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Cada d́ıa que pasa se te echa más de menos

Resumen. Este art́ıculo pretende ser un texto introductorio sobre sucesiones

espectrales, una técnica de gran utilidad en Topoloǵıa Algebraica que ha sido
usada frecuentemente para calcular la homoloǵıa y la homotoṕıa de espacios.

A través de algunos ejemplos, mostramos la utilidad de esta construcción

y algunos de los problemas que aparecen de forma habitual cuando se tra-
baja con sucesiones espectrales. Además, presentamos un programa Common

Lisp para calcular sucesiones espectrales; el algoritmo teórico que da lugar a
nuestro programa está basado en el método de la homoloǵıa efectiva.

Abstract. This paper tries to be an introductory text to spectral sequences,

a useful technique in Algebraic Topology which has been frequently used in
order to compute homology and homotopy groups of spaces. By means of

some examples we show the utility of this construction and some of the prob-

lems they do often appear when dealing with spectral sequences. Moreover,
we present a Common Lisp program for computing spectral sequences; the

theoretical algorithm supporting this program is based on the effective ho-

mology method.

1. Introduction

Some of the most important results Mirian obtained in her short research career
were done in the field of Theorem Proving, a research subject consisting in prov-
ing mathematical theorems by a computer program. More concretely, she tried
to demonstrate by means of the theorem prover ACL2 the correctness of some
fragments of Kenzo, a Common Lisp program devoted to Symbolic Computation
in Algebraic Topology. This is in fact one of the general research lines of the
Programming and Symbolic Computation Team of Universidad de La Rioja, and
many results have been obtained in this field. A different research line of our team
consists in the development of new algorithms in Algebraic Topology and their im-
plementation in Common Lisp, trying to enhance in this way the Kenzo system.
In particular, we have worked with spectral sequences, a construction which was
not implemented in Kenzo.

Key words and phrases. Symbolic Computation, Spectral Sequences, Serre Spectral Sequence,
Eilenberg-Moore Spectral Sequence, Constructive Algebraic Topology, Common Lisp.
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Spectral sequences are a useful technique in Algebraic Topology traditionally
applied to calculate homology and homotopy groups of spaces (see [7] or [8]). The
Serre spectral sequence [15], for example, gives information about the homology
groups of the total space of a fibration when the homology groups of the base
and fiber spaces are known. On the other hand, the Eilenberg-Moore spectral
sequences [5] give information about the homology groups of the base space (resp.
the fiber space) from the homologies of the total space and of the fiber (resp.
base space). For the computation of homotopy groups, the spectral sequences of
Adams [1] or Bousfield-Kan [2] can be used. And many other examples of spectral
sequences can be found in the literature: Bockstein, Grothendieck, Hurewicz,
Knneth, Quillen, Van Kanpen, etc.

But the various classical spectral sequences pose a very important problem:
they are not algorithms. A spectral sequence is a family of “pages” (Erp,q, d

r)r≥1

of differential bigraded modules, each page being made of the homology groups of
the preceding one. Then, as expressed by John McCleary in his famous book [8]:

It is worth repeating the caveat about differentials mentioned in Chapter 1:
knowledge of Er∗,∗ and dr determines Er+1

∗,∗ but not dr+1. If we think of a
spectral sequence as a black box, then the input is a differential bigraded mod-
ule, usually E1

∗,∗, and, with each turn of the handle, the machine computes a
successive homology according to a sequence of differentials. If some differen-
tial is unknown, then some other (any other) principle is needed to proceed.
From Chapter 1, the reader is acquainted with several algebraic tricks that
allow further calculation. In the nontrivial cases, it is often a deep geometric
idea that is caught up in the knowledge of a differential.

In most cases, it is in fact a matter of computability: the higher differentials
of the spectral sequence are mathematically defined, but their definition is not
constructive. In other words, the differentials are not computable with the usu-
ally provided information. Another different problem of spectral sequences is the
extension problem at abutment: a spectral sequence gives one a filtration of the
looked-for (homology or homotopy) groups, but then in some cases several solu-
tions are possible.

The methods of Effective Homology [12] provide on the contrary real algorithms
computing homology and homotopy groups of topological spaces. In particular,
these techniques give to their user algorithms replacing some important spectral
sequences such as those of Serre and Eilenberg-Moore: when the usual inputs of
these spectral sequences are organized as objects with effective homology, general
algorithms are produced computing for example the homology groups of the to-
tal space of a fibration, of an arbitrarily iterated loop space (Adams’ problem),
of a classifying space, etc. But these spectral sequences are yet interesting and
their structure can give useful informations about the involved constructions (for
example, about the present transgressions); sometimes this information is more
interesting than the final homology groups.

This paper tries to give a didactical description of spectral sequences, showing
by means of some simple examples the usefulness of this construction and the
problems which do usually appear when dealing with spectral sequences. On the
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other hand, we also include here part of a work already published in [11], where we
proved that is is possible to relate spectral sequences with the effective homology
technique. More concretely, we will explain how the effective homology method
can be used to produce algorithms computing the various components of some
spectral sequences, higher differentials included.

