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Abstract

In this paper we attempt to explain the formation of cities in a context of

metropolitan areas in which farmers do not play any role and where congestion

costs appear as an important factor for the spatial con�guration of cities. To do

this, we �rst discuss the di�erent e�ects that considering farmers and congestion

costs as centrifugal forces have on the results. Central to the discussion is the notion

of complementarity in the location decisions of �rms. Second, we analyze the e�ects

of di�erent government policies on metropolitan areas. Some results about a central

government a�ecting spatial con�guration of cities are presented.
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1. Introduction

Concentration of population in cities appears as one of the most important features of

modern civilization. As observed by Bairoch (3, p. 213): "For where the urban way of

life had for thousands of years been the exception, it now became the rule. Today in most

developed countries more than two of every three persons live in cities. What is more,

half of these city dwellers live in large urban agglomerations with populations in excess

of 500,000".

Why are individuals concentrated in cities? In the last few years, some papers have

tried to explain this fact through formal microeconomic models where cities emerge from

the interactions between individuals, see Krugman (1991, 1992, 1993a, 1993b) among

others.

In these models, agglomeration emerges from three sources: the existence of economies

of scale at �rm level, transport costs, and the mobility of the industrial labor force.

Increasing returns to scale imply that the production of each good will take place in a

single location. On the other hand, the existence of transport costs means that the best

locations for a �rm will be those with an easy access to markets, and the best locations

for workers, those with an easy access to goods. Thus, concentration is the result of a

self-reinforcing process of agglomeration. In these models, however, not all the factors

are mobile. In particular, farmers are immobile and are the centrifugal force that limits

agglomeration.

It may seem, though, that nowadays farmers (as an immobile demand) seem not to be

the force halting the growth of cities. Much more compelling is the fact that large cities

su�er from urban tra�c problems, pollution and high housing prices that make small

cities relatively more attractive places to live in. In this sense, Arnott and Small (1994)

present �gures about the cost of tra�c congestion in metropolitan areas in the USA: on

average, drivers are willing to pay about $8:00 to save one hour of travel time, without

taking into account extra fuel, accidents or air pollution. Moreover, the annual cost of

driving delays is about $640 per driver.
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In this paper we attempt to explain the formation of cities in a context of metropolitan

areas in which farmers do not seem to a�ect the spatial con�guration of cities and where

congestion costs appear as an important factor for the spatial con�guration of cities.

Congestion costs may include not only intra-urban transportation, but also land rent and

environmental problems.

For these reasons, our model is similar to that of Krugman (1991) since it keeps

the same centripetal forces, but it departs from it in the centrifugal forces, which in

our model come from the congestion costs experienced by individuals living in the same

city.1 The aim of this paper is to analyze the e�ects of di�erent government policies on

metropolitan areas. In particular, congestion and transport parameters are the result of

government activity. By changing the amount of resources invested in these sectors, the

government may a�ect the spatial con�guration of cities. By congestion infrastructure we

mean all those improvements that the government may undertake to make life in cities

more attractive: urban buses, underground, car parks, gardens, etc.

The paradigm of monopolistic competition we use has been largely applied to ex-

plain agglomeration since Krugman's (1991) seminal work. Since then most papers have

considered farmers as the immobile demand that limits agglomeration. To what extent

do their results rest on the consideration of this centrifugal force? How do they change

when we consider another centrifugal force? Both kinds of forces, congestion costs and

immobile demand, have di�erent e�ects on concentration. Congestion costs break ag-

glomeration in such a way that, if a large city su�ers high congestion costs, a new small

city will appear nearby. This is a local centrifugal force, which is more important in a

context of metropolitan areas. Immobile demand, however, is a global centrifugal force

that produces dispersion when it is pro�table for some �rms to move to a distant immobile

market. Since both centrifugal forces are so di�erent, it is worth comparing their e�ects

in the same model in order to see how they can di�er, particularly if we are interested in

political recommendations. As will be shown, transport improvements may have reverse
a

1Recently, Brakman et al. (1996) have considered another type of congestion costs: the negative

externalities that come from industrial concentration.
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e�ects on concentration by considering congestion costs rather than farmers. Central

to the discussion is the notion of complementarity in the location decisions of �rms, as

stressed by Matsuyama (1995).

Contrary to Martin and Rogers (1995), we determine the investments in congestion

and transportation endogenously, which allow us to emphasize both the importance that

the e�ciency of these infrastructures' technologies have on the results, and the fact that

individuals have to pay for these improvements. Moreover, since we focus on the spatial

con�guration of metropolitan areas instead of on international industrial location patterns,

our assumption of congestion costs rather than farmers seems more appropiate. As we

will show, by using congestion costs Martin and Rogers' policy recommendations are

substantially modi�ed. Some results on the importance of the timing of these investments

are presented.

This paper is organized as follows. In section 2, we introduce the assumptions of the

model and analyze the short and long-run equilibrium, as well as the stability. In section

3, we discuss the welfare implications derived from investments in transportation and

congestion infrastructures. Finally, section 4 concludes.

2. The basic model

2.1. Assumptions of the model

We assume an economy with a large number of potential goods that appear in the utility

function in a symmetric way. All consumers have the same CES tastes:

U =

 X
i

c

��1
a

�

i

! �
a

��1

; (1)

where ci is the consumption of good i, and the elasticity of substitution between any two

goods, �, is greater than 1.

