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1. Calculi of individuals and nominalistic theories

1.1. Motivation and historical background
Nelson Goodman is well known for being a nominalist; see, in particular Goodman
(1951). One of the lasting contributions to this philosophical position has been his
work on the development and promotion of nominalistic theories, in particular of calculi
of individuals. “Calculus of individuals” is the term Goodman preferred for a theory
which, platonistically speaking, deals with the part-whole relation and is therefore also
sometimes called a “mereology”. It should be noted, however, that Goodman’s early
study of calculi of individuals, as it is presented in Leonard and Goodman (1940), was
probably not primarily motivated by nominalistic concerns.1 So called “individuals” play
an important role in that paper; but their connection to nominalism is almost nowhere
addressed. Yet, the one exception, i.e., “The dispute between nominalist and realist as
to what actual entities are individuals and what are classes [...]” Leonard and Goodman
(1940, p. 55) is interesting in so far as it anticipates Goodman’s conception of nominalism
as that position which admits only individuals, which would become so important and
characteristic for his later writings —see Goodman (1951, 1986) and Niebergall (2005).2

Already in its syntactical features, however, the “calculus of individuals” presented by
Leonard and Goodman is different from most of the theories which later on appeared
under this heading. It is granted that the latter’s language—let’s call it “L1[◦]”—and
the language L[G] used by Leonard and Goodman may both be taken to contain the
same non-logical vocabulary: the 2-place predicate “◦” (read “overlaps”).3 But whereas

1 It is also well known that it was notGoodman (orH. Leonard) who first formulated and investigated such
theories, but S. Leśniewski: see Leśniewski (1927) (this is acknowledged in Leonard and Goodman
(1940)). Moreover, already in the 1920s A. Tarski had presented a reformulation of Leśniewski’s
approach which was free from the pecularities of the latter’s background ”logic”; see Tarski (1929).

2 In his dissertation A Study of Qualities from 1941, Goodman does care for nominalism; but there, he
understands it in more “classical” terms—as the rejection of universals.

3 To be precise, Leonard and Goodman had a sign for “is disjoint from” as their primitive predicate;
and one could also choose “v” (read “is a part of ”), as was done in Tarski (1929), for example. But
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L1[◦] is a 1st order language, L[G] was a higher order language, i.e., a type theoretic
language;4 see especially Leonard and Goodman (1940, p. 130). Actually, in this paper
I have neither found a passage where variables of higher than 2nd order are employed
nor one where 2nd order variables of more than one places are used. Thus, it seems that
the formal framework of Leonard and Goodman (1940) did, in effect, not go beyond a
monadic 2nd order language with “◦” as its only predicate. In what follows, I will call that
language “L2[◦]”.

Apart from Goodman’s own early work, an additional motivation for the study of
2nd order versions of calculi of individuals is provided by two more recent contributions to the
nominalistic program: H. Field’s Science without numbers (1980) and D. Lewis’ Parts of Classes
(1991). In both of these books, 2nd order languages in general and 2nd order mereologies
in particular figure prominently. Moreover, the mereological theories favoured by these
philosophers are again formulated in monadic 2nd order languages. Presumably, this is so
since of all the 2nd order variables the monadic ones seem to be particularly amenable
to a nominalistic interpretation: be it by equipping them with a plural reading (as done in
Lewis (1991)), be it by interpreting them as ranging over regions (as suggested in Field
(1980)).

In sum, we have three influential philosophical approaches where monadic 2nd
order versions of calculi of individuals are promoted. Moreover, in each case these are
regarded as nominalistic theories.

In principle, I share the nominalistic inclinations of Goodman, Lewis and Field.
Actually, it seems to be often agreed upon that the avoidance of any commitment
to universals or abstract objects is intuitively plausible and should be systematically
attractive; but many philosophers are persuaded by indispensability arguments that such
a nominalistic program cannot be carried out. In particular, there are doubts that a
reduction of such mathematical theories as Peano Arithmetic (PA) or Zermelo-Fraenkel
Set Theory (ZF) to nominalistic theories is possible.

Now in Lewis (1991), Lewis develops a theory formulated in a dyadic 2nd order
language (with “◦”) to which ZF is reducible—in some sense; and in an appendix, he
presents methods for defining ordered pairs in L2[◦], thereby reducing ZF to a theory
(which I call TL) stated in L2[◦].5 If TL were a nominalistic theory, Lewis’ result should
be viewed as playing a considerable role for the above mentioned nominalistic reduction
program. And as I understand Lewis —see Lewis (1991, 1993), he has no problems in
regarding TL as a nominalistic theory. But certainly not all will agree with him. In fact,
there used to be times when, in particular under the influence of W. V. O. Quine, the
claim

all of these predicates are interdefinable, given their intended readings: in particular, x v y :←→
∀z (x ◦ z → y ◦ z).

4 At any rate, that is how I understand Leonard and Goodman. Since they did not lay down the vocabulary
and formation rules for L[G] explicitly, it cannot be ruled out that they conceived of it as a 1st order
language containing set theoretic vocabulary.