The paper is organized as follows. In Section 1, the definition and some im-
portant ideas about spectral sequences are introduced. In the two next sections
we explain, by means of some examples, the utility of these constructions and
the problems that they usually pose. Next, we present the effective homology
method for the computation of homology groups; specifically, Subsection 5.1 in-
cludes some formal definitions and results, and in Subsection 5.2 some indications
about the program Kenzo [4] (that implements this method) are given. In Sec-
tion 6, we include a brief description of an algorithm we have developed which
computes spectral sequences of filtered complexes with effective homology; then,
in Section 7 we present some examples of application of our programs. The paper
ends with a section of conclusions and further work.

2. Basic definitions and results

We include in this section some basic definitions and properties about spectral
sequences, which have been mostly extracted from [7]. A more complete reference
is of course [8].

Definition. Let R be a ring, a bigraded R-module is a family of R-modules
E = {Ep,q}p,q∈Z. A differential d : E → E of bidegree (−r, r − 1) is a family
of morphisms of R-modules dp,q : Ep,q → Ep−r,q+r−1 for each p, q ∈ Z, such that
dp−r,q+r−1 ◦ dp,q = 0. The pair (E, d) is called a differential bigraded module.

The following figure represents a bigraded module, with r = 4. Only some
differential maps have been drawn.

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

p

q

//

OO

d4
6,0GGGGGGGG

ccGGGGGGGG
d4
7,1GGGGGGGG

ccGGGGGGGG
d4
4,2GGGGGGGG

ccGGGGGGGG

d4
4,0GGGGGGGG

ccGGGGGGGG

The relations dp−r,q+r−1 ◦ dp,q = 0 allow us to define the homology of E as the
bigraded R-module H(E, d) ∼= H(E) = {Hp,q(E)}p,q∈Z with

Hp,q(E) =
Ker dp,q

Im dp+r,q−r+1

Definition. A spectral sequence E = (Er, dr)r≥1 is a sequence of bigradedR-modules
Er = {Erp,q}p,q∈Z, each provided with a differential dr = {drp,q}p,q∈Z of bidegree
(−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1 for every r ≥ 1.
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Definition. A spectral sequence E = (Er, dr)r≥1 is a first quadrant spectral se-
quence if for all r ≥ 1 Erp,q = 0 when p < 0 or q < 0. A second quadrant spectral
sequence E is one with Erp,q = 0 if p > 0 or q < 0.

If E is a first quadrant spectral sequence, it is useful to represent the bigraded
modules Er = {Erp,q}p,q∈Z at the lattice points of the first quadrant of the plane.
In the figures that follow we consider the levels r = 1, 2, and 3, but only some
differential maps drp,q are included.
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• • • • •

• • • • •

• • • • •

p

q r=1

//
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4,1
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4,2
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2,2
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1,2
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ddJJJ
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Similarly, in the case of a second quadrant spectral sequence, the bigraded
modules Er = {Erp,q}p,q∈Z can be displayed at the lattice points of the second
quadrant of the (p, q)-plane. However, we consider more convenient to represent
them also in the first quadrant. To this aim, we simply change the sign of the first
index p, that is to say, we represent the module Erp,q at the point (−p, q) (which
is in the first quadrant). In this way the differential maps have shift (r, r − 1).

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//
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d1
0,1 //
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−3,2//

d1
−2,2//

d1
−1,2//

d1
0,2 //

• • • • •

• • • • •

• • • • •

• • • • •
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A spectral sequence E can be presented as a tower

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Z2 ⊆ Z1 ⊆ Z0 = E1

of bigraded submodules of E1, where Er+1 = Zr/Br and the differential dr+1

can be taken as a mapping Zr/Br → Zr/Br, with kernel Zr+1/Br and image
Br+1/Br.

We say that the module Zr−1 is the set of elements that live till stage r,
while Br−1 is the module of elements that bound by stage r. Let Z∞ =

⋂
r Z

r be
the submodule of E1 of elements that survive forever and B∞ =

⋃
r B

r the sub-
module of those elements which eventually bound. It is clear that B∞ ⊆ Z∞ and
therefore the spectral sequence determines a bigraded module E∞ = {E∞p,q}p,q∈Z
given by

E∞p,q =
Z∞p,q
B∞p,q

which is the bigraded module that remains after the computation of the infinite
sequence of successive homologies. The modules E∞p,q are called the final or target
modules of the spectral sequence E.
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Once the notion and some important observations about spectral sequences have
been defined, a natural question comes to the mind: what are spectral sequences
used for? The following section tries to answer this question.

3. Why are spectral sequences useful?

Since their definition at the beginning of the fifties, spectral sequences have
appeared many times in the literature. They are often used with a basic goal:
it is desired to compute a graded module H∗, which can be the homology or
cohomology of some space or some other graded algebraic invariant associated
with some object. In any case, H∗ is frequently difficult to obtain.

In order to proceed, we suppose that H∗ is filtered, that is, H∗ comes equipped
with a sequence of subobjects

{0} ⊆ · · · ⊆ Fp−1H∗ ⊆ FpH∗ ⊆ Fp+1H∗ ⊆ · · · ⊆ H∗
If we now consider q = n − p and Hp,q = FpHp+q/Fp−1Hp+q, we obtain a

bigraded module {Hp,q}. And this could be the target of a spectral sequence!
This allows us to formalize the notion of convergence of spectral sequences.

