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ABSTRACT

A disk around a star is the initial configuration commonly accepted for the material that forms 
a planetary system such as our own. In this work, the first stage in the evolution from a disk to a set of 
planetesimals is studied. This stage consists in the formation of dense regions, which are able to collapse 
into objects that are the seeds for planet formation. This process is examined for a stationary configuration 
containing two dense rings, fixed in Keplerian radii and with mass continually increasing with time, which 
was reported in a previous study as the final outcome of a hydrodynamic simulation of a cloud collapse 
toward a star (Nagel, E., 2007, Rev. Mex. Astron. Astrof., 43, 257-270). Results indicate that in such a 
configuration the rings will eventually acquire enough mass to be prone to gravitational instabilities, 
which will cause fragmentation. The existence of unstable modes allows estimating typical sizes of the 
collapsed objects, given by the unstable wavelengths. Ring masses may be found via the mass surface 
density of the analysed model. The conclusion is that the unstable rings contain enough mass to result in 
the fragmentation and formation of planetesimals, which eventually accumulate in objects with masses 
typical of planets in the Solar System. 
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RESUMEN

Un disco alrededor de una estrella es la configuración inicial comúnmente aceptada para el material 
de donde provienen los sistemas planetarios como el nuestro. En este trabajo se estudia la primera etapa 
de la evolución de un disco a un conjunto de planetesimales, la cual consiste en la formación de regiones 
suficientemente densas para colapsar y formar objetos que sean la semilla para la formación de planetas. 
Este proceso se examina para una configuración estacionaria que contiene dos anillos densos, fijos en 
radios keplerianos y cuya masa aumenta continuamente en el tiempo, la cual se obtuvo en un estudio 
previo como resultado de la simulación hidrodinámica del colapso de una nube hacia una estrella (Nagel, 
E., 2007, Rev. Mex. Astron. Astrof., 43, 257-270). Los resultados indican que una configuración de este 
tipo permite asegurar que eventualmente los anillos adquieran masas suficientemente grandes para ser 
propensos a inestabilidades gravitacionales que los puedan fragmentar. La existencia de modos inestables 
permite estimar tamaños típicos de los objetos colapsados, dadas las longitudes de onda inestables. Con 
la densidad superficial de masa del modelo analizado es posible encontrar las masas de estos objetos. La 
conclusión a la que se llega es que los anillos inestables contienen suficiente masa para que el resultado 
de la fragmentación forme planetesimales que eventualmente puedan acumularse en objetos con masas 
típicas de los planetas del Sistema Solar.

Palabras clave: discos de acreción, inestabilidades gravitacionales, hidrodinámica, anillos.
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INTRODUCTION

It	has	been	well	known	for	many	decades	that	gravi-
tational	instabilities	(GI)	are	an	important	mechanism	for	
the	collapse	of	clumps	in	protoplanetary	disks,	the	seeds	of	
planets.	Studies	of	systems	such	as	our	own	are	important	
to	understand	the	origin	of	other	planets;	of	course,	Earth’s	
origin	is	also	a	very	interesting	subject.	Based	on	this	idea,	
Cameron	(1978)	studied	several	disk	models,	characterized	
by	parameters	such	as	the	angular	momentum	and	mass	
accretion	rate	of	a	cloud	that	collapses	to	form	a	star-disk	
system.	His	conclusion	was	that	at	many	times	of	its	life,	the	
disk	was	unstable	against	axisymmetric	GIs.	Thus,	rings	that	
are	prone	to	collapse	would	form,	with	a	planetesimal	as	a	
likely	outcome.	However,	the	dynamics	of	the	collapse	was	
not	taken	into	account	by	Cameron	(1978);	he	assumed	that	
the gas falls onto the disk at the position where the specific 
angular	momentum	of	the	infalling	particles	equals	that	of	
the	material	already	contained	in	the	disk.	This	assumption	
is	not	true	if	the	correct	solution	for	the	trajectories	of	the	
collapsing	material	(Cassen	and	Moosman,	1981;	Ulrich,	
1976)	is	used.	Thus,	in	this	paper	I	follow	the	work	by	Nagel	
(2007), in which a dynamically correct initial configuration 
is	given.

The	importance	of	the	work	by	Nagel	(2007)	is	that,	
from the cloud collapse, a configuration with dense zones 
can	naturally	be	produced.	The	disk	is	characterized	by	two	
dense	rings	located	at	Keplerian	radii,	positions	where	the	
gravitational	force	of	the	star	is	compensated	by	the	centrifu-
gal	force.	The	rings	are	in	equilibrium	because	their	central	
parts	correspond	to	a	density	maximum;	hence,	there	are	no	
pressure	forces.	This	pattern	is	stationary	in	the	sense	that	
increasing	disk	size	(due	to	material	with	ever-increasing	
angular	momentum,	continuously	falling	from	the	cloud	
toward	the	disk)	is	followed	by	motion	of	the	rings	to	new	
equilibrium	positions.	During	this	process,	the	mass	of	
the	disk	increases,	such	that	the	rings	accumulate	material	
at a constant rate. All the details of this configuration can 
be	found	in	Nagel	(2007);	the	salient	feature	is	that	a	disk	
configuration physically consistent with the collapse of the 
cloud	that	forms	it,	has	dense	zones	that	at	some	time	are	
able	to	activate	GI.

Gravitational	instabilities	were	studied	by	Nakamoto	
and	Nakagawa	(1994)	in	a	disk	evolving	due	to	viscosity	
and	accounting	for	the	cloud	material	that	continuously	
falls	into	it.	The	model	includes	self-gravity,	viscous	heat-
ing,	and	accretion	shock	heating.	The	arrival	to	instability	
was	studied	using	the	Toomre	parameter	(Toomre,	1964),	
which	gives	a	mass	threshold	for	axisymmetric	gravitational	
instabilities.	The	disk	is	formed	by	the	accretion	of	mate-
rial	from	the	cloud;	however,	the	evolution	is	followed	on	
a	longer	time	scale	than	the	one	analysed	in	Nagel	(2007).	
Thus,	the	disk	structure	found	in	the	latter	is	not	present	in	
the	former.	For	the	purposes	of	this	paper,	the	use	of	Nagel	
(2007)	model	is	more	appropriate.

