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(Luis Cernuda)

In memory of Mirian, our friend

Resumen. El objetivo principal del art́ıculo es introducir una forma de usar

los espacios exteriores para el estudio de los sistemas dinámicos (flujos). Dado
un flujo, para obtener su espacio exterior asociado, consideramos la familia

de todos sus “subconjuntos abiertos absorbentes” (subconjuntos abiertos que

contienen la “parte futura” de todas las trayectorias). Los ĺımites y espacios
finales de espacios exteriores son utilizados para construir ĺımites y espacios

finales de sistemas dinámicos. Tomando un punto final a, podemos considerar

el subflujo que contiene a todas las trayectorias que finalizan en a. Esto da
lugar a una descomposición de un sistema dinámico como unión disjunta de

subflujos estables (en el infinito).

Abstract. In this article the main objective proposed by authors is to in-

troduce a way of using exterior spaces to study dynamical systems (flows).

Given a flow, we consider the family of all “absorbing open subsets” (open
subsets that contain the “future part” of all the trajectories) to obtain an

exterior space associated with the flow. The limits and end spaces of exte-
rior spaces are used to construct limits and end spaces of dynamical systems.
Taking an end point a, we can consider the subflow containing all trajectories

finishing at a. This gives a decomposition of a dynamical system as a disjoint
union of stable (at infinity) subflows.

1. Introduction

Many natural phenomena can be modelized by means of an autonomous differ-
ential equation which can be put (maybe after some manipulations) in the form
ẋ = f(x), where x are the coordinates of a point p of a m-dimensional manifold
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M , ẋ are the coordinates of a tangent vector at the point p ∈ M and f is a real
valued function whose domain is an open of Rm.

Under the assumption that f be locally lipschitzian, an initial condition xp(0) =
p uniquely determines a maximal solution xp(t). However, the domain of xp(t) does
not need to be the whole real line R, but only an open interval (ap, bp) ⊂ R , ap <
0 < bp, which depends on the initial condition. All the solutions give a local flow
φ : W → M , φ(t, p) = xp(t), where W is an open subset of R ×M containing
{0} × M and if we denote φs(p) = φ(s, p), (s, p) ∈ W , φ satisfies φ0 = idM ,
φtφs = φt+s, wherever it makes sense. The space M is called the phase space and
φ is also called the phase map. The trajectory of a point p ∈ M is the subset
γ(p) = {φ(t, p)|t ∈ (ap, bp)} . It is easy to check that M is a disjoint union of
trajectories. We note that the if a trajectory has more than one point, a natural
orientation is induced by increasing times. Then, we can consider M as a disjoint
union of critical trajectories and oriented trajectories to obtain a phase portrait
of the dynamical system φ . It is well known the following result (see [3]): If ϕ be
a local flow on M , then there exists a global (W = R×M) flow φ in M such that
the oriented trajectories of ϕ and φ coincide. Consequently their phase portraits
are the same. Therefore we can reduce our study to the case of global flows as a
consequence of this fact.

On the other side, for every topological space X, a continuous map ϕ : R×X →
X induces a group homomorphism ϕ̄ : R → Aut(X), where Aut(X) is the group
of homeomorphisms of X provided with the compact-open topology. This fact
permits to study a flow as a particular case of a transformation group.

The pioneering work of H. Poincaré [25, 26] in the late XIX century studied the
topological properties of solutions of autonomous ordinary differential equations.
We can also mention the work of A. M. Liapunov [15] which developed his theory
of stability of a motion (solution) of a system of n first order ordinary differential
equations. While many Poincaré work studied the global properties of the system,
Liapunov work looks at the local stability of a dynamical system. The theory of
dynamical systems reached a great development with the work of G.D. Birkhoff
[2], who may be considered as the founder of this theory. He establised two main
lines in the study of dynamical systems: the topological theory and the ergodic
theory.

In this paper we describe some basic ideas that permit a new approach to the
study of dynamical system using exterior spaces. An exterior space is a topological
space provided with a distinguished subfamily of open subsets which is called
an externology [9, 10] . The exterior homotopy theory can be considered as an
extension of the proper homotopy theory [24] that provides many tools which can
be used to classify non-compact manifolds and to study the shape of compact
metric spaces.

In our approach, the main key to establish a connection between exterior spaces
and dynamical sytems is the notion of absorbing open region with respect to a flow
(i.e., an open subset that contains the “future part” of all the trajectories). The
nice property is that the family of absorbing open regions has the structure of an
externology.
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This paper presents some initial results of an ongoing project which main ob-
jective is to apply the properties of exterior spaces to study and classify dynamical
systems.