Individuals may move across J di�erent cities, �j being the share of population in city

j at any point in time.
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In this model, there are some costs due to the transportation of goods between cities

and due to the congestion costs experienced within cities. These costs take the usual

iceberg form: a proportion of the good produced by a �rm melts before it arrives to

consumers. On the one hand, when a unit is shipped from the city where that good is

produced, j, to the city where the consumer is, k, the amount that arrives is only e��Djk , �

being the transport parameter, and Djk the distance between cities j and k. On the other

hand, inside every city there are some negative elements such as urban transportation,

land rent, or environmental pollution, which make the larger cities places not so attractive

to live in. We include all these negative factors under the term congestion costs. So when

a unit of a good is produced in, or arrives at, city k, any consumer living in that city can

obtain only a proportion e�k�k of the good, k being the parameter of congestion relative

to city k.2 We can see that �rst the city size a�ects the loss due to agglomeration, and

that second, every city may have a di�erent congestion infrastructure (k). This simple

way of considering congestion costs will allow us, in the next section, to endogenize this

parameter.

In this economy there are two types of workers: �rm-workers and government-workers.

We assume that both kinds of workers have 1 unit of labor and that the latter collect the

same wage in every city as the former.

A characteristic of this model is that the parameters of congestion and transport are
a

2We could treat intra-urban congestion in a more explicit way, such as land consumption and/or

tra�c congestion in cities. We could consider, for instance, cities as long and narrow. Workers, needful

of land to live on, locate along a line at whose central point production takes place. The commuting

distance of the worker living on the outskirts of the city is o�set by paying no land rents. Conversely,

the worker living at the center does not incur commuting costs, but has to pay a land rent equal to the

commuting costs of the former. Hence, the distance from the outskirts of the town to the center gives

us information about both commuting costs and land rents (see Krugman and Livas Elizondo, 1996). If

each worker consumes a unit of land, distance and population are equivalent. Therefore, we could use the

above congestion costs to mean both commuting and land rents. However, such an extension would not

substantially change the main conclusions of this paper. Therefore, we take the simplest form of urban

congestion.
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not �xed, but can be modi�ed by changing the number of people (government-workers)

who work to improve these two infrastructures, i.e., to reduce the transport and con-

gestion costs. This number is decided by a central government with unique toimprove

infrastructures, maximizing the utility of a representative individual of the economy.3 Let

N� and N be the number of people that work to reduce the transport and congestion

costs, respectively, for the whole economy. In order to pay the wage of its workers, the gov-

ernment charges an income tax, �, in such a way that its revenues equal its expenditures,

namely,
P

j �j(�Wj) =
P

j N��jWj +
P

j N�jWj. This implies that � = N� +N.

We assume, for analytical convenience, that there is a proportion of �j of these workers

in every city j. The technologies of congestion and transportation infrastructures have

the following functional forms respectively:

j = a1e
���jN (a1 > 0; � > 0); (2)

� = a2e
���N� (a2 > 0 ; �� > 0); (3)

were a1 and a2 are the maximum values of congestion and transportation parameters

respectively. Hence, the investments in congestion in each city, �jN, depends on its

population. Thus, the value of the congestion parameter may change from one city to

another if they have di�erent sizes. It is clear that the higher the amount of resources

invested in these sectors, the lower the values of these parameters.

In this economy labor is only one factor of production. We denote by ��j the number

of �rm-workers in city j. We assume that all goods are produced under economies of scale

with the same tecnology:

Lij = � + �xij (� > 0; � > 0); (4)

where Lij is the number of workers needed to produce xij units of good i in city j. We

assume full employment in each city at any time so that
P

i Lij = ��j .
a

3The only con�gurations we will study are an even distribution of population across locations that

are identical, and total agglomeration of population. In any of these cases, it is clear that all individuals

have the same utility level, so that we can choose just one of them.

5



Finally, we suppose that individuals move toward locations with higher real wages,

the law of motion being:
d�j
a

dt
= ��j(!j � �!) (� > 0); (5)

where !j is the real wage in city j and �! =
P

j �j!j is the average real wage.

2.2. Short-run equilibrium

Drawing on Starrett's spatial impossibility theorem (Starrett, 1978), Fujita (1993) indi-

cates that there are only two basic types of models which can explain the endogenous

formation of cities: non-price interaction models and non-competitive models. The model

discussed here, Dixit and Stiglitz (1977)-type monopolistic competition, is included in the

last group.

Scale economies (due to the existence of �xed costs) in production imply that every

good is produced in only one location, so that di�erent cities have di�erent goods. To

determine the pro�t-maximizing behavior of �rms, it is important to stress the fact that

there are two types of demand: the demand of individuals living in the city where the

good is produced (domestic demand) and the demand from other cities (export demand).

The important point to note is that both demands have the same price elasticity, �, so

that transportation and congestion costs (which make consumers in di�erent cities pay

di�erent prices for the same good) do not alter the behavior of �rms. Then it can be

shown that the f.o.b. price charged by the �rm that produces good i in city j is:

pij = wj�
�
a

� � 1
: (6)

We can see that this price (which is a constant mark-up over marginal cost) only

depends on the wage rate, wj, o�ered in city j. Therefore, all goods produced in the same

city have the same price.

Monopolistic competition implies that �rms enter until pro�ts are zero. All this implies

that

xij = �(
� � 1
a

�
) for every good i and city j: (7)
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Since every �rm produces the same quantity and has the same technology, the number of

�rms in city j, nj, will be proportional to its population: nj = n�j , n being the number

of goods in the whole economy (this value can be obtained by dividing the number of

�rm-workers in the economy by the number needed in each �rm, i.e., n = 1��
a

��
).4

In this section, we assume that workers cannot move to other locations and also that

the transport and congestion parameters are given. In order to obtain the wage rate in

city j, Wj, we modify the units of goods such that pij = Wj ; this means that � equals

(��1)
a

�
.

Let us suppose that we have a numeraire good at j = 1. Therefore, W1 = 1.