Another	attempt	to	characterize	the	disk	at	the	stage	

of	disk	formation	was	developed	by	Tomley	et al.	(1991).	
They	used	the	falling	solution	of	Cassen	and	Moosman	
(1981)	as	initial	condition,	giving	a	surface	density	that	
increases	linearly	in	time	—the	same	dependence	found	
by	Nagel	(2007)	for	the	stationary	state.	Simulations	were	
given	with	a	parameterized	cooling	and	the	instabilities	were	
monitored	with	the	parameter	given	by	Toomre	(1964).	In	
this	way,	they	demonstrated	that	the	evolution	of	unstable	
states is strongly dependent on the cooling efficiency. There 
is	a	difference	in	the	stationary	state	between	Tomley	et 
al.	(1991)	and	Nagel	(2007),	however.	In	Nagel	(2007),	
the	full	dynamical	evolution	in	the	disk	plane	is	followed,	
thus,	I	consider	that	the	disk	pattern	found	in	the	latter	is	
more	reliable.	

Instability	due	to	self-gravity	is	not	the	only	mechanism	
that	generates	regions	with	increasing	density	that	eventually	
could	collapse	to	form	a	planetesimal.	Youdin	and	Goodman	
(2005)	found	that	interpenetrating	streams	of	solids	and	
gas	in	a	Keplerian	disk	produce	a	local,	linear	instability,	
without	requiring	self-gravity	of	the	clump.	Numerical	
simulations	were	developed	by	Youdin	and	Johansen	(2007)	
and Johansen and Youdin (2007). The first paper confirms 
the	analytical	values	for	the	instability	growth	rate	and	the	
second	one	studies	the	nonlinear	behaviour,	characterizing	
the	density	enhancements.	The	fate	of	these	regions	inside	
a	realistic	picture	of	planetary	formation	must	include	self-
gravity	and	collisions	of	the	solid	particles.

The	evolution	of	solids	and	gas	in	a	disk	with	viscos-
ity	parameterized	with	α	(Shakura	and	Sunyaev,	1973)	is	
presented	in	Stepinski	and	Valageas	(1996a,	1996b).	The	
most	important	physical	result	given	by	these	authors	is	
that	small	particles	are	strongly	coupled	to	the	gas,	in	the	
sense	that	the	particles	follows	the	gas	motion.	For	larger	
particles,	which	have	coagulated	from	smaller	ones,	the	
evolution	differs	appreciably.	They	are	decoupled	from	the	
gas,	so	the	velocities	of	both	components	are	not	the	same.	
In	this	case,	interactions	like	gas	drag	become	relevant.	
Afterwards,	the	system	evolves	until	the	gas	density	is	
reduced	to	levels	where	the	only	relevant	force	that	acts	on	
a	solid	body	is	the	gravitational	interaction	with	the	rest	of	
the	solid.	Stepinski	and	Valageas	(1996a)	also	followed	the	
coagulation,	sedimentation	and	evaporation/condensation	
of	the	particles.	They	found	particles	with	sizes	up	to	105	
cm	at	times	t=	105	yr	from	the	beginning	of	the	evolution.	
The	solids	are	initially	given	by	1	mm	particles	uniformly	
distributed	and	with	a	density	of	one	percent	of	the	gas	
density.	These	large	particles	are	completely	decoupled	
from	the	gas;	thus,	their	position	is	not	dependent	on	gas	
drag	and	they	will	continue	to	grow	in	mass	at	the	expense	
of	solid	and	gaseous	material	in	the	disk.	The	time	scale	
for	the	evolution	depends	on	the	viscosity	parameter	α;	the	
disk	evolves	more	slowly	for	a	lower	value.	Unfortunately,	
this value is difficult to restrict by observations, and thus, 
the	times	scales	for	the	evolution	are	not	well-known.	An	
important	thing	to	point	out,	which	is	clearly	stressed	by	
Stepinski and Valageas (1996b), is that the final outcome in 
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use	the	fact	that	typical	velocities	of	the	material	falling	to	
the	star-disk	system	are	supersonic,	so	that	a	ballistic	de-
scription	is	ad hoc	for	the	purpose	of	the	paper.	The	cloud	
is	axisymmetric	and	rotates	uniformly.	In	this	solution,	the	
material	falls	towards	the	star,	however,	because	of	rotation,	
the	trajectories	never	touch	the	star.	This	set	of	particles	will	
arrive	from	above	and	below	the	plane	perpendicular	to	the	
angular	velocity	axis	that	contains	the	star.	Any	particle	
coming	from	above	(below)	has	a	twin	coming	from	below	
(above)	as	in	a	mirror	image.	The	interaction	of	this	huge	
set	of	pairs	results	in	a	shock	parallel	to	the	plane.	Thus,	
the	shocked	material	is	restricted	to	move	in	the	plane,	and	
will	form	the	disk.

The	material	deposited	in	the	disk	has	a	negative	ra-
dial	velocity.	Due	to	this,	the	particles	will	move	within	the	
plane,	initially	moving	towards	the	star,	until	they	arrive	to	
their	pericenter,	the	closest	approach	of	the	orbit	with	respect	
to	the	star.	At	this	position,	which	is	different	for	each	ring	
(the	system	is	axisymmetric),	the	material	will	begin	to	
move	in	the	opposite	direction.	The	collective	behaviour	of	
these	particles	is	represented	by	a	dense	ring,	which	becomes	
denser	and	more	massive	as	its	outward	evolution	proceeds.	
This	ring	eventually	will	arrive	to	an	equilibrium	location	at	
the Keplerian radius (which depends on the specific angular 
momentum)	associated	with	it.	The	calculation	of	this	radius	
is	straightforward,	because	the	material	that	is	continuously	
incorporated	into	the	ring	mixes	perfectly	with	the	mate-
rial	that	is	already	there.	Thus,	the	outcome	is	a	ring	with	
constant specific angular momentum ().

