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ABSTRACT

This paper generalizes the standard model of the optimal linear income tax to include housing deduction. Unlike
previous literature, we start from a dynamic equilibrium model and examine the steady state equilibrium. We then
analyze first order conditions for our linear tax structure. The discussion suggest that as the economy we introduce in
our model is more complex than in the standard model, new efficiency effects  from increasing the marginal tax rate or
the housing deduction appear that we should take in account. Obviously the importance of all those efficiency effects
depend on their compensated elasticity but we should not a priori discard them.
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1. INTRODUCTION

 Housing deduction, nowadays effective in the Spanish income tax, has criticized by several authors that defend

its removal. Camarero et al. (1993) consider  that housing deduction generates horizontal  inequality. Zubiri (1990) sees 

little efficiency gains from it since the fiscal subsidy is completely transferred from buyers to sellers through increases in

prices as the price elasticity of supply is very low. He also considers that the housing subsidy does not induce the

acquisition of a first necessity good properly since it is a discriminatory protection against those that have lower income 

and consequently need to be helped. L∴pez (1996) shows with a dynamic model that in the long run housing deduction

has contributed with other factors to the increase of housing prices during the 1980's in  Spain. Despite all those opinions

against housing deduction the present Spanish government has announced a reform of the Spanish income tax that will

maintain this deduction.

Analyzing the existing literature we can see two different approaches to the problem of designing an income tax.

On one hand we have the theory of optimal taxation that has formalized the design of a tax system that maximizes the

social welfare, see Mirlees (1971), Sheshinski (1972), Atkinson (1973), Atkinson and Stiglitz (1980)  and Slemrod (1994).

The resulting optimal tax system  takes account of the trade-off between efficiency and a more equal distribution of wealth.

Unfortunately those models which work with heterogeneous agents represent a highly simplified economy. On the other

hand we have dynamic macroeconomics models that examine the effect of a certain tax change on the steady state utility of

one representative agent, see Turnovsky and Okuyama (1994).

Instead of the classical static optimal tax model we use an infinite horizon model following Turnovsky and

Okuyama (1994) but we modify it in a suitable way to introduce equity objectives.

The remainder of the paper proceeds as follows. In section 2 we lay out the representation of the economy and

we analyze the steady state equilibrium. In section 3 we eventually establish the optimal linear income tax and the optimal

housing deduction. Section 4 offers some conclusions.

2. THE ANALYTICAL FRAMEWORK

2.1 Structure of the economy

The production side is as simple as possible. Labour is used in this economy to produce a good, considered the

numeraire commodity, that may be used for consumption or alternatively as a stock of housing to produce housing services.

We assume that all the stock of housing is residential and owner occupied. The economy consist of a number of infinitely

lived individuals that are equal in all regards except for their ability represented by w. The utility function has the usual

concavity properties. In a first stage individuals decide the number of hours they want to work, their consumption of both

the numeraire good and the housing services and their accumulation of housing stock and government bonds to maximize

their utility subject to the budget constrain.  In a second stage the government decides the structure of the linear
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progressive tax that maximizes a social welfare function subject to the revenue constrain. This structure consist of three

elements: the minimum income guaranteed, the marginal tax rate and the housing deduction.

Each individual maximizes:

0

00
tU( tC  , tL  , tH  )   cU >0, LU <0 , HU >0, a∑β ( )1

Where

C = per capita consumption of the non-housing good,

L = per capita labor supply,

H = per capita consumption of housing services,

$ = consumer rate of time preference.

subject to

[ ]tP  tH  +  t + 1b  +  tC  +  (1 - ) ( t + 1h -  th ) =  w tL  +  thr  th  +  tr  tb  (1 -  ) +  tG  

tC   0,    1  tL  0 b

δ τ

≥ ≥ ≥ , ( )1

and initial conditions

b(0) = b      h(0) = h , c0 0 ( )1

where

P = (imputed) price of housing services, expressed in terms of the numeraire good,

b = per capita stock of Government bonds, assumed to be denominated in terms of the numeraire good,

* = housing deduction,

h = per capita stock of housing,

w = individual ability,

rh = real rental rate on housing,

r = real rate of return of government bonds,

☺ = marginal tax rate,

G = minimum income guaranteed.

Equation (1b) states that individuals spend their after tax income from labor, bonds,  housing stock and the Government∋s

minimum income guaranteed in housing services,  consumption, accumulation of bonds and housing stock.

