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Abstract  
 
This paper presents a model for the financial sector’s vulnerability and integrates it into a 
macroeconomic framework commonly used in monetary policymaking.  The main question to 
answer with the integrated model is whether central banks should explicitly include the financial 
stability indicator in the reaction function of the monetary policy interest rate. Our results show 
that, in general, including the banking industry’s distance to default (dtd) in the central bank’s 
reaction function reduces both inflation and output volatility. In addition, the results are robust to 
different calibrations of the model. Actually, there is gained efficiency from including the dtd 
variable in the reaction function whenever the pass-through coefficient of the exchange rate is 
higher and when financial vulnerability has a greater effect on the exchange rate and GDP (or, 
conversely, a higher effect of GDP in banking sector capital, which is here called endogeneity).   
 
 

EL RIESGO FINANCIERO EN LOS MODELOS DE 
POLÍTICA MONETARIA: APLICACIÓN A CHILE 

 
Resumen 
  
Este estudio construye un modelo para la vulnerabilidad del sector financiero y lo integra a un 
macro macroeconómico de uso común en el análisis de política monetaria. La principal interrogante 
que se espera responder con el modelo integrado es si los bancos centrales deberían o no incluir en 
forma explicita el indicador de estabilidad financiera en la función de reacción de la tasa de interés 
de política monetaria. Los resultados indican que, en general, la inclusión de la distancia a la 
insolvencia (dtd) de la banca en la función de reacción del banco central reduce tanto la inflación 
como la volatilidad del producto. Además, los resultados son robustos a distintas calibraciones del 
modelo. En efecto, es más eficiente incluir la variable dtd en la función de reacción cuando el 
coeficiente de traspaso del tipo de cambio es mayor y cuando la vulnerabilidad financiera tiene un 
mayor efecto en el tipo de cambio y en el PIB (o, a la inversa, un mayor efecto del PIB en el 
patrimonio bancario, que aquí denominamos endogeneidad). 
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INTRODUCTION 
 
This article analyzes whether market-based financial stability indicators (FSIs) should be 

included in monetary policy models and, if so, how.1 Since the economy and interest rates affect 
financial sector credit risk, and the financial sector affects the economy, this article builds a model of 
financial sector vulnerability and integrates it into a macroeconomic framework, typically used for 
monetary policy analysis. More specifically, should the central bank explicitly include the financial 
stability indicator in its monetary policy (interest rate) reaction function? This is the most important 
question to be answered in this article. The alternative would be to react only indirectly to financial 
risk by reacting to inflation and gross domestic product (GDP) gaps, since they already include the 
effect that financial factors have on the economy.2  

The integration of the analysis of financial sector vulnerability into macroeconomic models is an 
area of important and growing interest for policymakers, in both developed and emerging markets. 
Monetary policy models and financial stability models, by their nature, are very different 
frameworks. Monetary policy models are widely used by central banks to understand the 
transmission mechanisms of interest rates to the macroeconomy and inflation. On the other hand, 
coherently estimating the effect of shocks to vulnerability on banks’ risk requires both a model of 
banking sector risk and a tractable methodology for simulating shocks and estimating their effect on 
various risk measures. 

Market-based financial stability indicators summarize both the credit channel and credit risk 
transmission from distressed borrowers in the economy. Market-based FSIs provide information on 
the banking sector’s financial condition, which is related to the quantity of credit extended and the 
possible or expected effects of this channel on the real economy and GDP (that is, credit expansion 
and the financial accelerator).3 Market-based FSIs also capture the reduced financial soundness of 
banks when borrowers default in periods of economic distress, which lowers the value of risky debt 
and thus reduces banking sector assets and increases banking asset volatility. This is a reflection of 
the economic condition of borrowers and of the real economy. (Note that when the banking sector is 
in distress, bank assets and bank equity values are lower and the volatility of bank assets and bank 
equity is much higher).  

Among the different choices for the market-based FSIs, in this paper we use distance to default 
of the banking system, which is an indicator of the riskiness of banks estimated from the contingent 
claims analysis (CCA) tools developed in finance. The basis of CCA is that the liabilities of a 
financial institution or firm derive their value from assets that are stochastic. The expected variation 
(volatility) of assets over a future horizon, relative to the promised payments on liabilities, provides a 
measure of financial distress risk. CCA methodology is frequently used to estimate the probability 
that an entity (in our case, banks, but also corporations or even governments) will default on its 
obligations. CCA’s explicit focus on risk and the probability of default or distress and its link to 
market prices of equity have many advantages. Equity data by nature incorporate the forward-
looking expectations of the market in a way that static indicators of bank risk, such as 
nonperforming loan ratios and provisioning, cannot. The high frequency of observations, at least for 
equity and interest rate data, allows for much faster updating of risk measures than is possible with 
data that are available only at monthly or quarterly frequencies. The CCA financial risk indicators 
are calculated for individual banks and then can be aggregated into a systemwide financial stability 
indicator.  

                                                      
1. The term FSI used here is an indicator derived from forward-looking market information, including indicators from the 

contingent claims analysis model. It should not be confused with the accounting ratio financial stability indicators.  
2. An alternative could be designed in which the central bank only reacts directly to financial risk whenever the financial 

stability indicator breaches a predetermined threshold. 
3. Bernanke, Gertler, and Gilchrist (1999) introduced financial frictions into a business cycle model, starting a fertile field 

of macroeconomic research. The relation of monetary policy and financial stability is discussed in Walsh (2009) and the 
literature surveyed therein. 
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The CCA systemwide FSI is modeled jointly with a practical five-equation dynamic stochastic 
macroeconomic model used to set monetary policy. The macroeconomic model was developed at the 
Central Bank of Chile at the start of the implementation of fully fledged inflation targeting in 2000 
(García, Herrera, and Valdés, 2002), and it closely resembles the one proposed by Berg, Karam, and 
Laxton (2006) as a useful toolkit applicable to the analysis of monetary policy in many small open 
economies. As they claim, “in the new Keynesian synthesis, there has been a convergence between 
the useful empirically motivated IS/LM models developed in several policymaking institutions and 
dynamic stochastic general equilibrium approaches that take expectations seriously and are built on 
solid microeconomic foundations.”4  

The specific model used here consists of an equation for the output gap (IS), another for inflation 
(Phillips curve or aggregate supply), an equation for the exchange rate (interest parity condition), a 
yield curve relating short- and long-run interest rates, and the Central Bank reaction function 
(Taylor rule). Indeed, the primary tool for macroeconomic management is the interest rate set by the 
central bank as a reaction to the deviations of inflation from the target and the output gap (Taylor, 
1993). Most equations are forward looking in the sense that they include the expected levels of the 
dependent variables on the right hand side.  