The	formation	and	evolution	of	the	dense	ring	can	
be	explained	by	analysing	the	dynamical	evolution	of	the	
material	that	arrives	at	the	disk	plane.	Moreover,	a	continu-
ous flux of material from the cloud does not change the key 
elements	of	the	explanation	given	in	the	last	paragraph.	A	
well-defined structure, moving with positive radial veloc-
ity,	i.e.,	the	ring,	will	clear	the	material	on	the	inner	side	
of	the	disk,	where	fresh	material	from	the	cloud	can	be	
incorporated.	This	matter	will	evolve	as	does	the	material	
forming	the	ring,	thus,	an	inner	dense	ring	is	also	produced.	
This	two-dense-ring	pattern	is	maintained	during	the	infall	
stage of the cloud, hence, this configuration is stationary, 
see	Figure	1.	

A	physical	way	to	explain	this	(for	a	more	complete	
description	see	Nagel,	2007),	is	as	follows:	a	rigidly	rotat-
ing	cloud	is	feeding	the	star-disk	system;	in	such	a	cloud,	
	increases	from	zero	at	the	rotation	axis	to	a	maximum	
value	in	the	disk	plane.	Taking	any	two	particles,	the	one	
with	the	larger	value	for		will	arrive	further	out	in	the	disk,	
due	to		conservation.	A	particle	with	=0	will	fall	to	the	
star.	The	picture	that	emerges	from	these	ideas,	based	on	
the	simulation	presented	in	Nagel	(2007),	is	that	the	cloud	
can	be	divided	into	three	parts:	the	part	with	smaller	val-
ues	for		will	feed	the	star,	the	part	with	larger	values	for	
 will eventually end in the outer dense ring, and finally, 
the	intermediate		region	will	be	associated	with	the	inner	
dense	ring.

a	disk	composed	of	solids	and	gas	strongly	depends	on	the	
initial conditions. In other words, the final density profile 
differs for each initial density configuration. For example, 
one such initial density profile is given by the “Minimum 
Solar	Nebula’’	model,	a	gas	disk	with	the	mass	of	the	plan-
ets	increased	to	solar	abundances;	the	mass	of	this	disk	is	
between	0.01	and	0.02	Msolar.

This	work	analyses	the	chances	for	a	dense	ring	in	the	
disk	described	by	Nagel	(2007)	to	reach	instability	within	
the	framework	of	planet	formation.	Extensive	details	of	
other	mechanisms	can	be	found	in	Wetherill	(1980).

The	instabilities	described	in	the	main	body	of	this	
paper	result	in	a	set	of	solid	objects	immersed	in	a	gaseous	
disk, but their final fate is beyond the scope of this paper. For 
a	recent	paper	on	the	evolution	of	such	objects,	including	the	
accretion	of	other	bodies,	gas	accretion	onto	the	cores	thus	
formed,	their	secular	migration,	and	the	characterization	of	
the	resulting	planetary	systems	in	terms	of	the	distribution	
of	masses	and	semimajor	axes	of	the	planets,	I	recommend	
the	work	by	Ida	and	Lin	(2004).	The	growth	of	a	core	by	
the	accretion	of	planetesimals	and	its	migration	toward	the	
star	was	studied	by	Chambers	(2006).	

STATIONARY TWO DENSE-RING-PATTERNED 
DISK INSIDE A COLLAPSING CLOUD 

Almost	all	theories	for	the	formation	of	planets	be-
gin	with	a	disk	around	a	star.	Two	main	points	sustain	this	
assertion. The first is that the planets and the disk contain 
angular	momentum.	The	second	is	the	fact	that	the	planets	
in	the	Solar	System	are	rotating	in	the	same	plane,	reminis-
cent of a flat disk. Thus, in this paper, I also begin with this 
assumption.	An	additional	assumption	is	that	processes	in	
the	disk,	during	its	formation	by	material	falling	from	the	
progenitor cloud, are able to create a configuration prone to 
form	dense	objects	that	could	be	the	seeds	of	planets.	The	
physical	mechanism	on	which	this	work	is	based	is	the	ac-
tivation	of	gravitational	instabilities	(GI)	by	the	presence	of	
dense zones in the disk. By definition, a GI requires a dense 
zone	to	begin	with,	and	an	instability	means	that	an	increase	
in	density	will	lead	to	an	even	higher	density.	This	process	
works	as	a	chain	reaction,	until	some	other	mechanism	is	
able	to	halt	the	collapse.

For	instance,	Boss	and	Bodenheimer	(1979)	were	
able	to	produce	such	dense	zones	in	numerical	simulations	
of	cloud	collapse	by	explicitly	putting	in	small	density	
perturbations.	Instead	of	such	initial	perturbations,	I	use	a	
massive	ring	to	obtain	the	same	result.

The	main	premise	in	this	work	is	that	a	disk	with	a	
physical	mechanism	to	form	dense	zones	is	a	natural	system	
for	the	study	of	GI	processes;	these	dense	zones	then	col-
lapse	to	form	planetesimals.	A	disk	with	dense	zones	is	the	
outcome	of	a	hydrodynamical	simulation	for	cloud	collapse	
developed	in	Nagel	(2007).	The	initial	condition	in	density	
and	velocity	was	taken	from	Ulrich	(1976).	These	works	
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From	the	point	of	view	of	spectral	modeling	of	stars	
with	disks	(Adams	et al.,	1990;	D’Alessio	et al.,	1997;	Lay	
et al.,	1997;	Kikuchi	et al.,	2002),	it	is	practical	to	have	a	
model for the disk that can be fitted to any total mass. In 
the	model	described	in	Nagel	(2007),	the	ratio	between	the	
masses	of	the	two	rings	is	constant.	The	mass	surface	density	
S,	in	terms	of	radius,	for	a	disk	with	mass	Md =	0.02	Msolar	
is	shown	in	Figure	2,	where	Rd	is	the	maximum	Keplerian	
radius.	This	paper	will	focus	on	the	study	of	GIs	that	also	
require a disk (or rings) with any specified mass. In the two-
ring	disk	model	(Nagel,	2007),	it	is	easy	to	calculate	the	time	
when	either	ring	becomes	unstable,	establishing	in	this	way	
a	powerful	tool	to	model	these	disks.	The	study	of	GIs	for	
some	disk	states	will	be	described	in	the	next	section.