We can prove5 that

Wj =

"X
k

Yk(e
�(�Djk+k�k)Tk)

��1

# 1
a

�

; (8)

where

Tj =

"X
k

��k(wke
�Djk+j�j)1��

# 1
a

1��

(9)

is a price index at j, and

Yj = (1 � �)�jwj; (10)

is disposable income of city j.

So, for a given distribution of the population we can calculate the wage rate in each

city.

2.3. Long-run equilibrium

We are now interested in knowing what happens in our economy if workers can move

between cities. The force that may move workers from one place to another is the real

wage, de�ned as the ratio between the wage rate and the price index, namely !j = WjT
�1
j .

a

4Actually, nj =
��j
aP

k

��k
n = �jn because ��j = (1� �)�j .

5See Appendix A.
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Using the dynamic process described above, we know that workers move to cities with

real wages above the average real wage and that they move away from cities with real

wages below average.

We de�ne equilibrium as any distribution of the population between di�erent locations

such that !j = �! for each j such that �j > 0 and !j � �! otherwise.

In what follows we will consider the case of only two cities, the distance between them

being normalized to 1. In this section we also assume that both cities have the same

congestion infrastructure .

Because of symmetry, it holds that �1 = �2 =
1
a

2
is always an equilibrium, regardless

of the values of the parameters. Conversely, concentration in one city is not always an

equilibrium, as we can see in the following proposition.

Proposition 1. Concentration of population in one city is an equilibrium if, and only

if, congestion costs are su�ciently low with respect to transportation costs, namely, if,

and only if,  � �(2��1a
�

).

Proof: see Appendix B.

What we obtain from this proposition is that congestion costs are the centrifugal

force that works against concentration. On the other hand, transport cost represents

the centripetal force that favors agglomeration. In other words, when transport cost

decreases then concentration is more di�cult. This is exactly the opposite to Krugman's

result. In Krugman (1991; 1992), concentration was more likely when transport costs

were low, because in that case �rms did not increase their bene�ts by moving closer to

the dispersed farmers (who were immobile). But in the context of metropolitan areas,

however, our result seems more appropiate, since the lower the transport cost between

the two cities, the higher the relative importance of the congestion costs that a large city

experiences. This implies that the higher the congestion costs in a large city, the more

interested its citizens will be in moving to a smaller city nearby where congestion is lower.

Hence, the e�ect of the transport parameter on concentration does depend on the
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kind of centrifugal force one considers. On the other hand, as opposed to Krugman (1991;

1992), we also �nd that the core-periphery pattern is more likely to occur when goods

are su�ciently substitute (� high). In this case, agglomeration emerges as an equilibrium

because competition between similar goods seems to be overcome by other e�ects. Which

ones are these e�ects? Entry of a new �rm in the city bene�ts all �rms existing there

because it attracts more costumers. This introduces, as Matsuyama (1995) suggests,

complementarity in the locational decisions that leads to all �rms clustering in the same

location. Furthermore, since the more substitute the goods are, the more important this

kind of complementarity is, we �nd that concentration is more likely, the higher the value

of �. If goods are similar and there is no immobile demand elsewhere, an individual �rm

cannot start production pro�tably in another location since the market loss for a defecting

�rm becomes more important. This underlines the fact that the market e�ect is more

relevant than the competition e�ect when there is no immobile demand.6

We are now interested in the local stability of equilibria. For this we need to consider

the law of motion that, in the case of two cities, takes the following form:

d�1
a

dt
= ��1(1� �1)(!1 � !2); � > 0: (11)

Taking this into account, an equilibrium will be stable if when �1 slightly increases then

!2 > !1 and when �1 slightly falls then !2 < !1. In other words, when
d(!1�!2)
a

d�1
< 0.

If all labor force is concentrated in city 1 (city 2) it will stay there if !1 > !2 (!1 < !2).

In other words, if concentration is an equilibrium and real wages in both cities are di�erent,

then this equilibrium is stable.

The next question is: When is an even distribution stable? We analyze this in the

following proposition.

Proposition 2. By assuming that � � 2:5, a necessary condition to warrant the
a

6In Brakman et al. (1996) both farmers and congestion costs coexist and perhaps this is why the

e�ect of � on concentration/dispersion in their model is ambiguous.
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stability of an even distribution is that

(� � 1)
a

2

h
1 � e�(1��)

i
+ [2 + (� � 1)] e�(1��) + (� � 1) � 2 > 0: (12)

Proof: see Appendix C.

Therefore, an even distribution may emerge as a stable con�guration only if the trans-

portation infrastructure between cities is good enough (� small) and the congestion in-

frastructure inside cities is not ( high).

3. Comparison of stable equilibria. The role of the State

We have already examined the conditions under which concentration and even distribu-

tion of the population are stable equilibria, given the values of transport and congestion

parameters. However, di�erent values of these parameters involve di�erent spatial con-

�gurations and, therefore, di�erent welfare levels. In the next �gure we can see how

investments in congestion and transport can a�ect the wage di�erential curve, and there-

fore the long-run equilibria of the economy.7
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7In this �gure we assume that a1 = a2 = 1, � = �� = 10, and � = 4. Therefore, both initial

congestion and transport costs are high.
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We plot the real wage di�erential (!1 � !2) against the labor force in city 1 (�1) for

di�erent investments in infrastructures, in other words, for di�erent values of congestion

and transportation parameters. Any point where the wage di�erential is zero is an equi-

librium. This equilibrium is stable if the curve is downward-sloping and is unstable if it

is upward-sloping. There may also be corner equilibria: concentration in city 1 (2) when

!1 � !2 > 0 (!1 � !2 < 0). Hence, the economy can reach di�erent long-run equilib-

ria depending on the investments in infrastructures undertaken by the government. The

above �gures show that when investments in congestion (transportation) increases, then

the curve of wage di�erential turns counter-clockwise (clockwise), i.e., concentration is

more (less) likely to occur.