Definition. LetH∗ = {Hn}n∈N be a graded module. A spectral sequence (Er, dr)r≥1

is said to converge to H∗ (denoted by E1 ⇒ H∗) if there is a filtration F of H∗
and for each p one has isomorphisms of graded modules

E∞p,∗
∼=

FpH∗
Fp−1H∗

The collection H∗ = {Hn}n∈N is called the abutment of the spectral sequence.

In the case of a free graded module (that is, Hn is torsion free for each n), H∗
can be recovered up to isomorphism from the bigraded module by taking direct
sums, that is

Hn
∼=
∞⊕
p=0

E∞p,n−p

If H∗ is an arbitrary graded module, however, there could be extension problems
that prevent one from reconstructingH∗ from the associated bigraded module. But
in any case, we can take the groups E∞p,q as a first approximation to H∗.

It follows that our basic goal H∗ is approximated, if we can find a spectral
sequence converging to H∗. And this has been done for many different H∗; let us
recall some of the most famous examples of spectral sequences:

• the Serre spectral sequence converges to the homology groups of the total
space of a fibration;

• the Eilenberg-Moore spectral sequence converges to the homology groups
of the loop space of a simplicial set;

• the Adams spectral sequence converges to the homotopy groups of a sim-
plicial set X.

The theorems expressing these results and, in general, all theorems expressing
the existence of any spectral sequence, have the following generic form.
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“Theorem”. There is a spectral sequence with

E2
p,q
∼= “something computable”

and converging to H∗, “something desirable”.

Let us consider for instance the Serre spectral sequence, which gives information
about the homology groups of the total space of a fibration when the homologies
of the base and fiber spaces are known.

Theorem (Serre spectral sequence). [15] Let G ↪→ E → B be a fibration where
the base space B is a 1-reduced simplicial set. Then there exists a first quadrant
spectral sequence (Er, dr)r≥1 with

E2
p,q = Hp(B;Hq(G))

which converges to the graded homology group H∗(E), that is to say, there exists
a filtration F of H∗(E) such that

E∞p,q
∼=

FpHp+q(E)
Fp−1Hp+q(E)

Suppose H∗(G) and H∗(B) are zero for odd degree and free Abelian for even
degree (this occurs, for example, for the space K(Z, 2)). Then the entries E2

p,q of
the spectral sequence are zero unless p and q are even:

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

p

q
r=2

//

OO

The differential maps d2 : E2
p,q → E2

p−2,q+1 must be necessarily null, and the
same happens for all dr with r > 2. The groups E2

p,q are therefore the final groups
of the spectral sequence, E2

p,q = E∞p,q for all p, q ∈ Z. Furthermore, since each
component E2

p,q = E∞p,q ≡ Hp,q is free Abelian, one can immediately obtain the
desired groups Hn(E) as a direct sum:

Hn(E) ∼=
n⊕
p=0

E2
p,n−p

In this (simple) case, the Serre spectral sequence makes it possible to determine
the homology groups of the total space E by means of the homologies of B and G.
The example shows therefore the usefulness of this construction, but one must
bear in mind that in the general situation the process computing the desired H∗
is not so simple, and very frequently it is even not possible! We illustrate this fact
in the following section.
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4. Problems of spectral sequences

Let us consider again the Serre spectral sequence. It is frequently thought this is
a process making it possible to compute the groups H∗(E) when the groups H∗(B)
and H∗(G) are known, but this is false in general. The definition of the spectral
sequence allows one to construct the groups at level r = 2, but the differential
maps drp,q are unknown and in many cases we do not have the necessary information
to compute them. And even if we know all the differentials drp,q and we can reach
the final groups E∞p,q, we must deal with an extension problem not always solvable
to determine the homology groups H∗(E). These two problems are not specific
of the Serre spectral sequence: they do appear in fact in all types of spectral
sequences, and this implies real calculations can only be done for some simple
situations. To illustrate this non-constructive nature of spectral sequences, we
include here one of the initial examples of Serre, considering the beginning of his
calculations.

The computation of sphere homotopy groups is known as a difficult problem
in Algebraic Topology. It is not hard to prove that πn(Sk) = 0 for n < k and
πk(Sk) ∼= Z, but the computation of the higher groups πn(Sk) for n > k becomes
more complicated. Making use of his famous spectral sequence, Serre computed
many homotopy groups at the beginning of the fifties. For instance, how can one
use the Serre spectral sequence to determine the homotopy groups of S3? First
of all, as explained before, πn(S3) = 0 for n < 3 and π3(S3) ∼= Z. In order to
compute π4(S3), we consider a fibration

G2 ↪→ X4 → S3

where G2 = K(Z, 2) is an Eilenberg-MacLane space, induced by the universal
fibration K(Z, 2) ↪→ E(Z, 3) → K(Z, 3) (see [9] for details). The beginning of
the spectral sequence (the groups E2

p,q) is determined by means of the well-known
homology groups of S3 and G2; the result is shown in the next figure.