GRAVITATIONAL INSTABILITIES THAT BREAK 
THE RINGS

In	an	equilibrium	state	of	all	the	external	forces,	a	
region	denser	than	the	surroundings	can	become	unstable	if	

the	density	is	larger	than	a	threshold	value.	In	this	case,	the	
self-gravity	of	the	unstable	clump	will	dominate,	resulting	
in collapse. In this section, various configurations prone to 
instability	will	be	reviewed	and	applied	to	the	stationary	disk		
with	two	dense-rings	described	in	the	previous	section.	

Instabilities in a gaseous disk 

The first gravitational stability criterion well-known 
to	astronomers	is	the	Jeans	criterion	(Jeans,	1928).	This	
criterion is applied to a non-moving fluid of density ρ.	The	
material	is	stable	if

	 kT
2cs

2	>	4�Gρ,		 (1)	

where	cs	is	the	sound	velocity,	G	is	the	gravitational	constant	
and	kT	is	the	total	wave	number	of	the	(un)stable	mode.

In the case of a fluid that is uniformly rotating and 
has infinite thickness, some modes with wave vectors per-
pendicular	to	the	rotation	axis	are	unstable	(Chandrasekhar,	

0.1

Z

0
0 0.5 1 1.5R

Figure	1.	R-Z	plane	in	the	hydrodynamical	simulation	of	Nagel	(2007)	with	contours	of	equal	density,	ρ (solid line) and contours of equal specific angular 
momentum,		(dotted	line).	R	and	Z	correspond	to	a	cylindrical	radius	and	a	vertical	coordinate,	respectively.	The	values	of	the	ρ	contours	are	given	by	
ρo/2a	(a=3,4,5,6,7,8).	The	values	of	the		contours	are	0.1,	0.2,...,	0.7,	0.71,	0.73,	0.75,	0.77,	0.79,	0.8,	0.9	from	left	to	right.	The	plot	is	shown	at	2000	
years for the parameters used, when the stationary configuration is reached. The arrows represent the direction of the velocity for the particles that are 
accreting	to	the	disk.
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1961).	The	stability	criterion	then	becomes
	

	 k 2cs
2	>	4�Gρ - 4Ω2	,		 (2)

where	k	is	a	wave	vector	restricted	to	the	plane	perpendicular	
to the rotation axis, and Ω is the magnitude of the angular 
velocity. Thus, rotation has an influence in defining the 
unstable	wavelengths.

Using the definition k =2�/λ,	I	conclude	that	the	mini-
mum	unstable	wavelength	is

	 	(3)

for	a	rotating	gaseous	disk.	This	result	means	that	the	out-
come	of	an	unstable	structure	would	be	a	set	of	objects	with	
characteristic	sizes	larger	than	λmin.	From	the	disk	with	Md=	
0.02	Msolar	described	in	Nagel	(2007),	I	take	the	value	for	the	
typical	density	in	any	of	the	dense	rings	(ρ=	2×10-13	g	cm-3),	
the angular velocity at the center of the rings (Ωi and Ωe,	for	
the	inner	and	outer	rings,	respectively)	and	sound	velocity	(cs 

=	3.57×104	cm-1)	of	a	cloud	at	T=	15	K	composed	of	atomic	
hydrogen.	This	set	of	values,	substituted	in	Equation	3,	al-
lows finding an imaginary λmin,	which	means	that	the	stability	
criterion given in Equation 2 is fulfilled. Hence, the system 
is	stable	and	there	are	no	unstable	wavelengths.

For specified values of the stellar mass, Mstar,	and	disk	
radius,	Rd, the value of Ω at the center of each ring will be 
fixed. Thus, �Gρ > Ω2 can eventually be fulfilled, because 
ρ	increases	monotonically	with	time.	The	minimum	density	
for	unstable	modes	to	appear	is	ρunst,i = Ωi2	/�G =	0.272×10-10	
g	cm-2	for	the	inner	ring	and	ρunst,e = Ωe2	/�G =	0.881×10-12	
g	cm-2	for	the	outer	ring.

It	is	noteworthy	that	the	previous	values	allow	con-
cluding that the outer ring is the first to become unstable 
and	prone	to	form	cores	that	could	be	the	seeds	for	the	
outer	planets.	The	instability	criteria	for	a	dust	layer	around	
the	disk	midplane	discussed	in	the	following	section	also	
show	that	the	outer	ring	becomes	unstable	before	the	inner	
one.	The	mass	of	the	gas	objects	thus	formed	is	not	the	
final mass, because additional gas and solid objects can be 
accreted	by	them.	A	study	of	this	process	for	a	solid	body	
slowly	increasing	its	mass	with	material	that	comes	close	
enough	to	be	trapped	in	its	gravitational	well	can	be	found	
in	Hayashi	et al.	(1977).	As	previously	mentioned,	the	fate	
of	the	collapsed	objects	is	beyond	the	scope	of	this	paper;	
the	qualitative	approach	given	here	estimates	typical	sizes	
of	the	bodies	but	does	not	give	a	detailed	account	of	the	size	
distribution.	The	answer	to	this	problem	is	addressed	with	
full	hydrodynamical	simulations	in	protoplanetary	disks	
(Boss,	2001;	Mejía	et al.,	2005;	Boley	et al.,	2006).	For	the	
stationary configuration described in the previous section, an 
appropriate	simulation	will	be	developed	in	the	future.

Goldreich	and	Lynden-Bell	(1965)	solve	the	problem	
for a disk with finite thickness that is uniformly rotating. The 
typical	size	of	the	unstable	wavelength	is	found,	with	a	value	
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around	the	thickness	of	the	disk,	H.	The	results	from	that	
paper	can	be	applied	to	the	disk	described	in	the	previous	
section, where the angular velocity (Ω) depends on radius, 
by	noting	the	following:	First,	the	disk	is	geometrically	
thin,	H	<<	R.	In	this	case,	a	typical	unstable	wave	will	not	
cover a large radial zone, so that the angular velocity (Ω) 
is approximately constant, thus fulfilling the Goldreich 
and	Lynden-Bell	(1965)	assumption.	For	the	two-ring	disk	
model,	the	disk	is	considered	isothermal	(Nagel,	2007),	thus	
I concentrate on a fluid with an equation of state given by P 
	ρ,	where	P is	the	gas	pressure.	Goldreich	and	Lynden-Bell	
(1965)	also	give	stability	criteria	for	gases	described	by	P	
	ρ2	and	P  ρ∞;	the	latter	corresponds	to	an	incompress-
ible fluid. For an isothermal disk, the stability criterion can 
be	written	as:

