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§ 1. Let be
0, P

density, pressure and velocity in a fluid; we assume besides
the equations

(1) p%:——grad P, (2) %:——pdivﬁ

a so-called state-equation:

(3) p=p(p),

for incompressible fluids:

(3a) ég:(), or divi=0,
dt
for perfect gases:

where R is a constant and T the absolute temperature. We
must confess that we have to do with ideal cases, when we apply
the equations (3a) or (8b); the state equation is without any
doubt much more complicated, if the ideal conditions of in-
‘compressible fluids or perfect gases are not satisfied.
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For motions with great velocities or great accelerations good
results have been obtained even in compressible fluids, e. g. in
air, in aerodynamics with the assumption that the conditions of
incompressibility (8a) can be maintained approximately, so
there is a certain probability for the truth of the hypothesis,
that in vibrational motions

(4) Y= D+ Uy cos (vt) 4 B, sin (vE)
the conditions

(5> {dlv vlzo,

diV 82 —_—O

will be satisfied with so much greater approximation, the grea-
ter the frequency v is. ’

For the applications I have in mind the integrals over the
space filled with the fluid

1
—fpv02dr, prvﬁdr, llfpvfdr
2 4 4

may be comparable with ordinary energies, and we suppose that
the first derivatives of

with respect to the time ¢, and the first derivatives of 7, and T,

with respect to #,y,z are negligeable in comparison with v&,,
v8,; v0,.

Quite generally the vortex equations

d curld 1 5 R
(6) E-t( > ):;(curlv.grad)v
which are consequences of (1), are non-linear differential equa-
tions, but in the case of vibrational motions of high frequancy
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they can be reduced to linear equations in a first approxi-
mation.

The main terms on the left hand side of the vortex-equa-
tions (6) will be:

—vp—{ — curl @, sin (vt) + curl 9, cos (vt) } .

In order to get such large terms on the right hand side,
the first derivatives of ¥, with respect to z,y,z must be very
great, so these velocities must have wave character with very
small wave-lengths X, if we have really vibrational vortices, so
that the curl®; and curl®, are not all zero.

E. g. for waves proceeding from a point (€,n,%) the
vector ¥, may contain additive terms of the form:

o r
Vycos —2n
X\

r being the distance of the variable point (,7y,2) from (§.n,%)

—_—
and the first derivatives of V, not comparable with

l—)

e

where \ is extremely small. So the first derivatives of this
vector may become very large, and nevertheless we can maintain
the assumption, that the integral over the space filled with the

fluid
1
A 2 d
2 f pyyiar

remains comparable with ordinary energies. The density p
may also .contain additive terms with wave character, waves
proceeding from the point (€,7, §) with the wave length X
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If we call — let us drop now the symbols of vector-
analysis — p; a,b, ¢ the mean values of (1)

10w, 9 1,0u, 0 1,00, 0
i i B et 7 M G ol v

in small volumes the dimensions of which are of the order \,
then the vortex-equations will give us the relations:

0
%_9&:_%{0_@ a-t u2b+0u2 }’.__;

dy Oz 0z oy
™ |
Wy ()1)2 ()u1 du1 ()ul
Do P2 B atstbt—ter,..,
Jdy oz v oy

1
where @, b, ¢ are very great, because they have the fac’cor;\— ,

and according to (5):

0 0 ow
[ ot e =0,
(8> 1 ()u2 + ()vz + C)w =0.

We have differential equations for

Uy, Vg, Wy; Uy, Uy, Wy,
if the values of

u: a, b, ¢

can be determined beforehand.
The simplest case is

(9) p=const., a = const., b = const., ¢= const.,

and then we come to the well-known problem of the deter-
mination of an electromagnetic field

(*) Eventually adding to curl ¥, the gradient of a function ¢, which can
be determined by initial eonditions.
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X,Y,Z, L, M\, N
in the Maxwell-Hertz theory, respectively proportional with
Uy, Uy, Wy; U, Vo, Wo

in the case of an electron in (§,n,T) moving with constant
velocities a, b, c.

The solution of more general problems can be found by
superposition of these elementary solutions.

§ 2. The only possible mechanical theory of the electro-
magnetic field, which can be maintained in agreement with all
the facts known up to date is based on the assumption of an
ether with vibrational motions (4), in which

Uy, U, Wy
are resp. proportional to the
X, Y, Z
of the Maxwell-Hertz theory, and
Uy, Vg Wi
proportional to the
L, M, N

of the Maxwell-Hertz theory. There would be no possibility to
come tothe differential equations

9z oY _19L L ON oM 10X
dy 0z

c ot oy 0z ¢ ot

of the electromagnetic field, if there were full incompressibi-
lity of the ether. This difficulty has been removed here by the
assumption, that the vectors 3, and ¥, have to satisfy .the con-
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dition of incompressibility, whilst the vector ¥, has not to sa-
tisfy the condition of incompressibility, and that it will be
of wave-character, if we have not to do with stationary fields.

A special feature of this theory is the assumption, that
a moving electron which is considered as a pulsating little
sphere (pulsation of the sphere means periodic change of its
radius) must rotate with a high speed around an axis parallel
to the direction of the motion, the speed of rotation being pro-
portional to the velocity of the electron.

In a stationary electromagnetic field there are no vibra-
tional vortices in the ether; the vector %, produced by electrons
at rest is derived from a potential function similar to the velo-
city potential of a liquid, in which pulsating spheres are im-
bedded. The vector ¥, produced by electric currents stationary
in closed circuits, that is electrons moving in these circuits,
the positive electrons in one direction, the negative electrons
moving in the opposite direction, is the vector- potential of these
currents. The reason why we have a vibrational vector-potential,
is that the rotating electrons are pulsating at the same time;
therefore whilst the vector Uy produced by stationary electric
currents is zero, the vibrational vector-potential produced by sta-
tionary currents is produced with the same phase by the posi-
tive electrons moving in one direction and the negative elecirons
in the opposite direction. So notwithstanding the enormous
speed of rotation of the moving electrons we avoid the diffi-
culty of enormous energies of the kind

1

As soon as we have to do with non stationary electromag-
vetic fields, we must have vibrational vortices for the vectors

- -
Dy ISp. Uy,

and for these general cases considerations, as in § 1, are neces-
sary. One important question may be answered here, which
will quite naturally arise: '

If the density p and the vector Uy contain additive terms
of wave-character with an exceedingly small wave-length X,
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it seems according to the vortex-equations, as if also the vectors
3, and T, must contain terms of wave-character of the same
exceedingly small wave-length, which we have to consider very
small in comparison with the wave-lengths of all hitherto-
known wave-lengths, and the mean values of these most im-
ortant terms in small volumes with dimensions of the order X
would be zero.

That this is not necessarily the case, can be seen in our
example of the electron moving with constant velocities (a,b,¢).
In this case — it is true — the vector T, will contain an:additive
term of wave-character with the wave-length X

- r
V,cos 3 2x,
but also p will have wave-character

o= AN}
147 sin —% 2n

and the mean values of

1
o, —curld, @
P
will be
u; a b, e

which can be constants in the most simple case.
For more general problems the question can be answered
by superposition of these elementary solutions.

(*) The derivatives of T, k and u with respect to &,%,% being small in
comparison with

1. k
~—— Yoy

) T’{"

() V. remark on previous page.