5 All of this is done informally and sometimes only sketchily; in particular, the reduction of ZF to TL
is not explicitly presented. But I assume that Lewis’ reasoning is correct and can be carried out in all
formal detail.
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(α) No theory formulated in a 2nd order language is a nominalistic theory
seemed to be received wisdom. As far as I know, this was shaken only with the discovery
of the plural reading of the monadic 2nd order variables —see Boolos (1984, 1985). Yet,
above doubts as to an independent understandability of the plural idiom —see Resnik
(1988), the fact that the 2nd order quantifiers can be read “plurally” does not imply that
each theory stated in, say, L2[◦], can be correctly classified as a nominalistic theory.6 Thus,
even if (α) is rejected, what is still needed is a specific argument for the nominalistic
acceptability of TL. Now it has to be granted that Lewis does present one: “Structuralist
set theory [i.e., TL] is nominalistic set theory, in the special sense of Goodman” —see
Lewis (1993, p. 17). It is, however, highly questionable that in order to be a nominalistic
theory, it suffices to be a nominalistic theory in the sense of Goodman; for more on this
see Niebergall (2005).

Let me also address the theme of calculi of individuals and their relation to nominal-
istic theories. I think that in distinction to “T is a nominalistic theory”, which especially
for 1st order T is difficult to explain, a reasonable explication for “T is a (1st order)
calculus of individuals” is possible. The one I have put forward in Niebergall (2007a)
is repeated in section 1.2 of this paper. Although an explicans for “T is a nominalistic
theory” is missing, it moreover seems that at least for 1st order theories,

(β) Each calculus of individuals is a nominalistic theory
is widly, if not universally accepted. I, for one, agree. If, however, (β) is also accepted
for 2nd order theories, we have the inconvenient consequence that under the additional
assumption of (α) the investigation of 2nd order calculi of individuals is futile right from
the start (because of their nonexistence). Moreover, I think that (β) is not as evident for
2nd order theories as for 1st order theories. One reason for this may be that intuitively
it is just not so clear what exactly a 2nd order calculus of individuals could be.7 Thus,
giving up (β) for 2nd order theories may be worth a thought.

Actually, I think that also in L2[◦] there are clear cases of theories which are8 and
for theories which fail to be calculi of individuals. And I grant that the investigation
of 2nd order calculi of individuals would carry a particular weight if (β) were the case.
But whatever the final word on (α) and (β) may be, the monadic 2nd order theories
developed and investigated by Goodman, Lewis and Field seem to be of independent
interest.

This paper is inspired by the above mentioned texts. In distinction to these, however,
it is laid out to be a first beginning in the development of a general framework for the
investigation of theories T formulated in L2[◦] which are extensions of the 1st order
calculi of individuals.9 Being a general framework is supposed to convey that I am interested in
formulating and proving metatheorems about arbitrary extensions of 1st order calculi of

6 The beginning of section 1.2 contains an argument which is relevant also here.
7 See also section 2.3.
8 The 2nd order theory from Leonard and Goodman (1940) is an example.
9 In Leonard and Goodman (1940), Field (1980) and Lewis (1991), no attempt to obtain general metalogical
results about such theories can be found. On the one hand, Leonard and Goodman state axioms for
one such theory: they comprise the system of Principia mathematica (whatever that exactly is; Leonard
and Goodman (1940) does not tell us) plus sentences which amount to what is called CI∪{FUS-Ax}
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individuals which are formulated in L2[◦]. Being a first beginning means, however, that many
natural questions concerning metalogical features of such theories are not addressed in
it, let alone answered (cf. the end of section 4.4 for more concrete suggestions). At
several points, I am therefore content in obtaining results for 2nd order theories which
are particularly close to the 1st order calculi of individuals.

In sections 1 and 2, the background for the main theme of this paper—the in-
vestigation of 2nd order analogues of calculi of individuals—is laid. The remainder of
section 1 is a survey of 1st order calculi of individuals; and sections 2.1 and 2.2 contain
an introduction into the syntax and semantics of L2[◦], with a special emphasis on the
distinction between standard 2nd order and generalized 2nd order models. In the rest of
section 2 and in sections 3 and 4, the main metalogical results of this paper are stated and
(in most of the cases) proved: they concern the consistency, satisfiability, categoricity,
maximal-consistency and decidability of some of the 2nd order theories formulated in
L2[◦] which extend the above mentioned 1st order calculi of individuals. In the conclud-
ing section 5, I present a discussion of Field’s use of the expressions “the complete logic
of the part/whole relation” and “the complete logic of Goodmanian sums” in Field
(1980). Indeed, my aim to find out what Field may have meant by these expressions
provided the trigger for writing this paper.