Z 0 0 Z

0 0 0 0

Z 0 0 Z

0 0 0 0

Z 0 0 Z

p

q r = 2

//

OO

One can easily observe that all the arrows d2
p,q : E2

p,q → E2
p−2,q+1 are nec-

essarily null and therefore the groups E3
p,q are equal to the corresponding E2

p,q.
But problems arise when trying to determine the differentials d3

p,q. The arrow
d3
3,0 : E3

3,0
∼= Z→ E3

0,2
∼= Z must be an isomorphism, but to know the arrows d3

3,2q

some other (extra) information than which is given by the spectral sequence itself
is necessary. In this particular case, a specific tool (the multiplicative structure of
the cohomology) gives the solution, the arrow d3

3,2q : E3
3,2q
∼= Z → E3

0,2q+2
∼= Z is
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the multiplication by q + 1. Thus, it can be deduced that all the groups E3
3,2q die

and the only non-null final groups are E∞0,0 ∼= Z and E∞0,2q
∼= Zq for q ≥ 2.

On account of the isomorphisms E∞p,q ∼= FpHp+q(X4)/Fp−1Hp+q(X4), in this
case the Serre spectral sequence entirely gives the homology groups of the total
space X4: H0(X4) ∼= Z, H2n(X4) ∼= Zn for n ≥ 2, and the other Hn(X4) are null.
Furthermore, the Hurewicz Theorem and the long exact sequence of homotopy
(see [9] for details) imply that π4(S3) ∼= π4(X4) ∼= H4(X4) ∼= Z2.

Then, a new fibration
G3 ↪→ X5 → X4

should be considered to determine π5(S3), where G3 = K(Z2, 3) is chosen because
π4(X4) ∼= Z2. In this case Serre was also able to obtain all the necessary ingredi-
ents to compute the maps drp,q which play an important role in the beginning of
the associated spectral sequence. The main tool (extra information) is again the
multiplicative structure in cohomology and more generally the module structure
with respect to the Steenrod algebra A2 [16].

For p + q = 5, there is only one non-null group, E∞0,5 ∼= Z2, and therefore
H5(X5) ∼= Z2. Again the Hurewicz theorem and the long homotopy exact sequence
imply π5(S3) ∼= π5(X4) ∼= π5(X5) ∼= H5(X5) ∼= Z2; it was the first important result
obtained by Serre.

In order to compute π6(S3), we consider a new fibration

G4 ↪→ X6 → X5

with G4 = K(Z2, 4). The final groups E∞p,q (with p + q ≤ 6) of this spectral
sequence are shown in the following figure.

Z 0 0 0 0 0 Z6

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

Z2

p

q r =∞

//

OO

In this case there are three non-null groups E∞p,q for p + q ≤ 6: E∞0,0
∼= Z,

E∞0,6
∼= Z2, and E∞6,0

∼= Z6. In degree 6 we obtain a short exact sequence

0→ Z2 → H6(X6)→ Z6 → 0

but there are two possible extensions (the trivial one Z2 ⊕ Z6 and the twisted
one Z12), and the Serre spectral sequence does not give any information that
allows one to make the correct choice. In this way, Serre proved π6(S3) has 12
elements, but he was unable to choose between the two possible options Z12 and
Z2 ⊕ Z6. Two years later, Barratt and Paechter [3] proved that the group π6(S3)
has an element of order 4, and consequently π6(S3) ∼= Z12 is the correct answer.
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These examples illustrate the fact that the computation of spectral sequences
is not an easy task and in some situations some other information is needed to
overcome the ambiguities in the spectral sequence itself. In other cases, this com-
putation is in fact not possible, since some differential maps drp,q cannot be de-
termined by any other means (we do not have the necessary extra information).
Furthermore, even if we can determine all the stages of the spectral sequence and
the final groups E∞p,q are reached, extension problems must be solved in order to
determine the graded module H∗.

5. The effective homology method

As seen before, spectral sequences are a useful tool in Algebraic Topology but
they cannot be determined in general, only in some elementary cases. On the
contrary, the effective homology method provides real algorithms for the compu-
tation of homology groups. In fact, the program Kenzo (that will be presented
in Subsection 5.2) uses the notion of object with effective homology to compute
homology groups of spaces, and has obtained the homology groups of some com-
plicated spaces related to the most common spectral sequences, those of Serre and
Eilenberg-Moore.

5.1. Definitions and fundamental results. In this section we present the main
definitions and results of the effective homology method. See [12] and [13] for more
details.

Definition. A reduction ρ between two chain complexes C∗ = (Cn, dCn)n∈N and
D∗ = (Dn, dDn

)n∈N (which is denoted ρ : C∗⇒⇒D∗) is a triple (f, g, h) where:
(a) the components f and g are chain complex morphisms f : C∗ → D∗ and
g : D∗ → C∗; (b) the component h is a homotopy operator h : C∗ → C∗+1 (a
graded group morphism of degree +1); (c) the following relations are satisfied:
(1) fg = IdD; (2) dCh+ hdC = IdC −gf ; (3) fh = 0; (4) hg = 0; (5) hh = 0.