2. Preliminaires on exterior spaces and dynamical systems

2.1. The proper and exterior categories. There are families of spaces, for
example non compact manifolds and some classes of pathological spaces, whose
study requires an adaptation of the standard techniques of Algebraic Topology
developed for the category of topological spaces and continuous maps Top.

The origins of the Proper Homotopy Theory go back to the classification of non
compact surfaces given by Kerérjártó [14] in 1923 using “ideal points”. This last
concept was extended for more general spaces by Freudenthal [8] in 1931 to the
notion of “end points” (points at infinity), which is the first invariant in proper
homotopy. A great impetus to this theory came from the work of L. Siebenmann
[21] in 1965 when in his thesis he proposed to use proper maps (continuous at
infinity) instead of continuous maps in order to study non compact manifolds.

Definition 2.1. A continuous map f : X → Y is said to be a proper map
if for every closed compact subset K of Y , f−1(K) is a compact subset of X.

The category P of topological spaces and proper maps and its corresponding
proper homotopy category πP are very useful for the study of non compact spaces
and taking into account its connection with Shape Theory [17](Chapman’s theo-
rem) is also an interesting tool for the study of compact spaces (surveys of proper
homotopy can be seen at [6], [24]).

Nevertheless, one has the problem that P does not have enough limits and
colimits and then we can not develop the usual homotopy constructions like loops,
homotopy limits and colimits, et cetera. An answer to this problem is given by
the notion of exterior space:

Definition 2.2. Let (X, t) be a topological space, where X is the subjacent set
and t its topology. An externology on (X, t) is a non empty collection ε of open
subsets which is closed under finite intersections and such that if E ∈ ε , U ∈ t
and E ⊂ U then U ∈ ε. If an open subset is a member of ε is said to be an exterior
open subset.

An exterior space (X, ε, t) consists of a space (X, t) together with an exter-
nology ε.

A map f : (X, ε, t)→ (X ′, ε′, t′) is said to be an exterior map if it is contin-
uous and f−1(E) ∈ ε, for all E ∈ ε′.

For instance, given a topological space (X, t), we can always consider the trivial
exterior space taking ε = {X} and the total exterior space if one takes ε = t.
Another important externology is the family εc(X) of the complements of closed-
compact subsets of X , that will be called the cocompact externology.

The new category of exterior spaces and exterior maps, E, is complete and
cocomplete and contains P as a full subcategory via the full embedding

(·)c : P ↪→ E .
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The functor (·)c carries a topological space X to the exterior space Xc which is
provided with the topology of X and the externology εc(X). A map f : X → Y
is carried to the exterior map fc : Xc → Y c given by fc = f . It is easy to check
that a continuous map f : X → Y is proper if and only if f = fc : Xc → Y c is
exterior.

An important role in this paper will be played by the following construction
(·)×̄(·):

Let (X, εX , tX) be an exterior space, (Y, tY ) a topological space and for y ∈ Y
we denote by (tY )y the family of open neighborhoods of Y at y. We consider
on X × Y the product topology tX×Y and the externology εX×̄Y given by those
E ∈ tX×Y such that for each y ∈ Y there exists Uy ∈ (tY )y and T y ∈ εX such
that T y×Uy ⊂ E. This exterior space will be denoted by X×̄Y in order to avoid a
possible confusion with the product externology. This construction gives a functor

(·)×̄(·) : E×Top→ E.

When Y is a compact space, we have that E is an exterior open subset if and only
if it is an open subset and there exists G ∈ εX such that G×Y ⊂ E. Furthermore,
if Y is a compact space and εX = εc(X) then εX×̄Y coincides with the externology
of complements of closed-compact subsets of X × Y.

We note that if Y is a discrete space, then E is an exterior open subset if and
only if it is open and for each y ∈ Y there is T y ∈ εX such that T y × {y} ⊂ E.

For more properties and applications of exterior homotopy categories we refer
the reader to [13, 9, 10, 11, 7, 4, 12] .