In this section we will consider the problem of the government choosing the optimal

investments in infrastructures (N; N� ) that maximize the utility level of a representative

individual of the economy and will see the e�ects that these infrastructures' technologies

have on the results.

To to this, between the government's investments that make concentration to be a

stable equilibrium, we will single out only those that maximize the utility of a repre-

sentative individual. Likewise for the case of an even distribution. Afterwards, we will

compare both spatial con�gurations, concentration and even distribution, given their op-

timal investments in infrastructures under which these con�gurations are stable equilibria.

Finally, we will present some results on the importance of the timing of these investments.

Proposition 3. The investment in congestion, N �

 , that maximizes the utility function

of each individual, when population is concentrated in one city is zero if �
a

��1
� a1� and

is positive otherwise.8 Moreover, in this latter case, the more similar goods are, the higher

the optimal investments in congestion the government should have to carry out.

Proof: see Appendix D.

This proposition means that only if the initial congestion costs of the city (a1) are

high enough or if technology is e�cient enough (� high) the government should invest to
a

8For this value see the proof of this proposition.

11



improve congestion.

However, we are not interested in �nding the values of investments that maximize

individuals' utility in general, without constraints. We are looking for those values that

guarantee concentration to be a stable equilibrium. Hence, we can reformulate the above

proposition to consider the optimal values under which concentration is an equilibrium

(stability is not a problem, as was discussed in section 2).

Proposition 3'. If the initial value of the congestion parameter is not too high as

compared with that of transport, namely, if a1 � a2, or if a1 > a2 and a1
a

a2
� 2��1
a

�
, then

the value obtained in the previous proposition, N�0

 = N�

 , is the optimal investment in

congestion that guarantees concentration to be a stable equilibrium. Otherwise, i.e., if the

congestion parameter is high enough as compared with that of transport, the government

should have to carry out a larger investment in congestion in order to maximize individ-

uals' utility, and keep concentration as a stable equilibrium at the same time, namely ,

N�0

 = maxfN�

 ;
1
a

�
ln(

a1
a

a2
a

2��1
a

�

)g:

Proof: see Appendix E.

As we can see the government should take into account not only which investments

improve the utility level of individuals, given the spatial distribution of population, but

also how these investments may a�ect the spatial pattern.

Proposition 4. To calculate the optimal investments in the case of an even distribu-

tion we will consider the following cases:

1. If the initial congestion costs are relatively small and technology in congestion is

ine�cient, then the optimal decision policy should be not to invest in congestion.

Namely,

a1
�
a

4
�

�
a

� � 1
implies that N��

 = 0:

Since individuals love variety and a low value of  implies a large number of goods

in the economy, the less substitute the goods are, the less investments in congestion

the government should undertake.
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2. If transportation technology is not e�cient enough, the optimal decision policy should

be not to invest in transportation. In fact,

�
a

� � 1

�
1 + e(��1)a2e

���
�
> ��a2 implies that N��

� = 0:

3. If technology in transportation is not su�ciently e�cient, congestion costs are high

and technology in congestion is e�cient, then the optimal policy should be to invest

only in congestion; namely,

a1
�
a

4
> �
a

��1

�
a

��1

�
1 + e(��1)a2e���

�
> ��a2

3
75 imply that

N��

� = 0

N��

 > 0:

Moreover, if the optimal investment in transportation was not very large (a1
�
a

4
(1�

N��

� ) > �
a

��1
) then

a1
�
a

4
>

�
a

� � 1
would still imply that N��

 > 0:

4. If technology in congestion is not e�cient enough but technology in transportation is

e�cient, then the optimal decision policy should be to invest only in transportation.

Namely,

a1
�
a

4
� �
a

��1

�
a

��1

�
1 + e(��1)a2

�
< ��a2

3
75 imply that

N��

� > 0

N��

 = 0:

Moreover, if the investment in congestion was not very large ( �
a

��1
(1 + ea2(��1)) <

��a2(1�N��

 )) then

�
a

� � 1
(1 + ea2(��1)) < ��a2 would still imply that N��

� > 0:

5. If technology in transportation and in congestion are both e�cient, then the best

policy should be to invest in at least one of these sectors. In other words,

a1
�
a

4 > �
a

��1

�
a

��1

�
1 + e(��1)a2

�
< ��a2

3
75 imply that

N��

� > 0

and=or

N��

 > 0:
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Proof: see Appendix F.

Proposition 4'. If there are no transport costs (a2 = 0), then the optimal investments

obtained in Prop. 4 guarantee that even distribution is a stable equilibrium.

Proof: see Appendix G.

Note that if there were no transport costs (a2 = 0), then concentration would not

emerge as a stable con�guration. Therefore, in this case, an even distribution (with its

optimal investments) would be the best con�guration.

Once we know the optimal investments in transportation and congestion under which

concentration and an even distribution are stable equilibria, we must compare the indi-

viduals' utility levels in both con�gurations. As is well-known, this type of model cannot

be solved analytically because of its strong non-linearity. However, basic understanding of

its behavior can be obtained by numerical simulations. In what follows we present some

interesting examples which shed some light on this. As in Krugman (1992) we assume

� = 4.

Example 1. We initially consider small congestion costs (a1 = 0:25) and high trans-

port costs (a2 = 1:5), and we will see how di�erent parameters of the technologies in

congestion and transportation will a�ect the optimal investments and, therefore, the spa-

tial con�guration.

Following the previous propositions, we can obtain that when � = 8 (congestion

technology is ine�cient) and �� = 180 (transport technology is e�cient) the optimal

investments that make even distribution to emerge as an stable equilibrium are N��

 = 0

and N��

� = 0:025. On the other hand, the optimal investments that make concentration

to be a stable equilibrium are N�

 = 0:043; and N�

� = 0. If we calculate the utility level

obtained in both situations (which are stable equilibria) we have that even distribution is

the best spatial con�guration.