In addition to the macroeconomic equations, we include a CCA module that interacts with the 
macroeconomic equations, and they affect each other in several ways. For instance, the output gap 
includes distance to default as an indicator of financial risk in order to analyze whether it is 
significant or not. Including an aggregate indicator of distance to default—and credit risk in the GDP 
gap equation and testing whether the coefficient is significant is a first step to get a better 
understanding of how financial sector credit risk affects GDP. The system is perfectly endogenous 
given that the interest rate and GDP influence the level and volatility of banks equity, while at the 
same time distance to default affects the country risk premium, GDP, and the exchange rate. The 
model contains a steady state to which the variables converge, thanks to the reaction of monetary 
authorities.  

Finally, to assess the inclusion of risk indicators in the monetary authorities’ reaction function, 
we construct efficiency frontiers mapping inflation and output volatilities after the artificial economy 
is hit with stochastic shocks drawn from a normal distribution. In general, we conclude that it is 
more efficient to include distance to default in the reaction function, because it enables the central 
bank to reduce the volatility of both inflation and output. Moving the policy interest rate more than 
is warranted by the gaps of only inflation and output is efficient because negative shocks to asset 
prices and liquidity could end up in a credit risk crisis, with negative systemic consequences for the 
financial system and production.5 

Section 1 presents the background of CCA distance to default and discusses the data used in the 
analysis. Section 2 lays out the macroeconomic framework, as well as the equations required to 
simulate distance to default, which are included in the macroeconomic setting. Section 3 presents the 
results of the simulations, and, section 4 concludes and presents possible extensions in this line of 
research.  

 
 

1. RISK MEASURES FROM CONTINGENT CLAIMS ANALYSIS 
 
This section introduces the contingent claims approach (CCA), which uses forward-looking 

information to build risk indicators for the banking system, and have important implications, for 
monetary policy, as will be clear in the third section This approach provides a methodology to 
combine balance sheet information with widely used finance and risk management tools to construct 
marked-to-market balance sheets that better reflect underlying risk. The risk-adjusted balance 

                                                      
4. Berg, Karam and Laxton (2006, p. 3). 
5. On the other hand, a very large distance to default could reflect bubbles in asset prices, which usually have bitter 

endings.  
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sheets use option pricing tools to value the liabilities, which are modeled as claims on stochastic 
assets. The approach can be used to derive a set of risk indicators, including distance to default, that 
can serve as barometers of risk for firms, financial sector vulnerability, and sovereign risk. 

A contingent claim is any financial asset whose future payoff depends on the value of another 
asset. The prototypical contingent claim is an option—the right to buy or sell the underlying asset at 
a specified exercise price by a certain expiration date. A call is an option to buy, and a put is an 
option to sell; the value of each is contingent on the price of the underlying asset to be bought or sold. 
Contingent claims analysis is a generalization of the option pricing theory pioneered by Black and 
Scholes (1973) and Merton (1973). Since 1973, option pricing methodology has been applied to a wide 
variety of contingent claims. In this paper we focus on its application to the analysis of credit risk 
and guarantees against the risk of default, together with their links to macroeconomic and financial 
developments. 

The contingent claims approach is based on three principles: the values of liabilities are derived 
from assets; liabilities have different priority (that is, senior and junior claims); and assets follow a 
stochastic process. The liabilities consist of senior claims (such as senior debt), subordinated claims 
(such as subordinated debt), and junior claims (equity or the most junior claim). For a bank, as the 
value of its total assets decline, the debt that it owes to other institutions becomes riskier, and its 
value declines, while the credit spreads on its risky debt rise.  

Balance sheet risk is the key to understanding credit risk and the probability of crisis. Default 
happens when assets cannot service debt payments, that is, when assets fall below a distress barrier 
comprising the total value of the firm’s liabilities. Uncertain changes in future asset value, relative 
to promised payments on debt, is the driver of default risk. Figure 1 illustrates the key relationships. 
The uncertainty in asset value is represented by a probability distribution at time horizon T. At the 
end of the period, the value of assets may be above the promised payments, indicating that debt 
service can be made, or below the promised payments, leading to default. The area below the 
distribution in figure 1 is the “actual” probability of default. The asset-return probability distribution 
used to value contingent claims is not the “actual” one, but the risk-adjusted or risk-neutral 
probability distribution, which substitutes the risk-free interest rate for the actual expected return 
in the distribution. This risk-neutral distribution is the dashed line in figure 1, with expected rate of 
return r, the risk-free rate. Thus, the risk-adjusted probability of default calculated using the risk-
neutral distribution is larger than the actual probability of default for all assets that have an actual 
expected return (μ) greater than the risk-free rate r (that is, a positive risk premium).6  

                                                      
6. See Merton (1992, pp. 334–43; 448–50). 
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Figure 1. The Distribution of Asset Value and the Probability of Default 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Adapted from Gray and Malone (2008). 

 
The actual probability of default can be calculated by combining the CCA/Merton model with an 

equilibrium model of underlying asset expected returns to produce estimates that are consistent for 
expected returns on all derivatives, conditional on the expected return on the asset. One does not 
have to know expected returns to use the CCA/Merton model for the purpose of value or risk 
calculations, but such data are necessary for calibrating into actual probabilities. The value of assets 
at time t is A(t). The asset return process is  

 

= μ + σ εA Ad t t
dA
A

,  

 
where μA  is the drift rate or asset return, σA  is equal to the standard deviation of the asset return, 
and ε  is normally distributed, with zero mean and unit variance.  

Default occurs when assets fall to or below the promised payments, B. Therefore, it is the price at 
which the option is exercised. The probability of default is the probability that ≤tA B , which is  
 

( ) ( ){ } ( )μ≤ = ε ≤ −⎡ ⎤μ − σ + σ ε ≤⎣ ⎦ 2 ,
2

0P rob Prob = Probexp 2t A A A tA B dA t t B . 

 
Since ε ∼ (0,1)N  the “actual” probability of default is μ− 2,( )N d , where  

 
( ) ( )

μ

+ μ −
=

σ

σ
2 ,

2
0ln 2A

A

A t
d

t

A B
  

 
is distance to default with a drift of μA  and i( )N  is the cumulative standard normal distribution.  
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The probability distribution at time T is shown in figure 1 above (dashed line) with drift of the 
risk-free interest rate, r. The risk-adjusted probability of default is − 2( )N d , where  
 

( ) ( )+ −
=

σ

σ
2

2
0ln 2

A

Ar t
d

t

A B
.  

 
This is distance to default with a drift of r, the risk-free rate.  

 
1.1 Calculating Implied Assets and Implied Asset Volatility  

 
The value of assets is unobservable, but it can be implied using CCA. In the Merton model for 

firms, banks, and nonbank financial entities with traded equity, use equity, E, equity volatility, σE , 
and the distress barrier in the following two equations to solve for the two unknowns A, asset value, 
and σA , asset volatility (see Crouhy, Mark, and Galai, 2000). The first equation is the equation for 
equity, E, valued using the Black-Scholes-Merton formula for pricing call options: 
 

( ) ( ) ( )N N= − − ⋅1 2expE A d B r t d . 
 