Solving the intertemporal optimization problem defined in equations (1a) to (1c) we obtain the following optimality

conditions:

CU  =  aλ,( )2
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L CU +w(1- )U  =  0 bτ ,( )2

H

C

U

U
 =  P, c( )2

th tr  =  r  (1 - ) dδ ,( )2

where 8, the costate variable associated with the accumulation eq. (1b), is the marginal utility of wealth, measured in

terms of the numeraire commodity. Eq. (2a) equates the marginal utility of consumption of the numeraire good to the

marginal utility of wealth.  Eq. (2b) defines the labor supply where w is the ability of the individual. There is a critical

salary  w0 such that

t 0

t 0

L  >  0  w >  w

L  =  0  w  w e

when

when ,( )≤_ 2

Eq (2c) can be interpreted as defining the price of housing services as the marginal rate of substitution between housing

services and consumption. Eq. (2d) equates the rate of return of the housing stock to the interest rate of bonds taking into

account the housing deduction.

We assume that H and h are  proportionally related by: Ht="ht then P and rh are related by "Pt=rht (marginal income of

housing services= marginal cost of housing services). Without loss of generality we take  "=1 so that

t tH = h f, ( )2

t hP = r g
t
, ( )2

t t h tP  H = r  h h
t

,( )2

In addition, the following transversality conditions must be met:

t
t

c t+1 t
t

c t+1 U  h =  U  b = 0 i→∞ →∞lim lim ,( )β β 2

In the production side we assume constant prices and the absence of benefits. The government revenue per individual is R0

then the production restriction is

C dF R h h dF wL dF jt

w

t

w

t t

w

+ + − =
∞

+

∞ ∞

∫ ∫ ∫0 1

0

2( ) ,( ).



5

We assume dF
w

∞

∫ = 1 . Using restriction (1b), the previous restriction can be rewritten as

[ ] [ ]R G h h r b dF wL r h r b b b dF kt t t t

w

t h t t t t t

w

t0 1 1 2+ + − + = + + + −+

∞

+

∞

∫ ∫δ τ( ) ( ) ( ) ,( )

which is the usual government restriction, where incomes from taxes and public bonds must be equal to expenses.

Finally we assume a continuously balanced budget

b b lt t+ −1 2( )

and the government restriction becomes

R G h h r b dF wL r h r b dF mt t

w

t t t

w

h t t tt0 1 2+ + − + = + ++

∞ ∞

∫ ∫[ ( ) ] [ ( )] ,( )δ τ

2.2 The Macroeconomic equilibrium and steady state equilibrium

The macroeconomic equilibrium

The macroeconomic equilibrium consists of the following set of equations that hold at all points of time and jointly

determine Ct, Ht, Lt, ht+1,  Pt, rt, rht and 8t.

C tU  =  aλ ,( )3

L CU +w(1- )U  =  0 bτ , ( )3

H

C
t

U

U
 =  P c( )3

th tr  =  r  (1 - ) , dδ ( )3

-  + [1+ r (1- )] = 0 et t+1 t+1λ β λ τ ( )3

t t t t+1 t t h t tP  H  +  C  +  (1 - ) ( h -  h ) =  [w L  +  r  h  +  r  b] (1 -  ) +  G , f
t

δ τ ( )3



6

t hP = r g
t
( )3

t tH = h h,( )3

The steady state equilibrium

This equilibrium is attained when: t t+1=λ λ and t t+1h = h and it implies the following relations

~ ( )r =
(1- )

 
1

(1- )
a

β
β τ

4

hr  =  r  (1- ) , b~ ~ ( )δ 4

L CU +w(1- )U  =  0 cτ , ( )4

H

C

U
U

 =  P d~
,( )4

~ ~ ~ ~ ~ ~ ~ ( )PH +  C =  [w L +  r  h +  r  b] (1 -  ) +  G, eh τ 4

~ ~ ,( )P = r fh 4

~ ~
,( )H = h g4

CU = h~ ~
,( )λ 4

These equations jointly determine the long-run equilibrium values of:
~
C ,  

~
H ,  

~
L ,  

~
h ,  

~
P ,  ~r  ,  ~r  ,  

~
 .h λ We can

solve the system in a very simple recursive manner. First, eq. (4a) determines the value of ~r in terms of $ and ☺. An

increase in the marginal tax rate will increase the rate of return of government bonds. Eq. (4b) yields h
~r in terms of $,

☺, and *. Once h
~r is obtained, equation (4f) will determine 

~
P . As before, a higher marginal tax rate raises the rate of

return of the per capita stock of housing. Equations (4c), (4d) and (4e) may be solved jointly to determine the value of

~
C ,

~
H ,

~
L . Substituting 

~
C in (4h) we can deduce the value of

~
.λ Knowing

~
H , then 

~
h immediately follows from (4g).
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3.GOVERNMENT TAXING DECISIONS

In this section the government decides the structure of a linear progressive tax. That is, a minimum guaranteed income, a

marginal tax rate and the housing deduction. Therefore we are generalizing the nowadays standard model of optimal linear

income tax  to include the decision of fixing a certain housing deduction. Moreover we have extended the standard model

to include the effect that the marginal tax rate may  have on the real rate of return of government bonds and the real rate of

return of per capita stock of housing.