These relations express that C∗ is the direct sum of D∗ and an acyclic com-
plex. This decomposition is simply C∗ = Ker f ⊕ Im g, with Im g ∼= D∗ and
H∗(Ker f) = 0. In particular, this implies that the graded homology groupsH∗(C∗)
and H∗(D∗) are canonically isomorphic.

Definition. A (strong chain) equivalence ε between two chain complexes C∗ and
D∗, denoted by ε : C∗⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗ is a chain complex,
and ρ1 and ρ2 are reductions ρ1 : B∗⇒⇒C∗ and ρ2 : B∗⇒⇒D∗.

Remark. We must use the notion of effective chain complex: it is essentially a
free chain complex C∗ where each group Cn is finitely generated, and a provided
algorithm returns a (distinguished) Z-basis in each degree n; in particular, its
homology groups are elementarily computable (for details, see [12]).

Definition. An object with effective homology X is a quadruple (X,C∗(X), HC∗, ε)
where C∗(X) is a chain complex canonically associated with X (which allows us
to study the homological nature of X), HC∗ is an effective chain complex, and ε is
an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.
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It is important to understand that in general the HC∗ component of an object
with effective homology is not made of the homology groups of X; this component
HC∗ is a free Z-chain complex of finite type, in general with a non-null differential,
whose homology groups H∗(HC∗) can be determined by means of an elementary
algorithm. From the equivalence ε one can deduce the isomorphism H∗(X) :=
H∗(C∗(X)) ∼= H∗(HC∗), which allows one to compute the homology groups of the
initial space X.

In this way, the notion of object with effective homology makes it possible to
compute homology groups of complicated spaces by means of homology groups
of effective complexes. The effective homology technique is based on the follow-
ing idea: given some topological spaces X1, . . . , Xn, a topological constructor Φ
produces a new topological space X. If effective homology versions of the spaces
X1, . . . , Xn are known, then one should be able to build an effective homology
version of the space X, and this version would allow us to compute the homology
groups of X.

A typical example of this kind of situation is the loop space constructor. Given
a 1-reduced simplicial set X with effective homology, it is possible to determine
the effective homology of the loop space Ω(X), which in particular allows one to
compute the homology groups H∗(Ω(X)). Moreover, if X is m-reduced, this pro-
cess may be iterated m times, producing an effective homology version of Ωk(X),
for k ≤ m. Effective homology versions are also known for classifying spaces or
total spaces of fibrations, see [13] for more information.

5.2. The Kenzo program. The Kenzo program [4] is a Lisp 16,000 lines pro-
gram devoted to Symbolic Computation in Algebraic Topology. It works with rich
and complex algebraic structures (chain complexes, differential graded algebras,
simplicial sets, simplicial groups, morphisms between these objects, reductions,
etc.) and has obtained some results (for example homology groups of iterated
loop spaces of a loop space modified by a cell attachment, components of complex
Postnikov towers, etc.) which had never been determined before.

The fundamental idea of the Kenzo system for the computation of homology
groups is the notion of object with effective homology. Specifically, to obtain the
homology groups of a space X, the program proceeds in the following way: if the
complex is effective, then its homology groups can be determined by means of
diagonalization of matrices. Otherwise, the program uses the effective homology
of the space, which is located in one of its slots.

To explain roughly the general style of Kenzo computations, let us firstly con-
sider a didactical example. The “minimal” simplicial model of the Eilenberg-
MacLane space K(Z, 1) is defined by K(Z, 1)n = Z1(∆n,Z) = Zn; an infinite
number of simplices is required in every dimension ≥ 1. This does not prevent
such an object from being installed and handled by the Kenzo program.
> (setf kz1 (k-z 1))

[K1 Abelian-Simplicial-Group]

The k-z Kenzo function constructs the standard simplicial Eilenberg-MacLane
space and this object is assigned to the symbol kz1. In ordinary mathematics
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notation, a 3-simplex of kz1 could be for example [3|5| − 5], denoted by (3 5 -5)
in Kenzo. The faces of this simplex can be computed:
> (dotimes (i 4)

(print (face kz1 i 3 ’(3 5 -5))))

<AbSm - (5 -5)>

<AbSm - (8 -5)>

<AbSm 1 (3)>

<AbSm - (3 5)>

NIL

You recognize the bar construction faces; in particular the face of index 2 is
degenerated: ∂2[3| − 5|5] = η1[3]. “Local” (in fact simplex-wise) computations are
so possible, we say this object is locally effective. But no global information is
available. For example if we try to obtain the list of non-degenerate simplices in
dimension 3:
> (basis kz1 3)

Error: The object [K1 Abelian-Simplicial-Group] is locally-effective.