The second equation relates the volatility and value of equity to the implied volatility and value of 
assets (Merton 1973, 1974): 
 

( )σ σ= 1E A
E A N d , 

where d2 was already defined and = + σ1 2 Ad d t . Since there are two equations and two unknowns 
(asset value, A, and asset volatility, σA ), an iteration procedure is used to find the values of the 
unknowns. In practice, d1 and d2 can be calculated because they depend on A and σA .  

Financial fragility is intimately related to the probability of default. Shocks to prices or liquidity 
frequently end up being converted into credit risk crises, as banks’ debtors see their the income flows 
weaken and thus run into difficulties servicing their loans to banks. Default is hard to handle in 
traditional macroeconomic models in part because of assumptions that usually exclude such a 
possibility. In addition, flow-of-funds accounts and accounting balance sheets cannot provide 
measures of risk exposures that are forward-looking estimates of losses. CCA, on the other hand, is a 
framework that explicitly includes and estimates the probability of default. 

Since there is a nonzero chance of default, the value of debt is risky and therefore less than the 
value of risk free debt: 
 
Risky debt + Guarantee against default ≡ Risk-free debt. 
 
 The value of risky debt can therefore be modeled as the default-free value of the debt less the 
expected loss: 
 
Risky debt ≡ Risk-free debt – Guarantee against default. 
 
Given that this guarantee is an asset of uncertain value, the debt can be thought of and modeled as a 
contingent claim. 

This identity holds both conceptually and in terms of value. If the debt is collateralized by a 
specific asset, then the guarantee against default can be modeled as a put option on the asset with 
an exercise price equal to the face value of the debt. The debt holder is offering an implicit 
guarantee, as it is obligated to absorb the losses if there is default. However, often a third party is 
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the guarantor, as is the case when the government guarantees the deposit liabilities of banks or the 
pension-benefit promises of firms.7  

Using the Black-Scholes-Merton differential equation for pricing contingent claims (shown 
above), the value of risky debt is a function of the default-free value of debt (that is, the distress 
barrier) at time 0, the asset level at time 0, the volatility of the asset, the time horizon until the 
expiration date of the claim, and the risk-free interest rate. Since 1973, the Merton methodology has 
been applied to a wide variety of corporations and financial institutions, as well as sovereigns.  

Banks do not frequently default, and regulators are likely to be less interested in the probability 
of such an event than they are in the possibility that bank assets will fall below a level at which the 
authorities might be expected to intervene.8 One useful threshold is a minimum capital threshold. 
This barrier would be the default barrier plus, say, 8 percent of assets. The CCA model can be used 
in this analysis. This model would give the distance to minimum capital as well as the distance to 
default. Appendix A provides some extensions of the CCA model. 

 
1.2 Calculating Risk Indicators for Individual Banks or Financial Institutions 

 
Domestic equity markets provide pricing and volatility information for the calculation of implied 

assets and implied asset volatility in corporate, bank, and nonbank financial institutions. The 
simplest method solves two equations for two unknowns, asset value and asset volatility. Details are 
shown in Merton (1974) and Crouhy, Galai, and Mark (2000). Levonian (1991) uses explicit option 
prices on bank equity to measure equity volatility and calibrate Merton models for banks. Moody’s 
KMV has successfully applied its version of the CCA model to measure the implied asset values and 
volatilities and to calculate expected default frequencies (EDFs) for over 35,000 firms and financial 
institutions in 55 countries around the world (KMV Corporation, 1999 and 2001).  

For unlisted corporate entities and banks, the relationship between the accounting information 
and risk indicators of companies with traded equity can be used as a guide for mapping accounting 
information to default probabilities and risk indicators for institutions that do not have traded 
equity. (An example is Moody’s RiskCalc for corporate sectors in many countries and for banks in the 
United States.). 

The CCA model for banks and financial institutions uses a time series of the daily market 
capitalization, the volatility of the market capitalization, and the distress barrier (derived from book 
values of deposits and debt) to estimate a time series of the implied market value of bank assets and 
asset volatility. Several useful risk indicators can be calculated for each bank or institution, 
including distance to default; the risk-adjusted and actual probabilities of default; the expected 
losses (put option) to depositors and debt holders; the potential size of public sector financial 
guarantees; and the sensitivity of risk indicators to changes in underlying bank assets, asset 
volatility, or other factors. The steps used to calculate the implied assets and asset volatility of the 
individual bank or financial institution, and the risk indicators, is shown in figure 2.  

                                                      
7. The CCA framework is an extension of Merton’s models of risky debt (1974) and deposit insurance (1977).  
8. The model’s condition of infrequent default was not the case for many banks in the subprime crisis. 
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Figure 2. Calibrating Bank CCA Balance Sheets and Risk Indicators 

 

 
Source: Source: Adapted from Gray and Jones (2006). 

 
1.3 A Distance-to-Default Indicator for Chile 

 
The strategy to compute a risk indicator based on the CCA model described in the previous 

sections was applied for Chile. The indicator was computed by treating the portfolio of banks in the 
system as one large bank. Since not all banks have shares quoted in the stock market, a sample of 
the largest banks was used, including approximately 50 percent of total bank assets, 65 percent of 
the total amount of bonds issued by the banking system, and more than 80 percent of the market 
capitalization of the banking industry.9 The market capitalization, the volatility of the market 
capitalization, and the default free value of debt (derived from book values of deposits and debt) were 
then used to simultaneously estimate a time series of the implied market value of bank assets and 
asset volatility (Gray, Echeverría, and Luna, 2007). 

Although we include 80 percent of bank’s equity, there could be a bias given that we exclude 
small banks, which could be riskier. Nevertheless, when Luna and Gómez (2008) compare an 
aggregated risk indicator with an aggregation of individual indicators, they conclude that behavior is 
very similar in terms of levels and volatility. The authors further state that contagion through 
interbank lending would be very limited since it represents a small share of total assets. Moreover, 
the introduction of a real time gross settlement (RTGS) system in Chile substantially reduced 

                                                      
9. See Gray, Echeverría, and Luna (2007, table 1). 
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settlement risks.10 Still, using ad hoc methods of aggregating data from different banks can lead to 
mismeasurement of systemic risk, by averaging heterogeneous agents and, implicitly, assuming that 
the measures of different banks’ risks are not correlated. Consequently, the methodology should be 
used as a complement to the regular stress tests for banks’ and adequate surveillance analysis of the 
risks for banks’ financial stability.  

To get a daily estimate of total bank assets, an implicit value was obtained by calculating their 
debt and net worth. Since it is not feasible to get the market value of their short- and long-run debt, 
it is common to extract their book value, which, due to current regulation in Chile, is very close to 
the market value—provided there is no financial turmoil. Total debt includes monthly information 
supplied by the Superintendency of Banks and Financial Institutions (SBIF) on short-term debt plus 
a portion of long-term debt.11 

Nevertheless, the volatility of interest rates could imply that the market value of debt fluctuates 
around the book value. These fluctuations are higher for longer maturities, which in our calculation 
are less important. To correctly measure the market value of debt we would need to have an asset 
pricing model with two stochastic processes, where the interest rates affect the value of bank assets 
and equity. In the current setting, we are implicitly assuming that interest rates are nonstochastic. 
We thus have only one stochastic process, namely, bank assets. 

