	(b)	ε = 0.0001. The histograms give a measure of the phase−space volume occupied by trapped trajectories. The main 
gaps are related to the stability resonances, indicated as vertical dash−dotted lines. For non−zero ε,	the	stability	resonances	separate	the	regions	of	trapped	
motion.	This	yields	multiple	ring	components.
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