We assume the government maximizes the social welfare function

~
( ) ,(5 )Ψ

w

V dF a
∞

∫

where V is the indirect utility function, subject to

R G r bdF wL r H r b dF b
w w

0 1 5+ + = + −
∞ ∞

+∫ ∫~ [
~ ~( ) ~ ~ ] ,( )τ δ

Forming the Lagrangean

 [ ]( )[ ]L V wL r H r b R G r b dF c
w

= + + − − − −+

∞

∫ ~
( )

~ ~( )
~ ~ ~ ,(5 )Ψ µ τ δ1 0

We may derive the first-order conditions with respect to G, t and *.

~
' ~( ) ,( )Ψ
∂
∂

µ τ
∂
∂

δ
∂
∂

V
G

w
L
G

r
H
G

dF a
w

+ + −






−
















 =

∞

∫ 1 1 0 6

[ ] [ ]~ ~ ~( )
~ ~ ~( ) ( )

~
,( )Ψ′ + + − + + −







+ + − −
















 =+

∞

∫
∂
∂τ

µ δ τ
∂
∂τ

δ
∂
∂τ

τ
∂
∂τ

δ
∂
∂τ

V
wL r H r b w

L
r

H r
b H b

r
dF b

w

1 1 1 0 6

L
V

w
L

r
H

r H dF c
w

= ′ + + − −






















 =

∞

∫ ~ ~( ) ~ ~
,( )Ψ

∂
∂δ

µ τ
∂
∂δ

δ
∂
∂δ

1 0 6

We try to simplify those expressions taking into account that

∂
∂

∂
∂

∂
∂

V
G

 =  
V
M

 
M
G

 =  aγ ,( )7
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∂
∂

∂
∂

L
G

 =  
L
M

b,( )7

∂
∂

∂
∂

H
G

 =  
H
M

c,(7 )

 We also use Roy=s Identity

-

V

V

M

= wL +  r b  +  r (1 - )H

∂
∂
∂
∂

τ δ~ ~~ ~ ~

We define Z as: Z = wL +  r b  +  r (1 - )H
~ ~~ ~ ~δ so that

-
V

= Z d
∂
∂τ

γ , ( )7

-

V

(1- )r
V

M

= H

∂
∂

∂
∂

τ δ ~

↔
∂
∂

∂
∂

∂
∂

V
 =  

V

(1 - )r
 

(1 - )r
=  r H e

δ τ δ
τ δ

δ
τ γ~

~
~ ,( )7

And the Slutsky equations

∂
∂

∂
∂

L
 =  - w S - Z

L
M

fLLτ
,( )7

∂
∂

∂
∂

H
 =  r (1- )S - Z

H
M

gHHτ
δ~ ,( )7

where SLL,SHH are the substitution terms. SLL is the compensated response of labor to the net wage and SHH is  the

compensated response of housing demand to the net price.

Those two equations allow us to rearrange (6a), (6b) and (6c) as follows
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~
' ~( ) ,(8 )Ψ
γ
µ

τ
∂
∂

δ
∂
∂

+ + −






−






 =

∞

∫ w
L
M

r
H
M

dF a
w

1 1 0

~ ~( ) ~( ) ( )
~

,Ψ′ +








 + − −







+ − − −






+ + −






 −









 =

∞

∫
γ
µ

τ
∂
∂

δ δ
∂
∂

∂
∂τ

δ
∂
∂τ

1 1 1 1 0Z w wS Z
L

M
r r S Z

H

M

r
b H b

r
dFLL HH

w

~ ~ ~ ~( ) ~ ~
,(8 )Ψ′ + + − −















 =

∞

∫
γ
µ

τ τ
∂
∂δ

δ
∂
∂δ

r H w
L

r
H

r H dF c
w

1 0

We now define B to be the net social marginal valuation of income, measured in terms of government revenue and

modified to include the effect in the increase in income on the housing stock. B measures the benefit from transferring one

monetary unit to the household allowing for the marginal tax paid on this extra monetary unit.

B =   +    w
L

M
 +  r (1- )

H

M
 

~ ~ ,( )′
∂
∂

∂
∂







Ψ
γ
µ

τ δ 9

Using this condition aswell as the equations (8a), (8b) and (8c) we characterize the optimal tax policy as

where B is the mean value of B.