On the equity side, daily numbers of shares and their prices for the selected banks were obtained 
from the Santiago Stock Exchange. However, we cannot calculate implicit equity volatility from call 
options on bank shares because such derivatives do not exist in Chile. We therefore obtained a direct 
measure of stock volatility with a simple model of conditional heteroskedasticity, with a one-year 
horizon.12 Recent work on this issue shows that at least for the S&P500, the volatility obtained with 
a similar model is highly correlated with the VIX, which is computed based on the implicit volatility 
from options on the stocks included in this index (Alfaro and Siva, 2008). 

In theory, share prices should equal the present discounted value of the flow of dividends. In 
practice, these prices could also change as a result of many factors other than movements in 
fundamentals, namely, abundant liquidity, market overreactions to good news, herd behavior, or a 
different risk assessment than that of the authorities. 

Despite all the caveats mentioned above, indicators based on the behavior of market prices have 
proved to be good predictors of financial stress, risk ratings, and several credit risk indicators.13 
Several studies show that the model is robust, since it correctly reflects and anticipates the behavior 
of other measures of banks’ financial fragility, such as risk ratings and various indicators of portfolio 
quality.14 Thus, distance to default is still a very good complement to the monitoring of systemic risk.  

We use the information on equity and debt to compute the implicit value of assets and its 
volatility with the Black-Scholes-Merton system described above, in order to solve the system of 
nonlinear equations for asset and asset volatility (Gray, Merton, and Bodie, 2006). However, the 
value of assets and their volatility require the calculation of d1 and d2, the latter being an exact 
measure of distance to default (dtd). Therefore, in practice this system is complemented by two 
additional equations, one for d1 and another for d2, and solved simultaneously to obtain 

σ0 1 2, , ,AA d d , as well as N(–d2), which corresponds to the probability of default.  
An illustrative approximation to dtd could be computed by defining it as the difference between 

the implicit market value of assets (A) and the distress barrier (DB), divided by one standard 
deviation of the value of assets: ≈ − σ( ) Ad td A DB A . This indicator corresponds to the number of 
standard deviations from the current level of assets to the distress barrier, given the level of equity 

                                                      
10. For simiplicity, we did not considered explicitely the volatility of foreign debt. Nevertheless, in Chile, bank’s foreign 

debt in the analyzed period represented only 7 percent of total debt. 
11. A linear transformation of the balance sheet data is performed to generate daily data.  
12. Echeverría, Gómez, and Luna (2008) include a detailed analysis of measuring distance to default, in which they 

consider alternative strategies to obtain direct volatility. 
13. Tudela and Young (2003) find that the distance-to-default measure anticipates changes in the risk ratings of banks in 

Europe. 
14. See Chan-Lau (2006), Chan-Lau and Gravelle (2005), and Chan-Lau, Jobert, and Kong (2004). 
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and its volatility, the distress barrier, the interest rate, and the period analyzed. The larger this 
indicator, the safer is the banking system. It is also possible to compute the probability of default 
with this formula under the assumption that dtd is normally distributed. 

Figure 3 shows the time pattern of dtd for the Chilean banking system estimated with the Black-
Scholes-Merton approach from 1997 to 2006, along with a three-month moving average.15 The period 
of highest risk for the banking system coincides with the fallout from the Long-Term Capital 
Management (LTCM) and Russian crises, between late 1998 and early 1999. Since then, the Chilean 
banking system has gradually reduced its risk, though this trend appears to have leveled off in late 
2005.16 Other periods in which markets assessed suddenly higher risk for the Chilean banks include 
the decline in world stock markets following the collapse of the internet bubble in 2000 and the 
period preceding the Brazilian presidential elections in the third quarter of 2002. 

 
Figure 3. Distance to Default for the Chilean Banking System 
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Source: Authors’ calculations. 

 
Figure 3 also illustrates that there is a relation between the banking system’s distance to default 

and both annual GDP growth and the output gap. The regressions with output and the output gap as 
the dependent variable, with dtd as one of the independent variables, are shown in appendix B. 
Distance to default has a significant impact on both output and the output gap. Other systemic risk 
indicators are described in detail in Gray, Merton, and Bodie (2007, 2008), Goodhart, Sunirand, and 
Tsomocos et al. (2006a, 2006b), Gray and Walsh (2008), Gray and Malone (2008), Haldane, Hall, and 
Pezzini (2007), Segoviano (2006), and Segoviano, Goodhart, and Hofmann (2006). 

 
 

                                                      
15. The CCA risk indicators shown in figure 3 are taken from Gray, Echeverría, and Luna (2006), who use daily market 

capitalization for the banks obtained by the Central Bank of Chile from the Santiago Stock Exchange. Bank debt was obtained 
from the Central Bank of Chile’s database. Financial practitioners use various methods for estimating the volatility of daily 
asset returns. Two frequently used methods model daily volatility either as a GARCH(1,1) or as a moving average process. 
The GARCH(1,1) methodology for all banks in the sample was used in this case, but the results of the moving-average model 
are similar.  

16. This leveling off has occurred at a very low level of risk, as shown below. 
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2. LINKING MACROFINANCE INDICATORS TO A SIMPLE DYNAMIC STOCHASTIC 
MACROECONOMIC POLICY MODEL 

 
In this section, we lay out an integrated macrofinance policy model in which risk indicators for 

the financial system as a whole are incorporated directly into a macroeconomic policy model. Our 
focus here is on a modular exposition of the parts of the model and the equations that make up these 
parts, as well as giving intuition for how they are linked together and can be used for the analysis of 
a wide range of policies. 

Examples of forward-looking indicators of systemic risk derived from the contingent claim 
analysis (CCA) model are distance to default (dtd), expected loss (that is, an implicit put option), or 
the default probability weighted by the assets of individual financial institutions. The 
macroeconomic model used here incorporates the CCA risk indicator dtd, whose derivation is 
described below.17  

The first module of our model consists of equations for the most important macroeconomic 
variables. There is an equation for the output gap, an equation for inflation, an equation the real 
exchange rate, a yield curve, and a Taylor rule for setting the domestic policy rate, which is a short-
term interest rate set by the central bank. The second module is used to model distance to default. 