We can see that in spite of the high value of the initial transport parameter and the

low value of the initial congestion parameter, individuals prefer being evenly distributed
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across cities than being concentrated in one city. The explanation is clear: transporta-

tion technology is su�ciently e�cient to make investments in this sector pro�table while

congestion technology is not. Hence, people are better o� being evenly distributed across

the two cities and improving the transportation infrastructure between them, than being

concentrated in one city and improving its congestion infrastructure.

This example also shows that dispersion can be an e�cient spatial con�guration.

Even distribution may emerge as the optimal spatial pattern not only when a central

government is concerned about equity, as in Martin and Rogers (1995), but also when it

is concerned about e�ciency.

Conversely, when � = 8; and �� = 1 (both technologies are ine�cient), the optimal

investments in the case of an even distribution are N��

 = 0 and N��

� = 0, and in the

case of concentration N�

 = 0:043 and N�

� = 0. If we calculate the utility level in both

situations, we have that concentration is the best con�guration. (In this example the

even distribution is not stable, but this is not a problem because the utility value under

the investments that guarantee stability is always lower than the utility value without

constraints, and the latter is lower than the utility value in the case of concentration). In

this case people prefer being concentrated in one city than being evenly distributed across

cities since transportation infrastructure is not good, and its technology is not su�ciently

e�cient to make investments in this sector pro�table.

Example 2. When we initially consider high congestion costs (a1 = 1:5) and small

transport costs (a2 = 0:25), technology in transportation is very e�cient (�� = 100) and

technology in congestion is not (� = 8), we have that the optimal investments in the

case of an even distribution are N��

 = 0:1548 and N��

� = 0:01967, and in the case of

concentration N�

 = 0:24 and N�

� = 0. If we compare the utility values in both cases, we

�nd that concentration is better. So, in spite of low transport costs and high congestion

costs, it is possible for people to be better o� in the case of concentration rather than in

the case of an even distribution. This is not an intuitive result. On one hand, the larger

the city population, the larger the total amount of resources in congestion invested in this

city. On the other hand, the higher the population in a city, the higher the congestion
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costs in that city. So, there is a trade-o� between congestion costs experienced in a city

and investments undertaken in that city to improve congestion.

Therefore, this example shows that individuals may reach a higher utility level by

concentrating people and resources in one city, and improving only the congestion infras-

tructure of that city, than dispersing people and resources between cities.9

In what follows we will show some examples and results on the importance of the

timing of investments in congestion and transportation infrastructures.

From now on, we will consider the symmetric case where both cities have the same

congestion infrastructure .

In the �rst example, we assume small transport costs (� = 0:26). If we initially

consider that  = 0:5 and, afterwards, the congestion parameter changes to  = 0:35, we

will have the next �gure.
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Fig. 2 Changes in congestion

We can observe that when  = 0:35, �ve equilibria emerge, two of them being unstable

(the two interior asymmetric 10 equilibria) and the other three stable (concentration in

each city and even distribution). Therefore, in the long-run, when congestion costs are

0.35, concentration and even distribution emerge as possible stable equilibria. Let us
a

9It can be shown that this kind of result emerges when the initial congestion parameter is so high that

large investments in this sector are needed.

10We de�ne asymmetric equilibrium as any equilibrium where the sizes of the two cities are di�erent.
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consider that population is initially distributed in such a way that �1 is a value between 0

and the unstable equilibrium on the left side. In this case, if the government changed the

congestion infrastructure and afterwards the economy moved to the long-run equilibrium,

then concentration in city 2 would be the �nal situation. Thus, the government would

favor concentration. However, if the government invested the same amount of resources

when population in city 1 had increased su�ciently (0:5 > �1 > 0:3) then even distribution

would be the �nal equilibrium. Therefore, a change in the congestion infrastructure does

not always a�ect the spatial con�guration. The moment when the government undertakes

these investments is relevant. If these investments are undertaken when a city is still quite

small concentration would appear as the �nal con�guration pattern.

We will now analyze the e�ects of a transportation investment on the spatial con�g-

uration. Let us consider the case where  = 0:35 and � = 4. If initially � = 0:6 and

afterwards � = 0:26, we have the following �gures.
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Fig. 3 Changes in transportation

We can observe that when � = 0:6 concentration is the only stable equilibrium. How-

ever, when � = 0:26 even distribution emerges as another stable equilibrium in addition

to two unstable equilibria. Let us consider that population is initially distributed in such

a way that �1 takes some value between 0:3 and 0:5. Intuitively, if government carries

out the transportation improvement after city 1 reaches a certain level (0:5 > �1 > 0:3)

then even distribution will be the �nal equilibrium. However, if this investment is made

too late, i.e., when the economy is at a situation where population in city 1 is lower than

0.3, then concentration in city 2 would emerge as the �nal equilibrium.
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Once again, if one city is very small an investment in transportation can still drive

the economy to total agglomeration. Even when the government carried out investments

in transportation to favor dispersion, concentration may emerge again as the long-run

equilibrium depending only on the timing on these investments. Hence, an investment

in transport infrastructure can change the spatial con�guration only when population is

not too concentrated. Moreover, this investment has to be undertaken if and only if the

parameters are such that the e�ect that this investment has over spatial con�guration

outweighs the value of this investment. We do this in the next proposition.

Proposition 5. The utility level of an individual in the case of concentration is

lower than the utility level of an individual in the case of even distribution after the

transportation investment, if and only if

e�

a

2 < (1�N� )
�
a

��1 2
1
a

1��

h
1 + e(1��)2e

���N�
i 1
a

��1
: (13)

Proof: see Appendix H.