    .		 (4)

Application to a two-ring disk
Equation	4	can	be	used	for	the	two-ring	pattern	disk	

described	in	the	previous	section,	for	characteristic	values	
of	ρ and Ω. These values can be taken from Nagel (2007), 
estimating	ρ	using	the	relation	ρ=S/H	with	S	and	H	given	
as typical values, and Ω as the Keplerian angular velocity 
of	the	center	of	either	of	the	rings.	From	here	on,	variables	
with	a	subscript	i	refer	to	the	inner	ring	while	those	with	the	
subscript	e	refer	to	the	external	ring.	The	instability	criterion	
is	applied	to	a	disk	with	mass Md=	0.02	Msolar,	where	Si=	10	
g	cm-2,	Se=	30	g	cm-2,	Hi=	3	AU,	He=10	AU, Ωi=	2.39×10-9	
s-1 and Ωe=	4.3×10-10	s-1.	Both	H	values	for	the	rings	are	
taken	from	Figure	1.	The	typical	S values	for	the	rings	are	
shown	in	Figure	2.	From	these	data,	ρi	and	ρe	are	almost	the	
same,	thus,	the	typical	value	for	both	rings	in	a	disk	with	
this	mass	is ρ =	2×10-13	g	cm-3.	Substitution	of	these	values	
in	Equation	4	gives	Ii=	0.00184	and	Ie=	0.0567. Thus,	for	a	
disk	with	Md=	0.02Msolar,	both	rings	are	stable	to	this kind	
of	instability.	This	result	is	expected	for	a	disk	much	less	
massive	than a	solar	mass.	A	more	massive	disk	can	be	eas-
ily	produced,	allowing the	accretion	from	the	cloud	to	last	
longer.	In	the	model	by Nagel	(2007),	Md and Ω increase 
and	decrease	as	a	function	of	time,	respectively,	in	the	same	
proportion	for	both	rings.	On the	other	hand,	assuming	that	
the	thickness	of	the	disk	is	time	independent during	the	time	
it	takes	to	reach	a	gravitational	instability state,	then	Ie/Ii 

does	not	depend	on	time	either.	At	this	particular	moment,	
Ie	and	Ii	have	the	ratio	Ie/Ii=	30.89.	At the	time	when	the	
outer	ring	reaches	an	instability	state	(Ie=	0.73),	Ii=0.024,	
so it is far away from an unstable configuration. A strong 
and	valuable	conclusion	is	that	the	outer	ring	becomes	
unstable	before	the	inner	one. The	relevance	of	this	result	
is	that	with	a	large	mass	reservoir	there	is	a chance	to	form	
large solid objects, which are first produced on the outer	
side	of	the	disk.	Hence,	if	this	instability	is	responsible	for 
the	formation	of	the	planets,	the	outer	planets	are	formed	
before	the	terrestrial	planets.	This	attractive	suggestion	is	
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based	on	the	assumption	that	the	outer	and	inner	planets	are	
formed	from	the	outer	and	inner	dense	rings.	However,	in	
order	to	prove	this	idea,	a	complete	treatment	of	the	problem	
is	required,	including	all the	elements	that	characterize	the	
physical	processes	relevant	to	it, elements	able	to	describe,	
for	instance,	the	growth	and	evolution	of	the	planetesimals	
toward their final (gas free) configuration.

Goldreich	and	Lynden-Bell	(1965)	provided	a	critical	
wavelength (λcrit),	and	showed	that	some	modes	with	wave-
lengths	around	this	value	are unstable.	For	the	isothermal	
case	λcrit=	4.49	H;	using	this	length, the	mass	of	a	collapsed	
object	is	given	by	M =	λcrit

2Hρ. For	the	stable	case	given	
by	the	disk	with	mass	Md	=	0.02,	Mi=	0.18×10-3	Msolar	and	
Me=	6.7×10-3	Msolar. The first (second) is almost an order of 
magnitude	smaller	(larger)	than	the	mass	of	Jupiter,	thus	I	
conclude with this simplified analysis that the	outer	dense	
ring	is	able	to	produce	objects	of	the	mass	of	Jupiter.	In any	
case,	the	planetesimals	that	form	by	this	mechanism	are	gas-
eous,	like	the	ones	found	by	Boss	(2001),	which	performs	a	
full	three	dimensional	simulation	of	a	self-gravitating	disk,	
with	heating	and	cooling,	including	radiative	transfer	in	the	
diffusion	approximation.

The	Goldreich	and	Lynden-Bell	instability	is	associ-
ated	to	a	disk,	but	the	important	feature	in	the	pattern	found	
by Nagel (2007) is the clearly defined rings. Yabushita 
(1966,	1969)	studied	the	stability	for	a	(Saturn-like)	ring	
with	inner	radius	a	and	outer	radius	b,	where	the	density	
smoothly decays to zero. The non-perturbed configuration 
is	given	by	the	equilibrium	between	the	centrifugal	force,	
the	gravitational	force	of	the	planet	(or	star)	and	the	self-
gravity	of	the	ring.	The	density	distribution	of	the	ring	that	

was	studied	is	axisymmetric	and	is	given	by
   

   .		 (5)	

In	this	equation,	the	value	for	λ	can	be	calculated	
using	the	fact	that	the	density	is	zero	at	r =	a,	and	also	at	
r=	b.	J0	and	Y0 are Bessel functions of the first and second 
type,	respectively.

Yabushita	(1966,	1969)	found	the	critical	mass	(Mcrit)	
for	instability	in	terms	of	the	ratio	a/b.	For	two	values	for	
this	ratio,	his	result	were

 Mcrit =	0.0386	Ms,	a/b=	0.2,		 (6)
 Mcrit =	0.0109	Ms,	a/b=	0.5,

where	Ms	is	the	Saturn	mass.	For	the	two-ring	disk,	the	mate-
rial	is	moving	around	the	star,	thus,	Ms	corresponds	to	the
mass	of	the	star.