Distance to default for the banking system is included in the GDP gap equation, the parity 
condition, and the policy rate reaction function. The model parameters are estimated using historical 
data, including the distance-to-distress indicator. Although the equations have empirical support (as 
shown in appendix B), this is mostly a theoretical exercise in which some of the model parameters 
are modified (calibrated) to assess how the simulation results change with them. The approach can 
be used to examine the tradeoffs between GDP and inflation, with and without the inclusion of 
distance to distress for the banking system in the monetary authorities’ reaction function.18 

 
2.1 Module 1: Output, Inflation, the Exchange Rate, and a Taylor Rule 

 
The five-equation dynamic stochastic macroeconomic model used to set monetary policy was 

already briefly described. This model, which is close to the one by Berg, Karam, and Laxton (2006), is 
a version of the model that was built in the Central Bank of Chile at the start of the implementation 
of fully fledged inflation targeting in 2000. An application of it to the design of monetary policy in 
Chile, using efficiency frontiers, is found in García, Herrera, and Valdés (2002). It is one example of a 
class of models that can be used for policy analysis in small open economies that, as stated above, are 
empirically motivated (IS/LM type) and at the same time share many features of the dynamic 
stochastic, micro-founded, general equilibrium models used by central banks.19 

 
2.1.1 The equation for the output gap 

 
The equation for the output gap is as follows: 

 

                                                      
17. A related issue is whether an indicator of market risk appetite, such as the VIX, should be included in monetary 

policy models along with the risk indicator. This could help estimate the impact of the credit risk indicator on the GDP gap, 
adjusted for changes in risk appetite. In addition, risk indicators for a group of institutions could include the correlation, or 
dependence structure, observed between the institutions. 

18. Other interesting routes for linking risk analytics more closely with macroeconomic models include incorporating 
default risk and a risk premium into the Mundell-Fleming model to separate out the effects of changes in interest rates 
resulting from changes in the market for liquidity and from changes in the risk premium on debt (see Gray and Malone, 
2009).  

19 Berg, Karam, and Laxton (2006, p. 3). 
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rl q dtd
 (1) 

 
where ygap corresponds to the output gap (that is, the log deviation of GDP with respect to its 
trend), r is the short-run real interest rate, rl is the long-run real interest rate, q is the real exchange 
rate, and dtd is distance to default, which is also modeled here. As was explained in detail above, dtd 
is a financial risk indicator that could reflect, in general, the financial conditions that the economy 
faces. Finally, ε y

t  is a shock to GDP. All variables are expressed as log deviations from steady state. 
 

2.1.2 The Phillips curve 
 
The Phillips curve equation is 

 
( ) ( )

( ) ( )

+ − − − − −

π
− − − − −

⎡ ⎤ ⎡ ⎤Δπ = α π + π − π + α π + π + π − π⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤+ α − − π + α + + ε⎣ ⎦ ⎣ ⎦

1 1 1 2 2 3 4 1

3 1 4 1 4 1 2

2 3

3 2 ,

e
t t t t t t t t

t t t t t tq q ygap ygap

 (2) 

 
where tπ  stands for inflation, 1

e
tπ +  represents inflation expectations in the next period, tq is the real 

exchange rate, and t
πε is a cost-push shock. 

 
2.1.3 The exchange rate equation  

 
The exchange rate equation is equivalent to the interest parity condition: 

 
( ) ( )+ − −= δ + δ + − + δ + ε1 1 2 1 3 1

q
t t t t tq q q r rf dtd . (3) 

 
The real exchange rate depends on lags and leads of itself, the domestic policy rate, the foreign policy 
rate, and the risk indicator, which embeds both the sovereign spread for domestic debt and the 
sovereign spread for foreign debt. According to uncovered interest rate parity, the expected change in 
the spot exchange rate should be related to the differential between the domestic and foreign interest 
rates, plus some risk premium.  

The long-run interest rate (yield curve) equation describes the relationship between long-run 
( trl ) and short-run ( tr ) interest rates: 
 
( ) ( ) ( ) ( ) ( )+ −= ξ + ξ + − ξ − ξ + ε1 1 2 1 1 2 1  e rl

t t t t trl rl rl r . (4) 
 

2.1.4 The reaction function  
 
The reaction function is a Taylor rule: 

 
( ) ( ) ( ) ( ) ( ) ( ){ }− + − −⎡ ⎤= ρ + − ρ + θ γ π + π + π + − γ + ς + ε⎣ ⎦1 1 1 11 3 1eq r

t t t t t t t tr r rl ygap dtd . (5) 

 
The monetary policy interest rate depends on its own lag, the expected inflation gap, the output gap, 
distance to default, and a policy shock. While including a measure of financial stability in the Taylor 
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rule for setting interest rates may improve efficiency (welfare), especially if financial stability affects 
output, accurate regulation and supervision of financial institutions could be a better way of 
targeting financial stability.  

 
1.2 Module 2: Distance-to-Default Model for the Banking System 

 
This module completes the whole system to be simulated simultaneously. The value of assets, A, 

is derived from the Black-Scholes model,  
 

( ) ( )
( )

+ − ⋅
= 2

1

* exp
 

E B r t N d
A

N d
, (6) 

 
where E is the value of equity (or the value of the call option), B is the value of debt in the Black-
Scholes model and here also the default barrier, r is the risk-free interest rate, and t is time, which is 
fixed in the model at one year. Finally, N(.) is the normal cumulative distribution function, and d1 
and d2 were derived from the Black-Scholes model as described in section II:20 
 

= + σ1 2  Ad d t  (7) 
 
and 
 

( ) ( )+ −
=

σ

σ
+2

2
0ln 2

_
A

Ar t
d

t

A B
dtd shk . (8) 

 
Note that d2 is equal, precisely, to distance to default (dtd = d2). 

It is apparent from equation 8 that asset volatility, σA , and assets value, A, are crucial for 
finding dtd. Thus, the system of nonlinear equations requires an equation for σA  if it is to yield a 
solution: 

 
( )

( )
σ

σ =
⎡ ⎤⎣ ⎦1

*
*

E
A

E
A N d

,  (9) 

 
where, σE  stands for volatility of equity.21 

Bank equity (E) and its volatility ( σE ) were initially set constant, but the results obtained with 
the model simulations were counterintuitive regarding distance to default. After a cost-push shock 
hit the economy. inflation went up as expected, GDP fell, and the interest rate increased in reaction 
to the inflationary pressures. While this negative economic scenario was taking place, distance to 
default was growing, signaling a sounder economic situation in the banking industry and among 
businesses in general, which is not a sensible outcome. The efficiency frontiers obtained were not 
satisfactory, either. By the same token, after a positive shock to GDP, which was accompanied by an 
interest rate hike, distance to default fell as if the economy were more vulnerable. This is so because 
in the model, higher interest rates have a negative effect on the level of assets, even if the economy is 
in better shape. 

                                                      
20. Dynare has an explicit function built in for the cumulative normal distribution function. 
21. Gray and Malone (2008) provide a thorough explanation.  
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We therefore adopted a new strategy of modeling both E and its volatility, σE . As mentioned 
earlier, distance to default affects the macroeconomic variables in several ways: namely, by affecting 
GDP, the real exchange rate, and the interest rate in equations (1), (3), and (5) of the macroeconomic 
model, respectively. In the following equations, GDP affects banks’ capital, E, and its volatility, σE . 
It also affects distance to default through this channel, making the whole system of equations 
completely endogenous. Another channel of endogeneity is the effect of interest rate on assets, A, and 
on the volatility of equity, σE :22 
 

( )=ρ − + 1   0.01 * tE E ygap ;  (10)  
 

( ) ( )+ −σ = + − + +1 4 0.1 3 *  3E t t t tr ygap ygap ygap . (11) 
 
The parameters of the macroeconomic model (see table 1) were estimated for carrying out monetary 
policy analysis. although, as we said above, this is mostly a theoretical exercise in which some of the 
model parameters were calibrated either in the yield curve (ξ) or in the reaction function (θ, γ, and ζ), 
and the parameters related to distance to default were calibrated in the interest parity condition and 
the Phillips curve, which are used in the sensitivity analysis of the next section.  
 