2.2. Dynamical Systems and Ω-Limits. Next we recall some basic notions
about dynamical systems.

Definition 2.3. A flow on a topological space X is a continuous map ϕ : R×X →
X such that

(i) ϕ(0, p) = p, ∀p ∈ X
(ii) ϕ(t, ϕ(s, p)) = ϕ(t+s, p), ∀p ∈ X, ∀t, s ∈ R . A flow on X will be denoted

by (X,ϕ) and when no confusion be possible, we use X and t ·x = ϕ(t, x) for short.
Given two flows φ : R×X → X, ψ : R×Y → Y , a flow morphism f : (X,φ)→

(Y, ψ) is a continuous map f : X → Y such that f(r · p) = r · f(p) for every r ∈ R
and for every p ∈ X.

A subset S of a flow X is said to be invariant if for every p ∈ S and every
t ∈ R, t · p ∈ S.

We denote by F the category of flows and flows morphisms.
Given a flow ϕ : R×X → X, it is interesting to note that one has a subgroup

{ϕt : X → X|t ∈ R}, ϕt(x) = ϕ(t, x), of homeomorphisms and a family of motions
{ϕp : R→ X|p ∈ X}, ϕp(t) = ϕ(t, p). One has also a family of maps {ϕ−1

t : tX →
tX |t ∈ R} where ϕ−1

t (U) is the inverse image of the open subset U ∈ tX and tX
denotes the topology of X .
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Definition 2.4. Let X be a flow. The ωr-limit set of a point p ∈ X is given
by

ωr(p) = {q ∈ X|∃tn → +∞ such that tn · p→ q}
and the Ωr-limit of X by

Ωr(X) =
⋃
p∈X

ωr(p).

If A denotes the clousure of a subset A of a topological space, we note that the
subset ωr(p) admits the alternative definition

ωr(p) =
⋂
t≥0

[t,+∞) · p

which has the advantage of showing that ωr(p) is closed.
The notions above can be dualized to obtain the notion of the ωl-limit set of a

point p and the Ωl- limit of X .
Now we introduce the basic notions of critical, periodic and r-Poisson stable

points.

Definition 2.5. Let X be a flow. A point x ∈ X is said to be a critical point
(or a rest point, or an equilibrium point) if for every r ∈ R , r · x = x.

A point x ∈ X is said to be periodic if there is r ∈ R, r 6= 0, such that r·x = x .

We denote by C(X), P (X) the invariant subsets of critical and periodic points
of X, respectively.

It is clear that a critical point is a periodic point . Then

C(X) ⊂ P (X) .

If x ∈ X is a periodic point but not critical, then there exists r > 0 such that
r · x = x and r is the smallest positive such that r · x = x. Futher it r′ ∈ R is such
that r′ · x = x then there is z ∈ Z such that r′ = zr . The smallest positive period
of x is called the fundamental period of x .

Definition 2.6. Let (X,ϕ) be a flow . A point x ∈ X is said to be r-Poison
stable if there is a divergent sequence tn → +∞ such that tn · x→ x.

We denote by P r(X) the invariant subset of r-Poison stable points of X. The
reader can check easily that

P (X) ⊂ P r(X) ⊂ Ωr(X) .

3. Ends and Limits of an exterior space

Given an exterior space X = (X, ε(X)), its externology ε(X) can be seen as an
inverse system of spaces, then we define the limit of X as the topological space:

L(X) = lim ε(X).

Note that for each E′ ∈ ε(X) the canonical map lim ε(X) → E′ is continuous
and factorizes as lim ε(X) → ∩E∈ε(X)E → E′ . Therefore the canonical map
lim ε(X)→ ∩E∈ε(X)E is continuous. On the other side, by the universal property



312 J. I. EXTREMIANA, L. J. HERNÁNDEZ, AND M. T. RIVAS

of the inverse system the family of maps ∩E∈ε(X)E → E′, E′ ∈ ε(X) induces a
continuous map ∩E∈ε(X)E → lim ε(X) . This implies that the canonical map
lim ε(X)→ ∩E∈ε(X)E is a homeomorphism.

We recall that for a topological space Y , π0(Y ) denotes the set of path-components
of Y and we have a continuous canonical map Y → π0(Y ) which induces a quotient
topology on π0(Y ) . We remark that if Y is locally path-connected, then π0(Y ) is
a discrete space.

Definition 3.1. Given an exterior space X = (X, ε(X)), the topological sub-
space:

L(X) = lim ε(X) = ∩E∈ε(X)E

will be called the limit space of X .
The end space of X is the inverse limit:

π̌0(X) = limπ0ε(X) = lim
E∈ε(X)

π0(E)

provided with the inverse limit topology of the spaces π0(E) .

Note that an end point a ∈ π̌0(X) is represented by the filter base:

{UEa |UEa is a path-component of E,E ∈ ε(X)} .