This basis in fact is Z3, an infinite set whose element list cannot be explicitly
stored nor displayed! So that the homology groups of kz1 cannot be elementarily
computed. But it is well known K(Z, 1) has the homotopy type of the circle S1;
the Kenzo program knows this fact, reachable as follows. We can ask for the
effective homology of K(Z, 1):
> (efhm kz1)

[K22 Homotopy-Equivalence K1 <= K1 => K16]

A reduction K1 = K(Z, 1)⇒ K16 is constructed by Kenzo. What is K16?
> (orgn (k 16))

(CIRCLE)

What about the basis of this circle in dimensions 0, 1 and 2?
>(dotimes (i 3)

(print (basis (k 16) i)))

(*)

(S1)

NIL

NIL

NIL = ∅ and the second NIL is “technical” (independently produced by the
iterative dotimes). The basis are available, the boundary operators too:
> (? (k 16) 1 ’S1)

------------------------------------------------------{CMBN 0}

--------------------------------------------------------------

The boundary of the unique non-degenerate 1-simplex is the null combination
of degree 0. So that the homology groups of K(Z, 1) are computable through the
effective equivalent object K16:
> (homology kz1 0 3)

Homology in dimension 0 :

Component Z

---done---
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Homology in dimension 1 :

Component Z

---done---

Homology in dimension 2 :

---done---

This mechanism for computing homology groups of a chain complex through its
effective homology can also be used to determine some types of spectral sequences.
We explain the relation between both techniques in the following section.

6. An algorithm computing spectral sequences of filtered
complexes

Many spectral sequences (including those of Serre and Eilenberg-Moore) are de-
fined by means of filtered chain complexes. Given a filtered chain complex, one can
construct a spectral sequence which under certain good conditions converges to its
homology groups. In this case there exists a formal expression for all groups Erp,q
and differential maps of the spectral sequence, given by the following theorem.

Theorem. [7] Let F be a filtration of a chain complex C∗ = (Cn, dn)n∈N. There
exists a spectral sequence E = E(C∗, F ) = (Er, dr)r≥1, defined by

Erp,q =
Zrp,q ∪ Fp−1Cp+q

dp+q+1(Zr−1
p+r−1,q−r+2) ∪ Fp−1Cp+q

where Zrp,q is the submodule Zrp,q = {a ∈ FpCp+q| dp+q(a) ∈ Fp−rCp+q−1} ⊆
FpCp+q, and drp,q : Erp,q → Erp−r,q+r−1 is the morphism induced on these sub-
quotients by the differential map dp+q : Cp+q → Cp+q−1. Furthermore, if F is
bounded, then the spectral sequence converges to H∗(C∗).

One can easily observe that if the initial filtered complex C∗ is finitely gener-
ated (in other words, it is effective), this expression allows one to determine the
groups Erp,q and the differential maps drp,q of the spectral sequence by means of ele-
mentary operations with matrices. But in the general situation the subgroups Zrp,q
which appear in the formula are not necessarily of finite type and in many cases
one cannot calculate them. Thus, this formal expression is not always sufficient
to compute the spectral sequence, which can only be directly determined in the
case the filtered complex is effective. However, if the chain complex has effective
homology and some natural conditions are satisfied, we have proved [11] the dif-
ferent components of the spectral sequence can also be computed by means of an
analogous spectral sequence deduced of an appropriate filtration on the associ-
ated effective complex, which is isomorphic to the spectral sequence of the initial
complex after some level k.

Our results lead to the following algorithm.
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Algorithm.
Input: a filtered chain complex C∗ with effective homology, such that some “nat-
ural conditions” are satisfied.
Output: an integer k (which is usually equal to 1 or 2) and all the components of
the Serre spectral sequence associated with the filtered chain complex after level k,
that is to say:

• the groups Erp,q for each p, q ∈ Z and r ≥ k,
• the differential maps drp,q for every p, q ∈ Z and r ≥ k,
• the convergence level for each degree n ∈ N,
• the filtration of the homology groups H∗(C∗), in other words, the groups
FpHn(C∗) for each degree n ∈ N and filtration index p ∈ Z.

This algorithm has been implemented in Common Lisp, enhancing the Kenzo
system, and allows one to compute spectral sequences associated with bicomplexes,
and also the Serre and Eilenberg-Moore spectral sequences when the spaces in-
volved in the constructions are objects with effective homology.

This work has been extended trying to produce algorithms computing other
types of spectral sequences. In particular, we have considered the Bousfield-Kan
spectral sequence [2], which is related with the computation of homotopy groups of
spaces, and we have developed some algorithms for computing the groups and the
differential maps of this spectral sequence for levels r = 1 and 2. The computation
of higher levels of the spectral sequence is much more complicated and is being
studied yet. See [10] for details.

7. Examples and computations

As explained before, spectral sequences are a useful construction in Algebraic
Topology but they are not algorithms, in many cases some extra information is
necessary in order to determine the different components. However, in the case
of spectral sequences associated with filtered complexes, the algorithm we have
developed makes it possible to determine the groups and the differential maps of
every level if the filtered complex is provided with effective homology.

In this section we include two examples of application of our new programs. In
the first case, the spectral sequence is well known and can be obtained without
using a computer; we propose it as didactic example for a better understanding of
the new functionality. The second example shows a more complicated calculation.