 
Table 1. Parameters of the Macroeconomic Model 

Parameter Parameter 
β1= 0.1 α3 = 0.05 
β2 = -0.1 α4 = 0.15 
β3 = -0.6 δ1 = 0.3 
β4 = -0.4 δ2 = 0.6 
β5 = -0.5 δ3 = -0.04 
β6 = -0.5 ξ1 = 0.5 
β7 = 0.02 ξ2 = 0.45 
β8 = 0.2 ρ = 0.8 
α1 = 0.3 θ =1.3 
α2 = 0.5 γ = 0.2—0.3…—1.2 
α3 = 0.05 ζ= 0.5—1.0—1.5 
 
 
 

3. STOCHASTIC SIMULATIONS AND POLICY ANALYSIS 
 
To understand how the model works, we first obtained impulse responses (figure 4). We then 

assess different monetary policy alternatives and model calibrations by building efficiency frontiers 
with the volatilities of GDP and inflation (García, Herrera, and Valdés, 2002; Laxton and Pesenti, 
2003). Specifically, we measure the responses of GDP, inflation, the exchange rate, the monetary 
policy interest rate, r, the CCA-derived risk indicator, dtd, and assets following a shock of 100 basis 
points to GDP and inflation.  

Output falls after an inflation shock (cost-push shock) hits the economy, taking the output gap 
(ygap) to negative levels. In contrast, the interest rate tends to increase initially; when combined 

                                                      
22. The spread put is an alternative measure of risk. It is described in Gray, Merton, and Bodie (2008) and Gray and 

Malone (2008) as a function of the value of the put option, the default barrier, the risk free rate, and time: 

  
spread _ put   = −1 t * log 1 −  PUT BB * exp −r * t( )⎡

⎣
⎤
⎦  − 0.00925382 . Although the spread put is a useful concept, it was not used 

in the simulations performed with the model here. 
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with the output gap reduction, this increases financial vulnerability and reduces the distance to 
default significantly (figure 4). The drop in the distance to default is so large that an otherwise 
increasing interest rate ends up falling while the exchange rate increases. This is so because the 
exchange rate is not only affected by the interest rate, but also by dtd through the risk premium.  

 
Figure 4. Responses to a Shock to Inflation (π) or a Cost-Push Shock 
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Source: Authors’ calculations. 

 
A positive shock to the output gap, in turn, causes GDP and inflation to increase. Interest rates 

also increase, while the exchange rate falls in line with economic intuition. The system takes around 
four years to return to equilibrium after the shock (figure 5).23 

In general, the model works as expected according to standard economic intuition. There is 
strong interaction among macroeconomic variables, and dtd has a large impact on the monetary 
policy rate, the real exchange rate, and even the output gap. 

 
Figure 5. Responses to a Shock to GDP (y) 
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23. A negative shock to distance to default (not reported) causes an initial small drop in ygap, but since dtd is included in 

the policy reaction function, the original shock is followed by a reduction in the monetary policy rate. Moreover, arbitrage 
through the uncovered interest parity and the respective hike of the risk premium result in a large real depreciation. Thus, 
the interest rate and the exchange rate fuel a GDP expansion. 
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Source: Authors’ calculations. 

 
The efficiency frontiers are built combining the volatility of inflation and GDP that results after 

the economy is hit repeatedly by shocks drawn from a normal distribution. Using Dynare, we 
simulated the artificial economy for 200 periods, repeatedly, and computed the average standard 
deviations of the variables between periods 100 and 120 across the repetitions. The purpose of the 
exercise is to compare frontiers that were obtained with a combination of ten weights, in the policy 
rule, for both the inflation and the output gap objectives, respectively, using three different weights 
on distance to default.24 Additional frontiers are obtained using a similar procedure but changing 
one of the parameters of the model. Whenever a frontier is closer to the origin, the volatility tradeoff 
is smaller, and it is possible to say that the policy choice is better for the central bank and the society 
as a whole.  

Figures 6 through 9 all include three frontiers, which were obtained with a traditional Taylor 
rule that includes dtd in addition to inflation and GDP gaps (θ = 0.5, ρ = 0.6, and γ = 0.6). The first 
line results from a rule in which dtd has a small weight (with a coefficient ζ = 0.5); that is, 
authorities react only weakly to the risk indicator (dotted line). The other lines in the figures 
correspond to alternative reaction functions for monetary policy that have a larger weight of dtd, 
with coefficients ζ equal to 1.0 and 1.5, respectively (dashed and solid lines). In summary, besides 
reacting to inflation and GDP gaps, the monetary authority also reacts to distance to default, 
increasing the interest rate when dtd is large, but reducing it when the banking system is close to 
default by more than is warranted by the inflation and output gaps alone. This is so because 
negative shocks to asset prices and liquidity could end up in credit risk crises, with systemic 
consequences for lending and production. On the other side, a very large dtd could be the result of 
asset bubbles, which are usually associated with financial turmoil when they burst. 

 
3.1 Reaction Size to dtd in the Policy Rule 

 
The size of the reaction to dtd in the Taylor rule has a very significant effect on the results. 

Indeed, the larger the coefficient associated with dtd in the authorities’ reaction function, the closer 
to the origin is the frontier obtained with the simulations (solid line in figure 6). Therefore, the 
central bank’s stabilization of dtd contributes to stabilizing the volatilities of both GDP and inflation, 
which fall more with a larger coefficient on dtd but with diminishing marginal gains. Increasing the 
coefficient from 0.5 to 1.0 generates a large reduction in the volatility of GDP and inflation, while 
using a coefficient of 1.5 improves the trade-off only marginally.  

 
 
 
 

                                                      
24. The combination of coefficients on inflation and output starts with 1.2 and 0.1, respectively. To get the second 

combination, the coefficient on inflation declines, while the weight on output gap increases—both by 0.1 each time. Therefore, 
another point for the volatility of inflation and output would be obtained with the combination of 1.1 and 0.2 weights in the 
monetary policy rule. A third one would be 1.0 and 0.3 and so on, up to ten combinations. 
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Figure 6. Efficiency Frontiers: Base Modela 
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Source: Authors’ calculations. 
a. The figure presents the base model reaction to dtd: 0.5, 1.0, and 1.5. 