It is interesting to observe that a locally path-connected exterior space X =
(X, ε(X)) induces the following family of exterior spaces

{(X, ε(X, a))|a ∈ π̌0(X)}

where ε(X, a) is the externology generated by the filter base of open subsets:

{UEa |UEa is a path-component of E,E ∈ ε(X} .

On the other hand, when X is locally path-connected, then we have that π̌0(X)
is a prodiscrete space.

We have mention in 2.1 the Freudenthal set of end points of a topological space.
Using the cocompact externology, the set of Freudenthal end of a topological space
Y is given by π̌0(Y c) of the exterior space Y c = (Y, εc(Y )) . For an exterior
space X = (X, ε(X)) we denote by Xt the underlying topological space. If we
consider the cocompact externology εc(Xt), in general neither ε(X) ⊂ εc(Xt) nor
εc(Xt) ⊂ ε(X) . For instance, in the case we have the inclusion εc(Xt) ⊂ ε(X) we
will have the corresponding canonical set maps π̌0(X)→ π̌0((Xt)c), X t π̌0(X)→
X t π̌0((Xt)c) . If the space Xt verifies some additional conditions, with the
topology induced by t and the filter base above X t π̌0((Xt)c) is the Freudenthal
compactification of Xt. In a similar way, one question that arises at this point is
to provide to X t π̌0(X) the structure of a topological space and to analyse the
compactness of this new space.

Given an exterior space X = (X, ε(X)) one has a canonical continuous map

e : L(X)→ π̌0(X).

This permits to decompose the limit of an exterior space:
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Definition 3.2. Given an exterior space X, an end point a ∈ π̌0(X) is said to
be representable by b ∈ L(X) if e(b) = a . Notice that the map e : L(X)→ π̌0(X)
induce an e-decomposition

L(X) =
⊔

a∈π̌0(X)

La(X)

where La(X) = e−1(a) will be called the a-component of the limit L(X) .

Concerning this e-decomposition of the limit there are some interesting ques-
tions that have to be studied; for instance, under which conditions one has that
L(X) or La(X) are compact spaces. It will also be interesting to analyze the ex-
terior spaces whose limit components La(X) are continua (recall that the inverse
limit of continua is continuum, see [5]).

Suppose that X,Y are exterior spaces and f : X → Y is an exterior map, then
f induces continuous maps L(f) : L(X)→ L(Y ), π̌0(f) : π̌0(X)→ π̌0(Y ) and we
have the functors:

L, π̌0 : E→ Top.

It is not difficult to check that L preserves exterior homotopies and π̌0 is invari-
ant by exterior homotopy:

Proposition 3.1. Suppose that X,Y be exterior spaces and f, g : X → Y are
exterior maps.

(i) If H : X×̄I → Y is an exterior homotopy from f to g, then L(H) =
H|L(X)×I : L(X×̄I) = L(X)×I → L(Y ) is a homotopy from L(f) to L(g) .

(ii) If H : X×̄I → Y is an exterior homotopy from f to g, then π̌0(f) = π̌0(g) .

Then, if πE and πTop are the exterior homotopy category and the usual ho-
motopy category corresponding to E and Top respectively, one has the following
result.

Proposition 3.2. The functors L : E → Top, π̌0 : E → Top induce functors
L : πE→ πTop, π̌0 : πE→ Top .

4. End and Limit space of a flow via exterior flows

We have the following basic fundamental example: Suppose that X = R with
the usual topology and consider the flow ϕ : R×X → X given by φ(r, s) = r+ s .
In this case the motions ϕr, r ∈ R are injective and there is only one trajectory.

We consider the following externology:

r = {U |U is open and there is n ∈ N such that [n,+∞) ⊂ U}
and we denote the corresponding exterior space by Rr . It is interesting to note
that a base for r is given by

B(r) = {[n,+∞)|n ∈ N} .
In this paper we propose the following notion that mixes the structures of

dynamical system and exterior space:
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Definition 4.1. Let M be an exterior space, Mt the subjacent topological space
and Md the set M provided with the discrete topology. An r-exterior flow is a
continuous flow φ : R×Mt → Mt such that φ : Rr×̄Md → M is exterior and for
any t ∈ R, Ft : M×̄I →M , Ft(x, s) = ϕ(ts, x), s ∈ I, x ∈M , is also exterior. An
r-exterior flow morphism of r-exterior flows f : M → N is a flow morphism
such that f is exterior.