This means that this condition holds if transportation technology is su�ciently e�cient

(�� su�ciently high), and congestion costs are high enough.

In these propositions we have seen that individuals can raise their welfare level by

paying taxes, with which the government undertakes improvements to infrastructures.

These government policies cannot only imply an improvement in these infrastructures,

but also a change in the spatial pattern.

Finally, we must emphasize the di�erences between a transportation and a congestion

improvement on the pattern con�guration. As we saw in Prop.1, a transportation im-

provement means that even distribution is the result that emerges easier. On the other

hand, a congestion improvement implies more concentration. Therefore, if the government

were interested in favoring dispersion, the best policy would be to improve the trans-

portation infrastructure instead of the congestion one. In other words, if the government

wants to make Madrid less crowded, for example, the right policy would be to improve
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transportation between this metropolis and the small outlying towns: Getafe, Legan�es,

Alcorc�on,... instead of an improvement in its subway or urban bus services. Conversely,

by considering farmers rather than congestion costs, Martin and Rogers (1995) �nd that

a government, worried about industrial convergence, in a context of international trade

instead of metropolitan areas, would be biased in favor of facilitating domestic (congestion

infrastructure for us) rather than international trade (transportation between cities for

us). As we can see, each context we want to analyze needs to consider a di�erent type of

centrifugal force and this is relevant if we are interested in political recommendations.

4. Conclusions

In this paper we have developed a model that tries to explain the existence of cities in

a context of metropolitan areas where farmers do not play a relevant role and where

congestion costs appear as an important factor with a large inuence on the spatial con-

�guration of cities. Our framework is a monopolistically competitive general equilibrium

model based on Krugman (1991).

It has been shown that increasing returns of scale and the existence of transporta-

tion costs are factors that favor agglomeration, while congestion costs prevent it. The

centripetal forces are the same as in Krugman (1991), but congestion costs have substi-

tuted farmers as the centrifugal forces. The two centrifugal forces, congestion costs and

the immobile demand represented by farmers, have di�erent e�ects on concentration and

it should be underlined that the e�ects of other parameters, not directly related with

dispersion, can di�er depending on the kind of contrifugal force we consider. By consider-

ing congestion costs instead of an immobile demand, Krugman's results are substantially

modi�ed. First, he shows that concentration is more likely when transport costs are low,

because in that case �rms do not increase their bene�ts by moving closer to the dispersed

farmers. Conversely, we show that when transportation cost decreases, concentration is

more di�cult. In the context of metropolitan areas, which are the focus of this paper,

our result seems more appropiate, since the lower the value of transport cost between two

19



cities, the more important the congestion costs in a large city relative to the transport

costs. This implies that, if transport costs decreases, more citizens will want to move

to a smaller city nearby where congestion is lower. Hence, the e�ect of the transport

parameter on concentration does depend on the kind of centrifugal that one considers.

Second, as opposed to Krugman (1991), we also �nd that the core-periphery pattern is

more likely to occur when goods are closed enough substitutes. This suggests that, when

we consider congestion costs instead of an immobile demand, the market factor e�ect

becomes preeminent as compared with the competition e�ect. Entry of a new �rm in a

city bene�ts all existing �rms in this city because it attracts more custumers. If goods

are similar and there is no immobile demand elsewhere, it is not possible for an individ-

ual �rm to start production pro�tably in another location since the market loss for this

defecting �rm becomes too important.

Finally, in our model, the congestion and transport parameters are endogenized, so

that the government can modify their values. Hence, it must decide what amount of re-

sources to invest in congestion and transportation to reduce respective costs. By changing

these parameters the government may change the spatial con�guration and, therefore, the

long-run equilibria of the economy. Some comments about the importance of the tim-

ing of these investments are presented. The model suggests that improvements in the

transportation system between cities can be ine�ective and drive the economy to total

agglomeration if one of the two cities is rather small. In other words, investments in trans-

portation lead to dispersion only if the initial population is not too concentrated. When

dispersion is initially the long-run equilibrium of the economy, the convergence is faster

after the government's investments in transportation. On the other hand, improvements

in the congestion infrastructure of cities can drive the economy to dispersion only if they

are undertaken when both cities have similar sizes. Otherwise, any investment in this

sector would drive the economy to a core-periphery pattern.

Hence, by considering congestion costs instead of farmers, policy implications can be

substantially modi�ed. The model also suggests that a government concerned about in-

dividual's welfare should take into account not only the e�ects of these investments on
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relocation of individuals and �rms, but also the relative e�ciency of the technologies in-

volved. In spite of high transportation costs and low congestion costs, individuals may

prefer being evenly distributed across cities and paying taxes to improve the transport

between them, rather than being concentrated in one city, if transportation technology is

su�ciently e�cient to make investments in this sector pro�table while congestion tech-

nology is not. On the other hand, individuals may prefer being concentrated, and paying

taxes to improve the congestion infrastructure of that city, than dispersing people and

resources if initial congestion parameter is so high that large investments are needed to

undertake an improvement of this sector.
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Appendix

A. The wage rate

We begin by solving the following problem

max

 X
i

cki

��1
a

�

! �
a

��1

(14)

s.t. ck
1
e�D1k+k�k +

X
i6=1

p0ikc
k
i = m;

where cki is the consumption of good i by an individual of city k, good 1 is the numeraire,

p0ik is the c.i.f. price paid by this individual for a unit of good i, and m = (1 � �)Wk is

the disposable income of this individual.