7.1. Serre spectral sequence. We consider the twisted Cartesian product S2×τ
K(Z, 1) for a twisting operator τ : S2 → K(Z, 1) with τ(s2) = [1]. We use here
the standard simplicial description of the 2-sphere, with a unique non-degenerate
simplex s2 in dimension 2. A principal fibration is then defined by a unique 1-
simplex of the simplicial structural group. The result in this case is the Hopf
fibration, the total space S2 ×τ K(Z, 1) being a simplicial model for the 3-sphere
S3. The same example could be processed with τ(s2) = [2], the total space then
being the real projective space P 3R. Let us remark that, since K(Z, 1) is not
effective, the space S2×τ K(Z, 1) is not effective either, and therefore the effective
homology is necessary to determine its spectral sequence.
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The twisted product S2 ×τ K(Z, 1) is built in Kenzo in the following way:
>(setf s2 (sphere 2))

[K23 Simplicial-Set]

>(setf kz1 (k-z 1))

[K1 Abelian-Simplicial-Group]

>(setf tau (build-smmr

:sorc s2

:trgt kz1

:degr -1

:sintr #’(lambda (dmns gmsm) (absm 0 ’(1)))

:orgn ’(s2-tw-kz1)))

[K28 Fibration K23 -> K1]

>(setf s2-tw1-kz1 (fibration-total tau))

[K34 Simplicial-Set]

The object tau implements the twisting operator τ : S2 → K(Z, 1) as a
simplicial morphism of degree −1 that sends the unique non-degenerate simplex
s2 of dimension 2 to the 1-simplex (1) of the simplicial set kz1. The function
fibration-total builds the total space of the fibration defined by the twisting
operator tau (this operator contains as source and target spaces the base and the
fibre spaces of the fibration respectively), which is a twisted Cartesian product of
the base and fibre.

Since K(Z, 1) is not effective, the new space S2×τK(Z, 1) is not effective either,
but using the effective homologies of S2 and K(Z, 1) Kenzo computes automati-
cally the effective homology of s2-tw1-kz1 and stores it in the slot efhm.
> (efhm s2-tw1-kz1)

[K109 Homotopy-Equivalence K34 <= K99 => K95]

The right bottom chain complex in this equivalence is the (effective) chain
complex C∗(S2)⊗tC∗(S1), obtained from the usual tensor product C∗(S2)⊗C∗(S1)
by adding an appropriate perturbation of the differential map.
> (setf s2-twtp1-s1 (rbcc (efhm s2-tw1-kz1)))

[K95 Chain-Complex]

> (orgn s2-twtp1-s1)

(add [K74 Chain-Complex] [K93 Morphism (degree -1): K74 -> K74])

> (orgn (k 74))

(tnsr-prdc [K23 Simplicial-Set] [K16 Chain-Complex])

> (orgn (k 23))

(sphere 2)

> (orgn (k 16))

(circle)

This effective homology allows us to determine the homology groups of the total
space S2 ×τ K(Z, 1).
> (homology s2-tw1-kz1 0 5)

Homology in dimension 0 :

Component Z

---done---
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Homology in dimension 1 :

---done---

Homology in dimension 2 :

---done---

Homology in dimension 3 :

Component Z

---done---

Homology in dimension 4 :

---done---

nil

In order to compute the Serre spectral sequence of our fibration it is necessary
to change the space S2 ×τ K(Z, 1) into a filtered complex. The filtration in a
twisted Cartesian product B ×τ G is defined through the degeneracy degree with
respect to the base space: a generator (xn, yn) ∈ Cn(B×G) has a filtration degree
less or equal to q if ∃x̄q ∈ Bq such that xn = sin−q · · · si1 x̄q. Such a filtration has
been implemented by a function called twpr-flin.
>(change-chcm-to-flcc s2-tw1-kz1 crpr-flin ‘(crpr-flin))

[K34 Filtered-Complex]

A filtration is also needed in the effective complex, C∗(S2)⊗tC∗(S1), which is fil-
tered by the base dimension. In general, for a twisted tensor product: Fp(C(B)⊗t
C(G)) = ⊕m≤pC(B)m ⊗ C(F ). The implementation in Common Lisp is done by
means of a function tnpr-flin.
> (change-chcm-to-flcc s2-twtp1-s1 tnpr-flin ‘(tnpr-flin))

[K95 Filtered-Complex]

Once the filtrations are defined, the new programs can be used to compute the
spectral sequence of the twisted product S2 ×τ K(Z, 1), which is isomorphic in
every level to that of the effective complex C∗(S2) ⊗t C∗(S1). For instance, the
groups E2

2,0 and E2
0,1 are equal to Z:

> (spsq-group s2-tw1-kz1 2 2 0)

Spectral sequence E^2_{2,0}

Component Z

> (spsq-group s2-tw1-kz1 2 0 1)

Spectral sequence E^2_{0,1}

Component Z

The differential function in a group Erp,q can be computed using the function
spct-sqn-dffr. The last argument must be a list that represents the coordinates
of the element we want to apply the differential to (with regard to the generators
of the subgroup in the numerator). In the example that follows, the differential
d2
2,0 is applied to the unique generator of the group E2

2,0
∼= Z, and therefore the

list of coordinates must be (1).
> (spct-sqn-dffr s2-tw1-kz1 2 2 0 ’(1))

(1)