This	result	can	be	applied	to	the	inner	and	outer	dense	
rings	described	previously.	For	the	outer	ring,	a=	0.4	Rd	
and	b=	0.8	Rd,	so,	a/b=0.5;	and	for	the	inner	ring,	a=	0.1	
Rd	and	b=	0.3	Rd,	so,	a/b=0.33.	These	values	and	the	ones	
given	at	the	beginning	of	this	section,	in	Mring=ρ�(b2-a2)H,	
can be used to find the mass associated with each ring. As 
before,	subscripts	i	and	e	refer	to	the	inner	and	outer	rings,	
respectively.	From	this	relation,	Mring,i=	0.0025	Msolar	and	
Mring,e=	0.05	Msolar.	Compared	to	Equation	6,	this	means	that	
the	outer	ring	is	gravitationally	unstable	and	the	inner	one	is	
stable.	Note	that	from	the	analysis	of	Goldreich	and	Lynden	
Bell	(1965),	the	material	in	the	ring	is	stable;	however,	the	
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Figure	2.	Surface	density	S	vs.	radius	R	for	a	disk	with	mass	Md=	0.02	Msolar.	R	is	given	in	units	of	the	maximum	Keplerian	radius	(Rd)	and	S	in	g	cm-2.	
This	surface	density	corresponds	to	an	axisymmetric	disk	viewed	pole-on.
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this	mechanism	to	a	real	disk	is	that	the	settling	of	material	
towards	the	midplane	should	be	accomplished	in	a	non	
turbulent	medium.	Unfortunately,	the	difference	in	velocity	
between	the	particulate-dominated	subdisk	and	the	sur-
rounding	gas	disk	is	able	to	produce	turbulent	eddies,	which	
invalidate	the	previous	assumption.	Some	years	later,	the	
same author (Sekiya, 1998) confirmed the impossibility of 
the	gravitational	instability	occuring	in	a	turbulent	dust	layer	
unless	the	ratio	of	dust	to	gas	surface	density	is	enhanced	
over	cosmic	values.

Finally,	Youdin	and	Shu	(2002)	surmounted	this	
problem	by	describing	possible	mechanisms	to	increase	
the solids to gas ratio, with respect to the “Minimum Solar 
Nebula’’,	to	the	values	required	for	the	GI	to	appear.	The	
solids	include	metals,	silicates	and	even	ice;	the	latter	is	
taken into account if the location is outside the “ice line’’, 
a	boundary	that	divides	a	region	far	away	(close	to)	the	
star,	where	the	ice	can(not)	survive.	Another	element	that	
is	important	to	consider	is	that	some	materials	are	volatile	
at sufficiently high temperatures (Gómez and D’Alessio, 
2000).	Thus,	the	dust	concentration	will	strongly	depend	
on the temperature profile of the disk. 

The	advantage	of	this	planetesimal	formation	mecha-
nism	is	that	the	relatively	small	amount	of	gas	with	respect	
to solids represents a gas depleted configuration, which 
reduces	the	influence	of	gas	(by	drag,	for	example)	in	
the	nascent	planets.	In	other	words,	the	reduction	of	tidal	
interaction	between	a	core	and	the	gaseous	disk	should	
reduce	the	rate	of	migration	towards	the	star,	improving	
the	chances	for	survival.	

Application to a two-ring disk
The	main	assumption	in	the	Goldreich	and	Ward	

(1973)	analysis	is	that	the	medium	is	non	turbulent	in	the	
sense that solids floating in the gas will continuously settle 
towards	the	midplane	(Kusaka	et al.,	1970),	forming	a	high	
density	dust	layer.	For	the	case	of	a	dense,	two-ring	disk,	
the	particles	fall	from	the	cloud	and	then	move	within	the	
disk	until	they	arrive	to	one	of	the	dense	rings.	Because	the	
velocity is well defined at each point and, more importantly, 
because	the	velocity	at	each	position	varies	slightly	in	time,	
I	can	safely	assume	that	the	system	is	non-turbulent.	Another	
argument	in	support	of	this	is	that	from	the	outskirts	to	the	
center	of	the	ring,	the	magnitude	of	the	radial	velocity	con-
tinuosly	decreases.	Exactly	at	the	center,	this	velocity	is	zero,	
thus,	the	motion	towards	this	point	is	smooth.	As	a	result,	
two	particles	in	collision	trajectory	avoid	the	interaction,	
because	they	will	halt	at	the	last	moment.	This	kinematic	
configuration is not consistent with the one required to 
“create’’ turbulence; thus, I assume that the material will 
eventually	arrive	to	the	center	of	the	ring.	The	matter	that	
arrives	to	the	center	should	be	composed	of	dust	and	gas.	As	
in	Kusaka	et al.	(1970),	the	dust	will	settle	in	the	midplane	
disk.	The	resulting	increase	in	dust	density	will	enhance	the	
collision	rate,	hence,	the	solid	particles	will	grow	in	size.	
This	is	the	essential	fact	required	for	the	aim	of	this	paper.	

analysis	presented	here	should	be	more	precise	because	the	
ring	is	better	characterized.	Probably,	the	objects	formed	by	
this	instability	require	coagulation	between	them	to	form	an	
object	massive	enough	to	resemble	an	outer	planet	of	the	
Solar	System.	As	a	general	conclusion,	the	study	of	both	
stability	criteria	mentioned	in	this	section	give	an	argument	
in	favour	of	the	formation	of	clumps	of	the	size	required	
to	form	the	seeds	of	objects	as	large	as	the	planets	of	the	
solar	system.	

Instabilities in a dust layer around the disk midplane

The	instabilities	described	up	to	now	only	consider	a	
gaseous	disk,	an	thus	a	solid	core	cannot	be	produced.	The	
next	step	was	taken	by	Goldreich	and	Ward	(1973);	they	
considered	a	thin	disk	of	particulate	matter	that	forms	from	
material	that	sinks	towards	the	disk	midplane.	This	process	
begins	with	the	condensation	of	metals	and	silicates	during	
the	cooling	of	the	disk,	which	results	in	a	distribution	of	
small	grains.