If we calculate the �rst order condition we have

cki =
p02k

�

a

p0ik
� c

k
2: (15)

Using that Ck
i = �kc

k
i it follows that

p0ikC
k
i =

p02k
�

a

p0ik
��1C

k
2 : (16)

We de�ne Yk = (1 � �)Wk�k as the disposable income in city k. This income is used to

pay for goods consumed in this city, i.e. Yk =
P

i p
0
ikC

k
i . Using expression (16), we can

write Yk = p02kC
k
2

"P
i

�
p0
2k
a

p0
ik

���1
#
: Rearranging, we have p02kC

k
2 =

Ykp
0

2k
1��

aP
j
njp

0

jk
1��

Let S2k be the expenditure in city k for goods produced in city 2, namely, S2k =

n2p
0
2kC

k
2 (we are identifying good 2 with any good produced in city 2).

By using that p0jk = pje
(�Djk+k�k) and pij = Wj , we have that

X
k

S2k = �2
X
k

Yk(W2e
�D2k+k�kT�1

k )
1��

; (17)

where

Tk =

2
4X

j

�j(Wje
�Dkj+k�k)1��

3
5

1
a

1��

: (18)
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On the other hand, expenditures in each city have to equal its disposable income,

which means that X
k

S2k = (1� �)W2�2: (19)

From (17) and (19) it follows that

W2 =

"X
k

Yk(e
�(�D2k+k�k)Tk)

��1

# 1
a

�

: (20)

This proof can be repeated for a generic city j, q:e:d:

B. Proof of Prop. 1

Suppose that almost all population is concentrated in city 1, so �1 � 1. Using eq (8)-(10)

we can calculate !1 and !2

!1 = (1 � �)
1
a

��1 e�; (21)

!2 = (1 � �)
1
a

��1 e�(
1�2�
a

�
): (22)

Concentration in city 1 is an equilibrium if and only if !1 � !2, which is equivalent to

 � � (2��1
a

�
), q:e:d:

C. Proof of Prop. 2

In order to study the stability of even distribution we can �rst write the following expres-

sion (all variables being evaluated at �1 =
1
a

2
):

d(!1 � !2)
a

d�1
= T�1

1

"
�T�1

1

 
dT1
a

d�1
�
dT2
a

d�1

!
�
dW2
a

d�1

#
: (23)

Even distribution is a stable equilibrium if and only if this derivative is negative. To study

this, we can start by analyzing the sign of dw2
a

d�1
at 1

a

2
. We can write

dW2
a

d�1
=

2
a

�

A+B
a

C
; (24)
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where

A =
2
a

[1 + e�(��1)]
2 ; (25)

B =
�2e��(��1)

a

[1 + e��(��1)]
2
; (26)

C = 1 �
� � 1
a

�
[1 + e�(��1)]

�2
�

1
a

�
[1 + e��(��1)]

�1
�
� � 1
a

�
[1 + e��(��1)]

�2
: (27)

It is easy to show that A + B < 0 and C > 0. Hence, dW2
a

d�1
< 0: On the other hand, by

doing algebraic operations we have that

dW2
a

d�1
> �1() 4� � 5 + (5 + 2�)e��(��1) + 5e�2�(��1) + (2� � 5)e�(��1) > 0: (28)

We know that when � � 2:5 this inequality holds. In what follows, we may assume these

values for parameter � (which is not a strong constraint). We can, therefore, conclude

that �1 < dW2
a

d�1
< 0:

Since T1 > 0 and dW2
a

d�1
< 0, condition dT1

a

d�1
� dT2
a

d�1
< 0 has to hold in order to guarantee

the stability of an even distribution. This condition is equivalent to

�
(� � 1)
a

2

dw2
a

d�1
[1� e�(1��)] + [2 + (� � 1)]e�(1��) + (� � 1) � 2 > 0: (29)

From dW2
a

d�1
> �1 it follows that

(� � 1)
a

2
[1� e�(1��)] + (2 + (� � 1)) e�(1��) + (� � 1) � 2 > 0 (30)

is a necessary condition to warrant the stability of an even distribution, q:e:d:

D. Proof of Prop. 3

Let us assume that the population is concentrated in city 1, namely �1 = 1. Let i be a

good produced in city 1. Then consumption in city 1 is C1
i = c1i and in city 2 is C2

i = 0.

Therefore, total demand is the demand in city 1, i.e., c1i e
�11 . As markets clear, production

equals demand, so that �� = c1i e
1 or, equivalently, c1i = ��e�1. Besides, the number
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of goods in the economy n = (1��)
a

��
. Using this, we can write the utility function of an

individual located in city 1 as

U1 = (1�N� �N)
�
a

��1 (��)
1
a

1�� e�1 : (31)

This expression is decreasing in N� , so that the optimal investment in transportation, N�
� ,

is zero. Substituting this value into U1 it follows that

@U1
a

@N

= (1�N)
�
a

��1
�1
(��)

1
a

1�� e�1
�
�

�
a

� � 1
+ (1 �N)a1�e

��N

�
: (32)

The sign of this derivative depends on the expression in brackets, because the other term

is positive for 0 � N < 1. We de�ne function g as g(N) = (1�N)a1�e
��N . We can

see that g is a decreasing convex function, g(0) = a1�, and g(1) = 0.
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Figs. 4a and 4b

If a1� �
�
a

��1
then �
a

��1
> g(N), for 0 < N < 1. This implies that the maximum is

N�
 = 0 (see Fig. 4a).

If a1� > �
a

��1
, the optimal investment in congestion, N�

 , is solution of equation

(1 �N)a1�e
��N = �

a

��1
(see Fig. 4b), q:e:d:

E. Proof of Prop. 3'

When N� = 0 we know (by using Prop. 1) that concentration is an equilibrium if and

only if

N >
1
a

�
ln(

a1
a

a2
a

2��1
a

�

): (33)
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If a1 < a2 or a1 > a2 and
a1
a

a2
� 2��1
a

�
then ln(

a1
a

a2
a

2�
a

�

) < 0. This implies that every N > 0,

in particular N�
 , satis�es the above condition.

