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An interval of an n-dimensional Euclidean space R, is an
n-dimensional rectangular parallelopiped parallel to the coor-
dinate syslem; thus, in particular, for n=—=1 we have a seg-
ment, and for n=2 a rectangle parallel to the coordinate-axes.
If such an interval is considered without its boundary, the inter-
val is called open; if the boundary belongs to the interval, it
is called closed.

Any rule by which to every closed interval I a number
is attached defines an interval-function ¥ (I).

A finite set S of closed intervals, I, I, ... Iy, no pair
of which has any inner points in common, may be called a
simple system of intervals. Then we define:

X(S) = (L) +x(T) + - ()

The most important example of an interval-function is the
volume of the intervals and of the simple systems of intervals.
Starting with it, one comes to the Lebesgue measure W, in the
well known manner. Similary one can ask, when and how it
is possible to go from more general interval-functions to closely
related set-functions, and, in particular, to totally additive set-
functions.

This question has been treated repeatedly by several mathe-
maticians(t), after Lebesgue had developed his classical theory
of measure.

() J. RaDox, Sitzungsberichte Akad, Wiss. Wien 122 (1913}, P. 1805; C.
DE LA VALLEE Poussiy, Trans. Amer. Math. Soe. 16 (1915), p: 458, 478, 493; In-
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Here now we want to proceed in quite a different way
from the given interval-function y to a set-function which is
very closely connected with by certain strong conditions of
convergence, and which we shall then call an «associated» set-
function. Then because of the strong relations between both
functions, the conditions for the existence of such an associa-
ted set-function will also be rather strong.

This new theory which I want to report upon here(®) has
been developed in a section of the unpublished second volume
of H. Hahn’s «Reelle Funktionen», which I prepared and ela-
borated on the basis of Hahn’s left manuscripts. In fact, the
fundamentals of the theory were found in Hahn’s manuscripts.
But for the general case his conditions were incomplete, and
thus his theory had to be modified and supplemented in a
rather essential manner.

In order to introduce the basic concepts, we could use the
n-dimensional Lebesgue measure p,. But a generalization is
possible by taking a totally additive set-function ¥ instead of
Hn. For this purpose let m be a o-field of sets in R,, containing
the closed intervals; and let ¥ be a finite, totally additive(®)
set-function in m, satisfying the following additional condition:
for every set Mem, a Gg-set B=M shall exist with IS(B)=
W(M), where ¥ designates the absolute-function (or total varia-
tion) of ¥. Besides, let m be complete for {4/,

Let us now consider an infinite system V of closed inter-
vals for which Vitali’s covering theorem (with respect to )
is valid. And all the intervals with which we are concerned
shall belong to this system V.

We shall call boumdary—s.egment T any intersection of a

tégrale de Lebesgue, Fonetions d’ ensemble, Classes de Baire, Paris 1916, p. 76,
98; C. CARATEEODORY, Vorlesungen tber reelle Funktionen, Leipzig-Berlin 1918,
p- 502; J. C. BUrkiL, Proc. London Math. Soe. (2) 22 (1924), p. 275; 8.
SAKs, Theory of the integral, Warszawa-Liwéw 1937, p. 59, 93, 105; P. REr-
CEELDERFER and L. RINGENBERG. Duke Math. Journ. 8 (1941), p. 231.

(*) A short talk about it has already been given at the 'meeting of the
Southwestern Division of the Math. Assoe. of America at the New Mexico
State College, (Las Cruces, N. M.), on April 28, 1942

(*) Not necessarily monotone increasing.

() L e: if N em with ;‘(N ) = 0, then every subset of N shall belong
also tom .
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finite number of closed intervals of ¥V which belong to a sim-
ple system of intervals.

Furthermore let S, (for every v=1, 2, .. .) be a simple
system of intervals of V, and let d, be the maximum of the
diameters of the intervals of S,. Tf d,— 0, then the sequence
((S,)) shall be called a distinguished sequence of systems of
intervals.

Let ((S,)) be such a distinguished sequence, and let Mem.
‘Then we shall say: ((S,)) converges to M for b, written sym-

bolically: S, — M, if ¥ (S,—M)—0 and b (M —8,)—0.
Tt can be proved that for every set M e m there exist distinguished
sequences ((S,)), such that S, — M.

Now to the given interval-function y, we can define an
associated set-function ¢. Let ¢ be a finite set-function in m.
If for every set Mem and every distinguished sequence ((S.))
with S, — ,M we have X(S,) — (M), then we call ¢ asso-
ciated with y, (with respect to ¥ and V).

If ¢ is associated with ¥, it can be proved that ¢ must
be totally additive and b-continuous(®). This means: E(M}=0
implies ¢ (M)=0; or (as an equivalent expression): for eve-
ry sequence ((M,)) with H(M,) —0 we have o(M,) —0.

Similarly we also say that the interval-fungction y es b-con-
tinuous on V, if for every distinguished sequence ((S,)) of in-
terval-systems of ¥ with b (S,) —0, we have x(S,)—0.

Of course, the most essential problem now is the following:
Unider what conditions does a sei-function ¢ exist which is
associaled with the given interval-function X, (with respect to
P and V)?

To answer this question, we assume: To every interval
IeV there shall be a distinguished sequence ((S,)) of interval-
systems of V, such that S,<I and S, — 4l.

Under this assumption(®), it can be proved that the follo-
wing four condilions together are necessary and sufficient for
the existence of ¢: )

1.) ¥ shall be b-continuous on V.

2.) The derivative of % with respect to b and V shall

RN, S

(*) TIn the case F==pn , it is also called ¢‘totally continumous’’.
(*) Which certainly is satisfied, if ¥ is o — continuous.
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exist calmost everywhere» (i, e. everywhere except perhaps for
a set N with ¢ (N)=0).

This derivative, of course, is defined at a point p in the
Tollowing way: Let ((I,)) be any sequence of intervals of ¥,
containing p and converging to p; then for every such sequence,

p—a

I
lim X( ¥, =D
v ¢<IV)

shall exist, and this value D (which then is independent on the
particular sequence ((1,)) converging to p) is called the deriva—
tive D (x,%) at the point p; or written more explicitely:
D (p, v, %, V).

3.) This derivative D (x,%) shall be b-summable (i. e.
integrable with respect to ¥ in the sense of Radon).

4.) For every boundary-segment T, we shall have:

fD(x,tb)dtb:O.

If these conditions are satisfied, then ¢ can be represented
for every Mem in the following way:

o (M) = f D (1, %) d,

where here and in 4.) the integral is to be taken in the sense
of Radon.

In the particular case that b is p.-continuous, the condi~
tion 4.) is satisfied automatically.



