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Introduction. In this paper, we wish to discuss the various
geometrical properties of an isothermal family of curves.
Although isothermal families are important in the itheory of
functions of a complex variable z=az -1y, especially in con-
nection with the Laplace equation, it seems that only a few ele-
mentary characterizations of such families are known. We
shall present here some of the old and many new characteriza-
tions of isothermal families. The outstanding theorems of the
ten which characterize isothermal families are those numbered
1,2 4,5, 809

1. The Laplace equation of isothermal families. An iso-
thermal family of curves may be defined geometrically as the
conformal image of a parallel pencil of straight lines. Therefore,
if H(z,y) is a harmonic function, that is, H satisfies the La-
place equation

(1) H,,+H, =0,

then the family of curves H{(z,y) = const. is isothermal.

Let F(x,y)=const. be an isothermal family. There must
exist a function G(F), which is harmonic in (z,y). Therefore
the family of curves F(x,y)==const. is isothermal if and only
if the function F satisfies the partial differential equation of
third order
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A simple family of curves (called a sheaf) is the integral
curves of a field of o2 lineal elements, and is defined by a
general differential equation of first order

(3) y =tanS(z,y),

where © is the inclination of the lineal element of the field
through the point (z, y).

Theorem 1. The family of curves defined by the differen-
tial equation (3) is isothermal if and only if the inclination &
is @ harmonic function of (z,7y).

By this theorem, which is due to Lie, it may be shown
that if the differential equation (8) is known to represent
an isothermal family, then it can be integrated by quadratures
only.

There is a conformal group of three parameters carrying
a given isothermal family into itself. Of course, there is an
infinite group of point transformacions preserving a given
isothermal family, but the conformal transformations form
only a three-parameter subgroup.

2. Isothermal nets. If a simple family is isothermal. than
the related orthogonal family is also isothermal. The orthogonal
net thus formed is called an isothermal net.

Any isothermal net is the conformal image of two ortho-
gonal parallel pencils of lines. We may regard an isothermal
net as dividing a region of the plane into infinitesiinal squares.

For any given simple family F,, construct the (n—1)
simple families F; (=1, 2, ..., n—1) which cut F, at an
angle of 2jn/n. These n families F,, Fi, ..., Fpy), are said
to form a symmetric n-web. An orthogonal net is a symmetric
four-web.

Through any point p of the plane, there are m curves:
Co» Cys -+, Clpy) of the symmetric n-web where m=n if n
is odd and m=n/2 if n is even. Let I';, Vs I‘j", | DL
denote the curvature and the successive rates of variation of
the curvature with respect to the arc length of the curve



— 93 —-

C; j=0.12 ..., m—1) of the web at the point p. This
notation is used in Theorems 2, 8 and 9.

Theorem 2. An orthogonal net is isothermal if and only if
the sum of the first rates of variations of the curvature with
respect to the arc length is zero. That is,

@) Ey + Ty =o0.

If the curvature of the evolute of Ci is denoted by K;,
then Lamé’s Theorem 2 may be put into the following form.
An orthogonal net is isothermal if and only if
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3. Velocity system. Before continuing further with our
discussion of isothermal families, it is found convenient to
discuss some other material which simplifies the development
of other properties of isothermal families. First we wish to
introduce the term wex. This denotes the total set of ®? in-
tegral curves of a general differential equation of second order
Y =f5 5)- ,

In our study of dynamical trajectories(*), we have encoun-
tered an important class of wexes, which we have termed
velocity system. Anmy such system is given by a differential
equation of the form

(6) Y =14y (b—y %)

where ¢ and .are general functions of (z, ¥)-

A set of w? curves is a velocity system if and only if the
osculating circles at a fixed point p of the w1 curves through p
form a pencil. Therefore these circles pass through another
point P given by

3 20y, 2
(7> X—x+(p2+lb2, y+¢2+¢2’

4. The conformal rectilinear wezes. Two important types
of velocity systems are patural families and isogonal wexes.



The velocity system (6) is natural or isogomal according as
hy—b,=0 or O,-+by==0 (See reference 1).

Theorern 3. A system of =2 curves is both natural and
isogonal if and only if it is the complete sel of isogonal tra-
jectories of an isothermal family.

Any system of this theorem is called a conformal recti-
linear wezx, and is denoted by I3,. The reason for the name is
that any wex of this special kind is conformally equivalent to
the o? straight lines of the plane.

Theorem 4. The complete system of isogonal trajectories
of a gwen simple family F is linear if and only if F is
isothermal(®).

The total group preserving a given conformal rectilinear
wex L, consists of eight parameters. The conformal subgroup
contains four parameters.

Any wex for which the sum of the angles of a curvilinear
triangle formed by any three curves of the system is a straight
angle, must be a conformal rectilinear wex.