If a1 > a2 and a1
a

a2
> 2��1
a

�
then ln(

a1
a

a2
a

2��1
a

�

) > 0. We know from the proof of Prop.

3 that above N�
 the utility function decreases, thus the optimal value that guarantees

concentration to emerge as an equilibrium is N�0

 = maxfN�
 ;

1
a

�
ln(

a1
a

a2
a

2��1
a

�

)g; q:e:d:

F. Proof of Prop. 4

Let i be a good produced in city 1 and consider the case of an even distribution. Then

consumption in city 1 is C1
i = 1

a

2
c1i , in city 2 is C2

i = 1
a

2
c2i and 1 = 2. As markets clear,

production equals demand, so �� = C1
i e

1
a

2 + C2
i e

2
a

2
+� = 1

a

2
e

1
a

2
1(c1i + c2i e

�). If good �i is

produced in city 2 then
c1
i
a

c1�i
= (

p0�i1
a

p0
i1

)
�

. Taking into account that in an even distribution

c2i = c1�i and that
p0�i1
a

p0
i1

= e� we may write: c2i = c1i e
���. Using this we have �� =

1
a

2
e
1
a

2 c1i [1+e
�(1��)]. Therefore, c1i =

2��
a

e
1
a

2 [1+e�(1��)]
and c2i =

2��
a

e
1
a

2 [1+e�(1��)]
e���. If we introduce

these consumptions in the utility function of a representative individual of this economy

(by symmetry his location does not matter) we obtain that

U 1
a

2
= (1�N� �N)

�
a

��1 (2��)
1
a

1��
[1 + e(1��)a2e

��� N�
]

1
a

��1

a

e
a1e

��
N
a

2
a

2

: (34)

It can be shown that

@U 1
a

2
a

@N�

= B1

�
��
a

� � 1
[1 + e(��1)a2e

��� N�

] + (1�N� �N)��a2e
���N�

�
; (35)

@U 1
a

2
a

@N

= B2

"
��
a

� � 1
+ (1 �N� �N)a1

�
a

4
e��

N
a

2

#
; (36)

where

B1 = (1�N� �N)
�
a

��1
�1
(2��)

1
a

1��
[1 + e(1��)a2e

��� N�
]

1
a

��1
�1

a

e
a1e

��
N
a

2
a

2

e(1��)a2e
��� N�

; (37)

B2 = (1�N� �N)
�
a

��1
�1
(2��)

1
a

1��
[1 + e(1��)a2e

��� N�
]

1
a

��1

a

e
a1e

��
N
a

2
a

2

: (38)
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B1 and B2 are always positive, since N� +N < 1 in the optimum, see eq(34).

We de�ne the following functions that appear in
@U 1

a

2
a

@N�

�f(N� ) =
�
a

� � 1
[1 + e(��1)a2e

��� N�

]; (39)

g(N� ; N) = (1�N� �N)��a2e
���N� : (40)

It is easy to prove that both functions decrease in N� , where 0 � N� < 1. On the other

hand, �f(0) = �
a

��1
[1 + e(��1)a2], and g(N� ; 0) = (1 � N� )��a2. When N is �xed, the

maximum value of N� is 1�N . At this point �f(1�N ) =
�
a

��1
[1+e(��1)a2e

��� (1�N )

] > 0;

and g(1 �N; N) = 0: We can prove that g and �f are both convex functions in N� .

We de�ne the following function that appears in
@U 1

a

2
a

@N

h(N� ; N) = (1�N� �N)a1
�
a

4
e��

N
a

2 : (41)

It is easy to prove that h decreases in N .

Now we can study the following cases:
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Figs. 5c and 5d

1. If a1
�
a

4
� �
a

��1
, then h(N� ; 0) = (1�N� )a1

�
a

4
� �
a

��1
. This implies that N��

 = 0 (see

Fig. 5a).
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2. If �
a

��1
[1 + e(��1)a2e

���
] � ��a2, then �f(1) = �

a

��1
[1 + e(��1)a2e

���
] > ��a2 �

g(0; N) for each N: This implies that �f(N� ) > g(N� ; N) for each N. Therefore,

N��
� = 0 (see Fig. 5b).

3. If a1
�
a

4
> �
a

��1
and �
a

��1
[1 + e(��1)a2e

���
] � ��a2, then, using step 2, we know that

N��
� = 0. On the other hand, h(0; 0) = a1

�
a

4
> �
a

��1
. This implies that N��

 > 0 (see

Fig. 5c).

Note that even if N� took a small value, condition a1
�
a

4
> �
a

��1
would still imply that

N��
 > 0.

4. If a1
�
a

4
� �
a

��1
and �
a

��1
[1+e(��1)a2] < ��a2 then, using step 1, we know that N��

 = 0.

On the other hand �f(0) = �
a

��1

�
1 + e(��1)a2

�
< ��a2 = g(0; 0). This implies that

N��
� > 0 (see Fig. 5d).

Note that even if N took a small value condition �
a

��1

�
1 + e(��1)a2

�
< ��a2 would

still imply that g(0; N) > f(0), so that N��
� > 0.

5. We can prove this result following steps analogous to 3 and 4, q:e:d:

G. Proof of Prop. 4'

We can prove that, when a2 = 0, an even distribution is always a stable equilibrium,

regardless of the values of the other parameters. So, in particular, the optimal investment

guarantees that even distribution is a stable equilibrium, q:e:d:

H. Proof of Prop. 5

Proof:

It follows from the substitution of the appropiate equilibria in the utility expressions

written in the proof of Prop. 3 and Prop. 4, q:e:d:
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