These	particles	move	towards	the	midplane	through	
the	gas;	the	forces	that	determine	their	dynamical	evolution	
are	the	vertical	component	of	the	star	gravity	and	the	gas	
drag	force.	The	amount	of	material	accumulation	in	the	mid-
plane	disk	is	characterized	by	a	dust	density,	S.	This	density	
can	be	used	in	the	dispersion	relation	for	local	axisymmetric	
perturbations	(Goldreich	and	Ward	1973),	given	by

	 2	=	k 2cs
2	+	k2	–	2�GSk,		 (7)

where	k2=2Ω[Ω + d(rΩ)/dr],	and		is	the	rate	of	exponen-
tial	increase	of	the	perturbation.	The	original	derivation	of	
this	relation	was	constructed	for	a	system	made	of	gas;	for	
its	application	to	a	dust	disk	it	is	necessary	to	consistently	
define an appropriate cs.	Goldreich	and	Ward	(1973)	argue	
that	cs=	0	is	a	reasonable	assumption,	thus,	from	Equation	
7,	the	critical	wavelength	can	be	written	as

     ,		 (8)

where a Keplerian disk (Ω 	R-3/2)	is	assumed.
Axisymmetric	perturbations	with	λ	<	λc	are	unstable.	In	

such	cases,	the	larger	fragments	obtained	with	this	mecha-
nism	are	of	size	λc.	Goldreich	and	Ward	(1973)	calculated	λc	
at	the	actual	position	of	the	Earth’s	orbit,	using	the	Keplerian	
angular velocity Ω = 2×10-7	s-1	and	an	estimated	S~7.5	g	cm-2	
implied	by	the	mass	of	the	terrestrial	planets.	Using	these	
values,	a	critical	wavelength	of	λc~5×108	cm	is	obtained;	
the	typical	mass	of	an	object	of	this	size	can	be	found	from	
m~S λ2

c,	which	gives	m~2×1018	g.	
A	more	detailed	study	of	this	instability	was	given	

by	Sekiya	(1983),	who	found	a	threshold	in	the	density	of	
particles	and	gas	in	terms	of	the	distance	r	from	the	star	
of	mass	Mstar.	However,	a	drawback	for	the	application	of	
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In	other	words,	there	is	a	real	mechanism	able	to	increase	
the	solid	density	up	to	levels	where	the	Goldreich	and	Ward	
gravitational	instability	can	operate

Given	the	 justification	in	 the	 last	paragraph,	 the	
method	presented	in	this	section	can	be	applied	to	the	pat-
tern	with	two	rings	of	Nagel	(2007),	with	the	following	
procedure:	Equation	8	is	applied	to	the	inner	and	outer	dense	
rings,	getting	for	the	former	λc,i=	4.617×1012	cm	and	for	the	
latter	λc,	e=	4.279×1014	cm.	Note	that	there	is	a	huge	differ-
ence	for	the	sizes	between	the	unstable	fragments	in	a	ring	
located	at	the	actual	position	of	the	Earth,	and	those	values	
estimated	for	the	dense	rings	in	the	model	of	Nagel	(2007).	
This	is	due	to	the	fact	that	the	surface	densities	are	of	the	
same	order	but	the	angular	velocities	are	two	to	three	orders	
of	magnitude	lower	for	the	rings	in	the	latter	case.	Rotation	
has	a	stabilizing	effect	(see	Equation	7),	thus,	slower	rota-
tion	can	naturally	produce	larger	objects.	Note	that	λc,i	is	an	
order	of	magnitude	less	than	the	thickness	of	the	disk	at	the	
position	of	the	dense	inner	ring,	however,	λc,	e	is	of	the	same	
order	as	the	disk	thickness	at	the	outer	dense	ring	position.	
In the last case a wavelength can just fit in the height of the 
disk,	thus,	this	result	is	marginally	correct.	

The	mass	associated	to	an	inner	fragment	is	mi~	Siλ2
c,i=	

1.13×10-4	MJ	and	for	an	outer	one	me~Seλ2
c,e=	2.906	MJ,	

where	MJ	is	the	Jupiter	mass.	An	interesting	conclusion	is	
that	fragments	as	massive	as	Jupiter	can	be	produced	with	
this	mechanism,	however,	this	result	should	be	taken	with	
caution	because	of	all	the	assumptions	made.	Also,	it	is	
required that excitation of this specific mode be possible, 
in	the	frame	of	a	consistent	and	complete	picture	based	on	
an	appropriate	simulation.

From	this	qualitative	picture	only	typical	sizes	and	
masses	for	the	fragments	can	be	extracted.	For	a	quantitative	
picture,	a	detailed	analysis	of	the	dynamical	evolution	of	
the	solids	that	eventually	will	arrive	to	the	center	of	the	ring	
and	coalesce	there	is	needed.	The	material	will	move	from	
the	edges	of	the	ring	towards	the	center.	This	behaviour	is	
given	by	the	dynamics	of	the	collapsing	cloud	in	a	way	that	
promotes	the	accumulation	of	material	at	the	center	of	the	
ring.	Following	this	process,	the	most	likely	outcome	for	
particle	agglomeration	by	collisions	will	be	the	formation	
of	larger	particles.	On	the	other	hand,	if	the	dust-gas	density	
ratio	increases,	then	the	Goldreich	and	Ward	instability	can	
appear.	The	next	question	is:	how	will	the	solid	material	
already	in	the	ring	evolve?	Haghighipour	and	Boss	(2003a,	
2003b)	developed	a	simulation	of	the	interaction	of	the	sol-
ids	immersed	in	a	gaseous	disk	–in	the	size	range	of	microns	
to	100	m	objects–	with	the	disk	itself,	around	a	local	density	
enhancement.	They	take	into	account	the	hydrodynamical	
forces due to the density profile and the drag force of the 
gas.	Their	main	conclusion	is	that	the	particles	rapidly	mi-
grate	towards	the	location	of	maximum	density.	This	result	
moves	in	the	right	direction,	promoting	the	accumulation	
of	material	at	the	center	of	any	of	the	rings	when	the	cloud	
is	exhausted,	i.e.,	the	time	when	planetary	formation	is	
expected	to	take	place.	A	following	paper	(Haghighipour,	

2005)	studied	the	same	system	but	took	into	account	the	
growth	of	micron-sized	particles	up	to	a	few	centimeters	
in	several	tens	of	thousands	of	years.