5. The associated point transformation T of a conformal
rectilinear wex. The velocity system (6) induces a transforma-
tion from the point p to the point P. This correspondence is
called the associated point transformation T of the velocity sys-
tem (6) and is defined by (7).

Theorem 5. A system of 2 curves is the complete set of
isogonal trajectories of an isothermal family if and only if it
is a velocity system whose associated point iransformation T
is direct conformal.

If the associated point correspondence T of an isogonal
wex is reverse conformal, then the wex is a parabolic pencil
of circles. In that event, T is degenerate, carrying the =2 points
into a single point.

6. Reciprocal velocity systems. By (7). it is seen that any
correspondence (except the identity) may be regarded as the
associated ‘point transformation T of a unique velocity system
S. Two velocity systems S and S-1 are said to be reciprocal

or conjugate if their associated transformations are inverses of
one another.
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Theorem 6. The reciprocal of a velocity system S is a
conformal rectilinear wex if and only if S is conformal rec-
tilinear.

The reciprocal of a natural family (or isogonal wex) is
a patural family (or isogonal wex){).

7. The associated point transformation Ty of a velocity
system. For a given velocity system S, there is an associated
point transformation T. Now we shall associate another point
transformation Ty with S as follows. Under T, let the point p
correspond to the point P. The perpendicular bisector of the
line determined by p and P is the line of centers of the oscu-
lating circles of S through the point p. Construct the pole P,
with respect to the unit circle with p as center. The trans-
formation T, carrying p into P, is also said to be associated
with our velocity system S. Our new transformation T, is

defined by
(8) Xi=z+19, Yi=y+9.

Under any transformation T,, there is a pair of lineal
elements e, and e, at the point p, each of which is carried
into a parallel element at the corresponding point P,.

Theorem 7. For a correspondence to be the associated
point transformation T; of a conformal rectilinear wez Lo, it
is necessary and sufficient that the pair of lineal elements e,
and e, described above make respectively, angles of 45¢=m=/4
radians with the lineal element e, parallel to the z-azis(®).

The inverse of a transformation 7'y described in the above
theorem is not of the same type. Therefore the reciprocal S;*
of a conformal rectilinear wex with respect to the transforma-
tion T, is not conformal rectilinear.

8. Symmetric three-webs®). For a symmetric three-web, the
sum of the curvatures of the curves through any point p is
zero. That is,

9 ‘FO"{" Ty -Tp=0.

Theorem 8. A symmetric three-web is isothermal if and
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only if the sum of the rates of wvariation of the curvature is
zero. That s,

(10) Ly - E/ -+ Ty =0.

In terms of the curvatures of the evolutes of the three
curves, this test is

Lp , L | T
I SR M)
) K Tk T,

Theorem 9. A symmetric three-web is isothermal if and
only if their curvatures and the first two rates of variation of
the curvature satisfy the equations

2F'1<E2 -— FO) +2E’2 (Fl —_ Ro) —_ V§ (1"//2 s P‘”l) =0,
(12) 2I"y(Fy— Dy) 284 (F, — Ey) — V3 (I — E75) =0,
ZP,O(E;L -_ Fz) + 2R’1 (FO — E2) — V§ (r”l — "”() —y

Only two of these three equations are independent. The sum
of the left hand members of these three equations is zero.

9. Addenda. We give here some additional elementary pro-
perties of isothermal families.

Theorem 10. The angle between two independent isother-
mal families is a harmonic function of (x,y). Conversely if an
unknown family F intersects a given isothermal family G in
an angle which is @ harmonic function, then F is an isothermal
family.

As a special case of this result, we note that any simple
system of isogonal, multiplicative, or additive-multiplicativo
trajectories of a given isothermal family is isothermal(®).

The isocline field of a given isothermal field is isother-
mal(®). If the isocline field of a field F is isothermal, then the
inclination © of F is a function of a harmonic function (in ge-
neral, F. is not isothermal).

Let us consider two independent simple families of curves

F and G.
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The locus of all points p where the angle between the cur-
ves of F and G is a fixed number « is a curve C,. By varying
«, there will result a simple family A of all such curves G, . The-
re is also a simple family R of curves which divides the angle
between F and G in a constant ratio.

If F and G are isothermal then the families A and K des-
cribed above are also isothermal.

The results outlined above are special cases of the general
transformation theory of isothermal families developed elsewhere
(see references 5, 6, 7 ).

In later papers, we shall study the Laplace equation in
three dimensions and the physically important theory of iso-
thermal families of surfaces and their orthogonal stream lines.
In space of four dimensions J. De Cicco is investigating bi-iso-
thermal systems connected with functions of two complex va-
riables.
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