[ ]( )
~( ) ~ ~

( )
~B Z

wL r
H

r
r b H b

r

w
dFLL HH− +

−
−

−
−

−
−

+ − +
















∞
∫ =1

1

1

1 1
1 0τ

τ
δ

τ τ
τ δ

∂
∂τ

ε ε ε

where ,LL is the compensated wage elasticity of labor LL LL =  S  
(1 - )w

L
ε

τ



 , ,HH is the compensated price

elasticity of housing HH HH =  S  
r(1 - )(1 - )

H
ε

δ τ



 and ,r☺ is the tax rate elasticity of interest

rate r  =  
r

( )
 
(1 - )

rτε
τ

τ∂
∂







 all expressed in wage equivalent units.

which is equal to:

B =  1 
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τ
τ

∂
∂τ

δ δε ε ε τ
1

1 1

10
−

=

− −
∞
∫

− − − + −
∞
∫ 















COV Z B b
r

dF
w

wL r H r b H
w

dF

b

LL HH r

( , )

~ ~( )
~ ~ ( )

~
,( )

and eventually

~ ~ ~ ~( )
~

,( )Ψ′ + −








 = −







∞ ∞

∫ ∫
γ
µ

τ τ δ
∂
∂δ

τ
∂
∂δ

r H r
H

dF rH w
L

dF c
w w

1 10

Condition (10a) can be interpreted as in the Atkinson-Stiglitz model (1980). It says that the minimum guaranteed income

should be adjusted in such a way that the net social valuation of income (B) should, on average, be equal to the cost (one

monetary unit). Condition (10b) establishes the optimal tax rate and can be compared to the expression found in the

Atkinson-Stiglitz model.

τ
τ ε1 −

=
−

∞

∫

COV wL B

wL dF
w

LL

(
~

, )

[
~

]

In our model COV(w
~
L +  ~r

~
b +  ~r(1- )

~
H ,  B)  subtitutes COV(w

~
L, B)   δ

because w
~
L +  ~r

~
b +  ~r(1- )

~
Hδ  and not w

~
L is pre-tax income, given that we have introduced government bonds

and housing in the original model. We can interpret the covariance as a marginal measure of inequality. The greater is the

inequality aversion the higher will the marginal tax rate be. When there is no aversion to inequality

COV(w
~
L +  ~r

~
b +  ~r(1- )

~
H ,  B)δ will be zero and the marginal tax rate will  be zero aswell. The second term

that appears in the numerator of equation (10b) is new. It can be interpreted  as the disincentive the government has to

increase marginal tax rates when the interest rate depends on the tax rate as in our model. When government raises the tax

rate the interest rate and the  government debt increases.  The denominator is also modified. In the  Atkinson-Stiglitz

version it is the compensated labor supply elasticity, weighted by labor income. In our version we include the compensated

price elasticity of housing weighted by housing expenditure and the tax rate elasticity of interest rate weighted by the

expenditure in government bonds and housing expenditure. The compensated price elasticity of housing tends to reduce

the marginal tax rate. An increase in the tax rate raises the price of housing  reducing the investment in housing stock and

consequently government=s income. On the other hand the tax rate elasticity of interest rate will increase the marginal tax

rate. This  is due to the fact that an increase in the tax rate will increase the interest rate as well as the government revenue

coming from income taxation. This equation shows that the decision about the optimal  progressivity of the income tax

must take into account efficiency effects others than the labor supply effect. An increase of the tax rate will probably have

consequences in the interest rate that we can not ignore.

Finally condition (10c) tells us that the optimal value for the deduction * is such that  the social marginal benefit from
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increasing the housing deduction must be equal to its marginal cost. The marginal benefit appears at the left hand side of

the equation and is made of two elements. The first one is the increase in consumer=s utility due to a reduction of the

price of per capita housing services. The second one is an extra revenue collected because individuals raise their per capita

stock of housing  and pay more income taxes on them. The marginal cost  is also made of two elements. The decrease in

government revenue because the real rate of return of per capita stock of housing has decreased and the decrease in

government revenue due to the fact that per capita labor supply will be lower. 
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4. CONCLUSIONS

 

This paper has analyzed an optimal linear tax with housing deduction. Motivation for this analysis has been provided by

the major controversy that has emerged in Spain about whether a housing deduction should be included in the income tax

and its effects. The novelty of this analysis is the inclusion of dynamic effects that were absent on previous optimal linear

income tax models. The discussion  suggests that when a more complex economy is considered  new efficiency effects 

from increasing the marginal tax rate or the housing deduction appear that should be taken into account. Obviously the

importance of all those efficiency effects depends on their compensated elasticity but we should not a priori discard them.

Finally it goes without saying that the analysis is based on many restrictive assumptions. We have considered there is a

numeraire commodity that can be used for consumption or alternatively as a stock of housing to produce housing services.

A possible way for improving  the model could be to introduce two different goods in the economy, a composite good,

which we could call non-housing and housing and two productive sectors. The housing and the non- housing sector. This

would probably allow us to see the effect of the housing deduction on the price of housing services, which is one of the

most questioned effects  of the housing deduction. 
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