In	conclusion,	there	are	mechanisms	acting	in	the	
presence	of	a	density	enhancement	that	promote	the	growth	
of	the	particles	and	sedimentation	around	the	center	of	
the	dense	ring.	These	mechanisms	will	eventually	create	
a configuration prone to gravitational instabilities in the 
Goldreich	and	Ward	sense.

DISCUSSION

The	fate	of	density	enhancements	 in	the	form	of	
clumps	or	rings	is	not	easily	addressed	because	many	in-
gredients	work	in	favour	of	or	against	their	fragmentation	
and/or	collapse	to	objects	that	resemble	planetesimals.	The	
self	gravity	of	a	ring	promotes	its	fragmentation	because	
this	force	is	directed	towards	its	center.	On	the	other	hand,	
the	cooling	(heating)	of	the	material,	reduces	(increases)	
the	pressure	support	against	collapse.	In	the	hydrodynami-
cal	simulations	of	Mejía	et al.	(2005),	these	processes	are	
taken	into	account,	and	the	result	is	disk	fragmentation;	
however,	the	fragments	have	a	brief	life.	In	a	following	paper	
(Boley	et al.,	2006),	more	realistic	cooling	(D’Alessio	et 
al.,	2001)	was	considered,	in	which	the	dust	opacities	are	
carefully calculated. This influences the cooling in such a 
way	that	the	cooling	times	are	longer,	and	fragmentation	
does	not	occur.

For	the	instability	of	a	dust	layer	(Goldreich	and	Ward,	
1973)	the	dust	particles	must	settle	onto	the	midplane	of	the	
disk,	something	that	can	occur	in	a	non	turbulent	medium.	
However,	Supulver	and	Lin	(2000)	simulate	a	disk	with	
global	turbulence	in	which	a	single	particle	is	followed;	
they	found	that	condensation	and	sublimation	of	water	
are	the	processes	that	dominate	the	particle	growth.	These	
mechanisms	are	able	to	form	icy	planetesimals	in	the	outer	
part	of	the	disk.	Thus,	turbulence	in	the	disk	is	not	enough	
to	prohibit	particle	growth	to	planetesimal	sizes.

A simulation of the dust settling in a laminar flow 
disk	is	presented	in	Garaud	and	Lin	(2004),	and	is	followed	
until	the	onset	of	GI.	This	process	was	analyzed	for	vari-
ous	ratios	between	the	dust	and	gas	surface	density.	They	
characterized	the	rate	of	growth	of	the	perturbation,	but	not	
the	spectra	of	the	size	distribution	of	the	fragments.	This	
will	be	one	of	our	goals	in	the	near	future,	applied	to	the	
two-dense-rings	disk.

The	application	of	the	stability	criteria	discussed	in	
the	previous	sections	to	a	dense	ring	gives	only	character-
istic sizes for resultant fragments, whereas either the final 
outcome	or	the	evolution	towards	larger	objects	resembling	
a	realistic	planetary	system	is	not	considered.	

Besides all the difficulties reviewed in this paper for 
a complete characterization of the final system, there is at 
least	one	more	issue	that	should	be	taken	into	account.	When	
two	particles	collide,	there	is	a	chance	for	the	particles	to	
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coalesce	or,	alternatively,	they	could	fragment	into	smaller	
pieces,	and	thus,	the	growth	of	particles	is	not	monotonic,	
due	to	destructive	collision	events.	Agglomeration	and	frag-
mentation	mainly	depend	on	the	relative	velocity	between	
the	colliding	particles.	It	is	important	to	recognize	that	the	
problem	at	hand	has	many	facets;	here	only	a	small	piece	
of	the	puzzle	is	addressed.	

CONCLUSIONS

This	work	gives	typical	unstable	wavelengths	for	
gravitational	instabilities	in	a	disk	with	a	two	dense	rings	
pattern.	Using	the	density	of	an	unstable	location	for	the	
disk,	typical	masses	for	the	collapsed	objects	can	be	ob-
tained.	However,	these	results	were	obtained	with	an	over-
simplified scheme; a detailed analysis for the contribution 
of	the	interaction	between	the	gas	and	solids,	heating	and	
cooling	mechanisms	of	the	gas,	etc.,	is	required	to	conclude	
that	the	fragmentation	can	actually	take	place.	

For a disk with finite thickness and uniform rotation, 
Goldreich	and	Lynden-Bell	(1965)	found	stable	and	un-
stable	modes.	In	the	two	dense-ring	model,	for	a	disk	with	
mass	Md=	0.02	Msolar,	both	rings	are	stable.	By	increasing	
the mass of the disk, the outer ring is the first that turns 
unstable.	The	typical	mass	of	a	collapsed	object	is	of	the	
order	of	the	Jupiter	mass.

The	stability	of	a	gas	ring	was	studied	by	Yabushita	
(1966,	1969).	The	mass	of	an	unstable	ring	is	much	less	than	
the	mass	of	a	typical	fragment	for	the	uniformly	rotating	
disk.	In	the	case	of	a	disk	with	two	dense	rings,	the	gas	ring	
instability	criteria	is	probably	better	suited	for	a	reasonable	
analysis.	Thus,	consistent	with	Yabushita	(1966,	1969),	the	
outer	ring	is	unstable	and	the	inner	one	is	stable	in	a	disk	
with	mass	Md=	0.02	Msolar.

For an instability in a Keplerian disk (Ω 	R-3/2)	with	
a	dust	layer	in	the	midplane,	as	that	described	by	Goldreich	
and	Ward	(1973),	the	dense	rings	produce	larger	collapsed	
objects	than	the	material	at	the	same	position	for	a	disk	
with a decreasing density profile. Besides, λc	 Ω-2		R3,	
thus,	the	typical	size	of	a	fragment	given	by	the	break	of	
the	outer	ring	is	larger	than	an	object	associated	to	the	inner	
ring.	This	is	an	important	result,	because	I	speculate	that	
the	formation	of	the	outer	planets	in	the	Solar	System	takes	
place	in	the	outer	dense	ring	while	the	inner	planets	form	in	
the	internal	ring.	A	relevant	fact	supporting	this	conclusion	
is	that	the	mass	of	an	inner	fragment	is	much	less	than	one	
Jupiter	mass,	while	the	mass	of	a	collapsed	piece	of	the	
outer	ring	is	of	the	order	of	one	Jupiter	mass.
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