Denote by ErF the category of r-exterior flows and r-exterior flow morphisms.

In section 3 we have defined the end and limit space of an exterior space. In
particular, since an r-exterior flow X is a exterior space, we can consider the
end space π̌0(X) and the limit space L(X) . Notice that one has the following
properties:

Proposition 4.1. Suppose that (X,φ) is an r-exterior flow. Then,
(i) the space L(X) is invariant,

(ii) there is a trivial induced flow on π̌0(X).

Proof. (i): We have that L(X) = ∩E∈ε(X)E. Note that for any s ∈ R , φs(E) ∈
ε(X) if and only if E ∈ ε(X). Then φs(L(X)) = φs(∩E∈ε(X)E) = ∩E∈ε(X)φs(E) =
∩E∈ε(X)E = L(X).

(ii): For any s ∈ R, consider the exterior homotopy H : X×̄I → X, H(x, t) =
φ(ts, x), from idX to φs. By Proposition 3.2, it follows that id = π̌0(φs). Therefore
the induced action is trivial. �

We note that for an r-exterior flow X, each trajectory has an end point given
as follows:

If p ∈ X and E ∈ ε(X), there is T p ∈ r such that T p · p ⊂ E . We can
suppose that T p is path-connected, then T p · p is path-connected and there is a
unique ωr(p,E) path-component of E such that T p · p ⊂ ωr(p,E) ⊂ E. This gives
maps ωr(·, E) : X → π0(E) and ωr : X → π̌0(X) such that the following diagram
commutes:

L(X)
e

##HH
HH

HH
HH

H

��
X ωr

// π̌0(X)

The map ωr permits to divide an r-exterior flow in simpler r-exterior flows:

Definition 4.2. Let X be an r-exterior flow. The invariant space denoted by

X(r,a) = ω−1
r (a), a ∈ π̌0(X)

will be called the r-basin at a.
The induced partition of X in simpler r-exterior flows:

X =
⊔

a∈π̌0(X)

X(r,a)
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will be called the ωr-decomposition of the r-exterior flow X.

Given an r-exterior flow (M,φ) ∈ ErF, one also a flow (Mt, φ) ∈ F . This gives
a forgetful functor

(·)t : ErF→ F .

Now given a flow (X,ϕ), an open N ∈ tX is said to be r-exterior if for any
x ∈ X there is T x ∈ r such that ϕ(T x × {x}) ⊂ N . It is easy to check that
the family of r-exterior subsets of X is an externology that will be denoted by
εr(X) which gives an exterior space Xr, the map ϕ : Rr×̄Xd → Xr is exterior and
Ft : Xr×̄I → Xr is also exterior for every s ∈ R. Therefore we obtain an r-exterior
flow. The pair (Xr, ϕ) is said to be r-exterior flow associated to X . When there
is no possibility of confusion, (Xr, ϕ) will be briefly denoted by Xr. Then we have
a functor

(·)r : F→ ErF.
Note that for a flow (X,ϕ), if E is an open subset such that E is compact, then

E is an r-exterior subset if and only if E is an “absorbing region” in the sense of
Definition 1.4.2 in [1].

The forgetful functor and the given constructions of exterior flows are related
as follows:

Proposition 4.2. The functor (·)r : F → ErF is left adjoint to the func-
tor (·)t : ErF → F . Moreover (·)t (·)r = id and F can be considered as a full
subcategory of ErF via (·)r.

Proof. Let X be in F and M be in ErF. If f : Xr → M is a morphism in ErF,
then it is clear that f : X = (Xr)t →Mt is a morphism in F . Now if g : X →Mt

is a morphism in F, suppose that E ∈ ε(M), given x ∈ X, one has g(x) ∈M , since
M is an r-exterior flow, there is T g(x) such that T g(x) · g(x) ⊂ E . This implies
that T g(x) · x ⊂ g−1(E) . Therefore g−1(E) ∈ ε(Xr) = εr(X) . �

Definition 4.3. Given a flow X, the space π̌r
0(X) = π̌0(Xr) is said to be the

end space of the flow X and the space Lr(X) = L(Xr) is said to be the limit
space of the flow X .

We remark that if X is a flow their associated r-exterior structure permits to
decompose the flow X using the decomposition of Xr . The ωr-decomposition

Xr =
⊔

a∈π̌r
0(X)

Xr
(r,a)

can be considered as generalization for a continuous flow of a disjoint union of
“stable” submanifolds of a differentiable flow (see [22]). On the other side, the
above decomposition generalizes Morse-Smale’s decompositions of dynamical sys-
tem associated to Morse functions (see [19],[20]).