 
3.2 Endogenous Effect on Bank Equity (E) and Its Volatility (σe)  

 
This experiment consists of substantially increasing the effect of GDP on both bank equity and 

its volatility. This is implemented by augmenting the coefficient of ygap from 0.01 to 0.10 in equation 
(10) and from 1.0 to 1.5 in equation (11). If the feedback from GDP to bank equity and dtd 
(endogeneity) is stronger, the gains by reacting strongly to dtd are even larger than in the base 
model (figure 7). In fact, a comparison of the two panels in the figure shows that the volatility 
reduction of both variables, included in the frontier, is much larger here than in the base model. 

 
Figure 7. Efficiency Frontiers and the Endogeneity of Bank Equity 
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B. High endogeneity of bank equity 
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Source: Authors’ calculations. 

 
3.3 Effect of dtd on the Real Exchange Rate 

 
In this experiment the effect (coefficient) of dtd in the (risk premium) exchange rate equation (3) 

was increased from 0.04 to 0.50. (figure 8, panel B). Again, the solid line, which represents the 
frontier obtained with a larger weight on dtd in the reaction function, includes points that are closer 
to the origin than any point in the dashed or dotted lines. Thus, this policy should be preferred by 
the central bank. The gains in terms of volatility are very similar in both panels of figure 8, although 
panel B only shows small differences with respect to the baseline model. The shape of the frontiers 
obtained in this experiment indicates that putting more weight on inflation generates a larger 
reduction in inflation volatility.  
 
Figure 8. Efficiency Frontiers and the Interest Parity Condition 
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B. High effect of dtd on the real exchange rate 
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Source: Authors’ calculations. 

 
 
3.4 Higher Pass-through 

 
Were the pass-though from exchange rate to inflation larger (0.7 instead of 0.05), the central 

bank policy would be more efficient if it reacted to dtd. Indeed, by reacting to dtd the central bank is 
able to reduce volatility mostly of output. As shown in figure 9, the frontiers move downward 
whenever the coefficient associated with dtd, in the monetary policy rule, increases. A high level of 
pass-through is an important issue in very open economies. If prices are very flexible and quickly 
reflect any movement of the exchange rate, it would be more difficult for relative prices to adjust 
after a shock, which could make GDP more volatile too.  

 
Figure 9. Efficiency Frontiers and Pass-through 
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B. Higher pass-through 
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Source: Authors’ calculations. 
 

3.5 Summary 
 
The simulations of the macroeconomic model show that it is more efficient for the central bank to 

put a larger weight on dtd in the reaction function, given that inflation and output volatility 
decrease. Whenever pass-through from the exchange rate to prices is very high, including dtd in the 
reaction function will reduce output volatility without increasing the variability of inflation. In 
addition, whether financial vulnerability or dtd has a larger impact on the exchange rate, or GDP 
has a larger effect on bank equity and, through it, on dtd (that is, endogeneity is high), it is more 
efficient to include dtd in the reaction function because the central bank is then able to reduce the 
volatility of both inflation and output.  

 
 

4. CONCLUSIONS 
 
This main objective of this article was the integration of the analysis of financial sector 

vulnerability into macroeconomic models, which is an area of important and growing interest for 
policymakers in both developed and emerging markets. This paper uses contingent claims analysis 
(CCA) tools, developed in finance, to construct financial stability indicators in a standard monetary 
policy model. Financial sector risk affects the economy, while the economy (GDP) and interest rates 
affect financial sector credit risk.  

The new framework is simple, but powerful for monetary policy analysis. The model incorporates 
the main variables analyzed by policymakers, but it is small enough to facilitate understanding how 
it works. Although the system stochastically simulates an artificial economy, the empirical evidence 
supports the model. In addition, impulse responses behave in accordance with economic intuition. 

The main question to be answered with the integrated model was whether or not the central 
bank should explicitly include the financial stability indicator in the interest rate reaction function. 
The alternative is to react only indirectly to financial risk by reacting to inflation and GDP gaps, 
since they already include the effect of financial factors on the economy. To reach the objective, 
efficiency frontiers were built with the volatility of inflation and output obtained from stochastic 
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simulations. In general, we find that including the distance to default (dtd) in the reaction function 
reduces both inflation and output volatility. Moving the policy interest rate more than what is 
consistent with the inflation and output gaps is efficient because negative shocks to asset prices and 
liquidity could lead to credit risk crises, with negative systemic consequences on the financial system 
and GDP. 

We also performed a set of exercises in which some of the model parameters were calibrated to 
reflect and assess actual differences among economies regarding exchange rate pass-through, the 
relation between financial risk and exchange rate through the parity condition (risk premium), and 
the endogeneity of the financial indicator, namely, the degree in which the macroeconomic variables 
(GDP and interest rates) affect distance to default through bank assets, bank equity, and equity 
volatility. Whenever the pass-through from the exchange rate to inflation is higher, when the impact 
of financial vulnerability (dtd) on the exchange rate is larger, and when the effect of GDP on bank 
equity (endogeneity) is stronger, it is more efficient to include dtd in the reaction function, with a 
large coefficient. Finally, this is a first approximation to the subject, and considerable refinements 
and extensions could be introduced in the future. A no exhaustive list includes the following: the use 
of other financial sector risk indicators, the inclusion of combinations of financial scenarios (strong, 
normal, fragile); adjustments to the dynamics of the macroeconomic model; the adoption of a more 
micro-founded general equilibrium macroeconomic model; and the introduction of empirical evidence 
for other countries or the application of the framework to other economies. All these extensions are 
left for future research. 

 
 

APPENDIX A 
Extensions of the Merton Model 

 
Numerous extensions of the original Merton model have been developed by relaxing some of its 

assumptions. Restrictions of the model include the following assumptions: (i) default can occur only 
at the maturity date of the debt; (ii) there is a fixed default barrier; (iii) there is a constant risk-free 
rate; and, (iv) asset volatility is constant. Cossin and Pirotte (2001) provide a good summary of 
extensions of the Merton model. Black and Cox (1976) extended the Merton model to relax 
assumptions (i) and (ii) above by introducing a “first passage time” model in which default can occur 
prior to the maturity of the debt if the asset falls below a specified barrier function for the first time.  

Although the strict theoretical condition in the Merton model for default is that the value of 
assets is less than the required payments due on the debt, in the real world default typically occurs 
at much higher asset values, either because of a material breach of a debt covenant or because assets 
cannot be sold to meet the payments (that is, inadequate liquidity) or because the sovereign decides 
to default and induce a debt renegotiation rather than sell assets. To capture these real-world 
conditions for default in the model, we specify a market value of total assets at which default occurs. 
We call this level of assets that trigger default the distress barrier. This barrier can be viewed as the 
present value of the promised payments discounted at the risk-free rate. The approach used in the 
KMV model sets the barrier level equal to the sum of the book value of short-term debt, promised 
interest payments for the next 12 months, and half of long-term debt (see Crouhy, Galai, and Mark, 
2000; Crosbie, 1999, 2001).  