The obtained list (1) shows that the result of applying d2
2,0 to the generator of

the group E2
2,0 is the combination 1 ∗ g2

0,1, where g2
0,1 is the generator of the group

E2
0,1
∼= Z. This last result means that the differential map d2

2,0 : E2
2,0 → E2

0,1 is an
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isomorphism. Since the next stage in the spectral sequence E3 is isomorphic to
the bigraded homology group of E2, E3

p,q
∼= Hp,q(E2) = Ker d2

p,q/ Im d2
p+2,q−1, it

is clear that the groups E3
0,1 and E3

2,0 must be null:

> (spsq-group s2-tw1-kz1 3 0 1)

Spectral sequence E^3_{0,1}

NIL

> (spsq-group s2-tw1-kz1 3 2 0)

Spectral sequence E^3_{2,0}

NIL

It is also possible to obtain, for each degree n, the level r at which the conver-
gence of the spectral sequence has been reached, that is, the smallest r such that
E∞p,q = Erp,q for all p, q with p + q = n. For instance, for n = 0 and n = 1 the
convergence levels are 1 and 3 respectively:

>(spsq-cnvg s2-tw1-kz1 0)

1

>(spsq-cnvg s2-tw1-kz1 1)

3

Thus, we can obtain the groups E∞p,q with p+ q = 0 or p+ q = 1 by computing
the corresponding groups E1

0,0, E3
0,1, and E3

1,0:

> (spsq-group s2-tw1-kz1 1 0 0)

Spectral sequence E^1_{0,0}

Component Z

> (spsq-group s2-tw1-kz1 3 0 1)

Spectral sequence E^3_{0,1}

NIL

> (spsq-group s2-tw1-kz1 3 1 0)

Spectral sequence E^3_{1,0}

NIL

Finally, we can determine the filtration of the homology groups H∗(S2 ×τ
K(Z, 1)) induced by the filtration of the chain complex. For instance, for H3

∼= Z
we obtain F0H3 = F1H3 = 0 ⊂ F2H3 = F3H3 = H3

∼= Z.

> (hmlg-fltr s2-tw1-kz1 3 0)

Filtration F_0 H_3

nil

> (hmlg-fltr s2-tw1-kz1 3 1)

Filtration F_1 H_3

nil

> (hmlg-fltr s2-tw1-kz1 3 2)

Filtration F_2 H_3

Component Z

> (hmlg-fltr s2-tw1-kz1 3 3)

Filtration F_3 H_3

Component Z
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7.2. Eilenberg-Moore spectral sequence. The programs presented here can
also be used to determine the Eilenberg-Moore spectral sequence between a sim-
plicial set X and its loop space Ω(X). If the space X is an 1-reduced simplicial set
with effective homology, the program Kenzo determines the effective homology of
its loop space Ω(X) using the cobar construction on a coalgebra. Moreover, if X is
m-reduced, this process may be iterated m times, producing an effective homology
version of Ωk(X), k ≤ m. The effective homology of the loop space together with
the natural filtration defined on the cobar construction allows the computation of
the spectral sequence between H∗(X) and H∗(Ω(X)) for every level r.

The Eilenberg-Moore spectral sequence has been traditionally considered to be
an important tool for obtaining homotopic information of a space, by means of its
relation with its loop space. In particular, it can be used for the study of the effect
of the attachment of a disk to an space of infinite dimension, especially a loop
space, a problem which seems to be very difficult in general as explained in [6].
Our programs have determined the different elements of this (second quadrant)
spectral sequence for some spaces constructed in this way that, up to now, have
not appeared in the literature. In Figures 1 and 2 we present the groups E∞p,q (for
q − p ≤ 8) of the spectral sequences for the spaces Ω(S3) and Ω(S3) ∪2 D

3 (the
last one obtained from Ω(S3) by attaching a 3-disk by a map γ : S2 → Ω(S3)
of degree 2). The first space and its loop space have been extensively considered
by theoretical methods and a lot of results about them are known. However, for
our second example, the attachment of the 3-disk increases the difficulty of the
calculation of the Eilenberg-Moore spectral sequence between Ω(S3) ∪2 D

3 and
its loop space that, up to our knowledge, had not been determined before. See
Figures 1 and 2 for the calculated Erp,q’s.

8. Conclusions

In this paper, we have introduced spectral sequences as a useful tool of Alge-
braic Topology. Although they are not general algorithms, the effective homology
method makes it possible to compute them when the spaces involved are filtered
chain complexes with effective homology. In this way, we have developed some pro-
grams computing spectral sequences of filtered complexes, enhancing the Kenzo
system. These programs can be applied to compute, for instance, spectral se-
quences of double complexes, the Serre spectral sequence, the Eilenberg-Moore
spectral sequences...

In a different work [10] we have developed similar algorithms and programs
trying to determine the Bousfield-Kan spectral sequence, related with the compu-
tation of homotopy groups of spaces, which is not defined by means of a filtered
chain complex. For the moment we have developed some algorithms for comput-
ing the groups and the differential maps of this spectral sequence for levels r = 1
and 2, but the computation of higher levels of the spectral sequence is being stud-
ied yet. To follow our work, we think it could be convenient to consider the notion
of “effective exact couple” [14], recently developed by Sergeraert, and try to apply
it to our problem.
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Figure 1. Groups E∞p,q of the Eilenberg-Moore spectral sequence
between Ω(S3) and Ω(Ω(S3)).
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