It is interesting to note that the ωr-decomposition of X is compatible with the
e-decomposition of the limit subspace L(X) .

The relation of the limit space of a flow or an r-exterior flow and the subflow
of periodic points is analysed in the following results:
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Lemma 4.1. Let X be an r-exterior flow and suppose that x ∈ X . If x is a
periodic point, then for every E ∈ ε(X), x ∈ E .

Proof. Suppose that x is a periodic point. If E ∈ ε(X), where X is an r-exterior
flow, there is T ∈ r, such that T ·x ⊂ E. Since x is periodic, T ·x = R ·x . Taking
into account that x ∈ R · x, we have that that x ∈ E . �

Lemma 4.2. Let X be a flow and suppose that X is a T1-space. Then, for
every x ∈ X the following statements are equivalent:

(i) x is a non-periodic point,
(ii) X \ {x} is an r-exterior subset of X.

Proof. (i) implies (ii): Take y ∈ X. If the trajectory of y is different of the
trajectory of x, then for every T ∈ r, T ·y ⊂ X \{x} . If y is in the trajectory of x,
taking into account that x is not periodic, there is T ∈ r such that T ·y ⊂ X \{x} .
Then, one has that X \ {x} ∈ εr(X) .

Conversely, suppose that x is a periodic point, by Lemma above X \ {x} is not
r-exterior. �

Proposition 4.3. Let X be an r-exterior flow. Then, P (X) ⊂ L(X) .

Proof. It follows as an easy consequence of Lemma 4.1 �

Theorem 4.1. Let X be a flow and suppose that X is a T1-space. Then,
Lr(X) = P (X) the set of periodic points of X .

Proof. Let x ∈ X \ P (X) and take y ∈ X. If the trajectory of y is different of the
trajectory of x, then for every T ∈ r, T ·y ⊂ X \{x} . If y is in the trajectory of x,
taking into account that x is not periodic, there is T ∈ r such that T ·y ⊂ X \{x} .
Then one has that X \ {x} ∈ εr(X) and

⋂
x 6∈P (X)X \ {x} = X \ (

⋃
x 6∈P (X){x}) =

P (X) ⊂
⋂
E∈ε(X)E = L(X) . �

Taking into account the result above, if X is flow and X is T1 we have that

Lr(X) = P (X) ⊂ P r(X) ⊂ Ωr(X) ⊂ X .

With respect to decompositions, it will be interesting to find topological and
dynamical conditions to ensure that the ωr-decomposition of a flow X divides
Ωr(X) without dividing ωr(x) for each x ∈ X .

We note that if we take on R the externology

l = {U |U is open and there is n ∈ N such that (−∞,−n] ⊂ U}
or we take the reversed flow, we have the notion of l-exterior flow and we obtain
the corresponding dual results.

In this paper we have presented some initial applications of exterior spaces to
the study of dynamical systems. The authors together other collaborators want
to develop a research project to study more applications of these new techniques.

In particular, we are interested in the following subjects:
(i) using the externology of the flow to study the shape of the limit space,
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(ii) to find some relations between global stability and the exterior homotopy
type of the limit space,

(iii) to find some connections between end points and end spaces of a flow and
attractors, local stability, etc.,

(iv) to apply the properties of algebraic invariants developed in shape theory and
exterior homotopy theory to classification problems of some families of dynamical
systems.
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[17] S Mardešić, J. Segal. Shape Theory. North-Holland, 1982.
[18] J. C. Maxwell. On Hills and Dales. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science 4th Series 40(269), 421–425, 1870.

[19] J. Milnor. Morse Theory. Princeton University Press, 1963.
[20] J. M. Sanjurjo. Morse equations and unstable manifolds of isolated invariant sets. Nonlin-

earity 16, 1435–1448, 2003.

[21] L. C. Siebenmann. The obstruction to finding a boundary for an open manifold of dimension
greater than five. 1965.

[22] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 1967.

[23] J. J. Sánchez Gabites. Dynamical systems and shapes. Revista de la Real Academia de
Ciencias Exactas, F́ısicas y Naturales. Serie A: Matemáticas (RACSAM) 102(1), 127–160,
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Departamento de Matemáticas y Computación, Universidad de La Rioja, Spain

E-mail address: luis-javier.hernandez@unirioja.es
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