In the 1990s, the KMV model was based on the Vasicek and Kealhofer model, which has multiple 
layers of liabilities and several confidential features. The Moody’s KMV expected default frequency 
(EDF) credit measure is calculated using an iterative procedure to solve for asset volatility. This 
distance to default was then mapped to actual default probabilities using a database of detailed real-
world default probabilities for many firms. The Moody’s KMV distance to default and the cumulative 
expected default probabilities (CEDF) are calculated as follows: 
 

( ) ( )+ μ − σ
=

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

2
0ln / / 2t A A

A

KMV

A B t
DD f

t
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( )t KMVCEDF f DD t= ⎡ ⎤⎣ ⎦ . 

 
This definition of KMVDD  includes the real drift of the asset, μA , whereas the distance to default 
from the Merton approach has r for the asset drift. Since Moody’s KMV estimates the actual default 
probabilities, the risk-neutral default probabilities are calculated from the correlation of the implied 
asset with the market, the market Sharpe Ratio, and the time horizon.  

The Merton model has been extended to include stochastic interest rates, as well. Shimko, 
Tejima, and Van Deventer (1993) include a Vasicek interest rate term structure model that relaxes 
assumption (iii) above, allowing the risk-free interest rate to change and including the correlation of 
asset return with the interest rate. There are two stochastic factors—the asset and the interest rate. 
This model is frequently called the STV model. Longstaff and Schwartz (1995) take the Black and 
Cox (1976) model and add in stochastic interest rates, similar to the way STV includes interest rates.  

The CreditGrades model (Finger, 2002) includes a diffusion of a firm’s assets and a first passage 
time default with a stochastic default barrier. The model was modified to incorporate equity 
derivatives (Stamicar and Finger, 2005). Recent research studies the relationship between the 
volatility skew implied by equity options and CDS spreads (Hull et. al. 2004). They establish a 
relationship between the implied volatility of two equity options, leverage and asset volatility. This 
approach is, in fact, another way of implementing Merton’s model to get spreads and risk-neutral 
default probabilities directly from the implied volatility of equity options. Zou (2003) a similar 
approach using several equity options.  

Financial support for liquidity and potential credit risk from the authorities is likely to be 
provided before the default barrier is reached. A minimum capital barrier, or simply a capital 
barrier, can be defined in addition to the default barrier. For instance, the default barrier plus 8 
percent of the market value of assets could be used as the minimum 8 percent capital barrier. The 
area between the minimum capital barrier and the default barrier represents the probability of 
falling below minimum capital but not as far as default. The value of this area is calculated as the 
implicit put option below the minimum capital barrier minus the implicit default put option. We call 
the value of the area the capital barrier put option or capital barrier expected loss. This is 
particularly relevant to the central bank, as it is a measure of loss directly related to the liquidity 
support and financial support that would be needed to get the bank asset level above the minimum 
capital level.  

 Finally, contingent claims models can be used to assess systemic risk in portfolios of financial 
institutions, including the correlation or dependence structure among them.  

 
 

APPENDIX B 
Regression Results of Output and the Output Gap on the Distance to Default of the 
Banking System 
 
The first regression is on GDP growth:  
 

− − − −Δ = + α + α Δ + α Δ + α Δ + ε1 1 2 1 3 1 4 1 t t t t t ty c r dtd e y . 
 
The results are presented in table B1. The second is a regression on the output gap: 
 

− − −= + α Δ + α Δ + α + ε1 1 2 1 4 1 t t t t tgap c dtd e gap . 
 
The results are presented in B2. These regressions show that changes in dtd are significant in 
explaining both quarterly GDP growth (the first equation12) and the output gap (the second 
equation) with the expected positive sign.  
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Table B1. GDP Growth Regressionsa 
Variable Coefficient Standard error t statistic Probability  
Constant 0.011 0.002 4.830 0.000 
R(–1) –0.001 0.000 –3.723 0.000 
DLOG(RER(–1), 0, 3) 0.046 0.019 2.438 0.017 
DLOG(DTDS(–1), 0, 3) 0.012 0.003 3.551 0.001 
DLOG(YS(–1), 0, 3) 0.463 0.074 6.283 0.000 
     
Summary statistic     
R squared 0.574    
Adjusted R squared 0.557    
Std. error of the regression 0.008    
Sum squared residual 0.007    
Log likelihood 358.890    
Durbin-Watson statistic 1.912    
Mean dependent variable 0.009    
Std. dev. dependent variable 0.013    
Akaike information criterion –6.677    
Schwarz criterion –6.552    
F statistic 34.036    
Probability (F statistic) 0.000    

a. The dependent variable is DLOG(YS, 0, 3). The adjusted sample covers the period from May 1998 to February 2007 and includes 106 observations (after 
adjustments).  

 
 

Table B2. Output Gap Regressionsa 
Variable Coefficient Standard error t statistic Probability 
Constant –1.736 0.470 –3.691 0.000 
DLOG(RER(–3), 0, 3) 4.134 1.639 2.522 0.013 
LOG(DTDS(–1)) 0.934 0.256 3.653 0.000 
YGAP(–1) 0.513 0.082 6.275 0.000 
YGAP(–3) 0.225 0.072 3.113 0.002 
     
Summary statistic     
R squared 0.661    
Adjusted R squared 0.648    
Std. error of the regression 0.712    
Sum squared residual 52.766    
Log likelihood –115.126    
Durbin-Watson statistic 1.842    
Mean dependent variable –0.035    
Std. dev. dependent variable 1.201    
Akaike information criterion 2.204    
Schwarz criterion 2.328    
F statistic 50.695    
Probability (F statistic) 0.000    

a. The dependent variable is YGAP. The adjusted sample covers the period from February 1998 to February 2007 and includes 109 observations (after 
adjustments).  
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APPENDIX C 
Extensions and Further Applications 

 
The central bank may expand its set of policy instruments to better accommodate its multiple 

objectives. Additional tools that can be used to target financial stability include the reserve 
requirements for banks and other measures of capital adequacy, such as the value-at-risk-based 
measures advocated in Basel II. A rule can be specified for targeting such a measure of capital 
adequacy, C, as follows: 
 

( )−= φ + − φ η + η + ε⎡ ⎤⎣ ⎦1 1 1 2 3 10 ,1t t t t tC C ygap fsigap  
 
The closer the parameter φ1  is to one, the more continuity is built into the capital adequacy 
requirement. As in the case of interest rates, some continuity is important, because significant 
changes in capital adequacy requirements, or interest rates, in a short amount of time can also 
potentially contribute to instability, as banks move en masse to comply with the new requirements. 
The second term in the above rule, which is multiplied by the coefficient − φ11 , allows the central 
bank to use capital adequacy requirements, or other variables that affect the risk profile of the 
banking sector, to respond to deviations of inflation, output, and financial stability from their 
targets.25 Because lower capital adequacy requirements stimulate lending, they may be able to 
contribute to higher investment that stimulates output when output is below the target. Likewise, 
more stringent capital adequacy requirements can help increase the financial stability indicator 
when it is below the target, by lowering the probability of banking sector instability or widespread 
defaults. Finally, the sovereign and the central bank will choose the coefficients of their decisions 
rules to maximize their objective functions.  
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