1.2. 1st order calculi of individuals
Let L1[◦] be the 1st order language mentioned above, with the 2-place predicate “◦” as
its sole non-logical primitive expression.10As 1st order calculi of individuals I will regard

below (see section 1.2). Whether the theory induced by these axioms is determined syntactically or
semantically, and if the latter, by using g2-structures or s2-structures (cf. section 2.1), is not addressed
in Leonard and Goodman (1940), however. On the other hand, Lewis deliberately avoids the use
of formal languages altogether in his work (1991). Certainly, that book contains several ingenious
constructions; but it is therefore not easy to evaluate whether they work properly. Finally, unlike
Leonard and Goodman and Lewis, Field (1980) does address the distinction between theories as
determined by g2-structures vs. s2-structures. Yet, although he does that at several places, his remarks
are somewhat sketchy and remain, in my opinion, unclear (cf. section 5).

10 The treatment of identity in this context needs a comment. If “=” is defined through
x = y :←→ ∀z (z ◦ x↔ z ◦ y),

its usual principles—reflexivity and substitutivity (in L1[◦])—are consequences of the axiom-set
Ax(CI) introduced below. But if L1[◦] is extended to some language L, substitutivity in L is not
guaranteed by this definition. In this situation, further instances of substitutivity have to be assumed
(they may, for example, be regarded as logical truths in L and thus be taken as belonging to its
“background logic”).
Alternatively, one may, as it is usual, view “=” as a logical sign whose use is governed by reflexivity
and substitutivity in L, whatever (extensional) language L may be. This, however, has the disadvantage
that “x = y ←→ ∀z (z ◦ x↔ z ◦ y)” is missing now: it has to be postulated additionally.
Unfortunately, I have been rather sloppy in distinguishing these two options in Niebergall (2007a).
Here, I choose the first one. Let me also point out that in this case, too, “=” is assumed to be evaluated
by the identity relation (over a modelM).
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only theories which are formulated in L1[◦].11 Being expressible in L1[◦] is certainly
no sufficient reason for a theory T to be called a “calculus of individuals”, however.
Thus, consider ZF (i.e., Zermelo-Fraenkel set theory), which—given my intuitions and
probably Goodman’s, too—is a theory which is not a calculus of individuals.12 Let’s
rewrite ZF by replacing “∈” by “◦”. The resulting theory (let’s call it “ZF◦”) is stated in
L1[◦]. But ZF◦ is hardly a calculus of individuals, being a mere notational variant of ZF.
In my view, in order for a theory T to be rightfully called a “calculus of individuals”,
enough sentences involving “◦” must belong to T which are supposed to be true if
“a ◦ b” is read as “a overlaps b”. Moreover, we should be disposed to accept these
sentences already because of our usual understanding of “a overlaps b”.13 And it seems
clear to me that such a T can not be consistent with ZF◦.

I think that at this point, however, we should try to “cultivate our intuitions” (to
use R. Eberle’s words; see Eberle (1970)) on what a calculus of individuals is supposed
to be by having a look at paradigmatic examples. The following two are taken from the
relevant literature.

The first example is the theory ACI fromHodges and Lewis (1968); it is axiomatized
by the following list Ax(ACI) of sentences:14

O ∀xy (x ◦ y ←→ ∃z (z v x ∧ z v y)),
SUM ∀xy∃z∀u (u ◦ z ←→ u ◦ x ∨ u ◦ y),
NEG ∀x (¬∀v v ◦ x −→ ∃y∀v (v v y ↔ ¬v ◦ x)),
AT ∀x∃y (y v x ∧At(y)).

In stating AT, I have used this definition of “x is an atom”:

At(x) :←→ ∀y (y v x→ x v y).

AT is an axiom of atomicity: in each of its models, each object has a part which is
an atom. Goodman and his followers have often dealt with theories in L1[◦] containing
AT; but, according to Goodman (1951), there is no need to regard only such theories
as calculi of individuals. Actually, the theory suggested in Goodman (1951)—my second

11 Whether theories stated in 1st order languages with additional predicates or function signs should be
called “calculi of individuals” is debatable. In Goodman (1951), Goodman is reluctant to do so; in
fact, he seems to apply that term only to the theory named “CI+FUS1” below. The problem is, of
course, that it is so unclear which extensions of the vocabulary of L1[◦] should still be considered
nominalistically admissible. I am not aware of a general solution of this difficulty.

12 For Goodman, classes were the archetypical examples of non-individuals. It is also clear that at least in
Goodman (1951), the calculus of classes is taken to be no calculus of individuals. But I have not found
any explicit pronouncement in that text on whether ZF is regarded as a calculus of classes.

13 Of course, these claims are rather vague. I doubt that they can be made really precise; but this may be
nothing to worry about, anyway —see Niebergall (2005) for more on this topic.

14 For (axiomatizable) 1st order theories T , Ax(T ) is always supposed to be a set of axioms for T ; i.e.,
Ax(T ) = T has to be the case. Here, Σ := {ψ | ψ is a sentence in L1[◦] ∧ Σ ` ψ}, where “`” is
derivability in classical 1st order logic with identity. Moreover, as usual I use “Σ + Σ′” for “Σ ∪ Σ′”
if Σ and Σ′ are sets of 1st order formulas.
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example of a calculus of individuals—does not contain AT: it can be axiomatized by O
and a certain 1st order axiom-schema, the so-called fusion-schema FUS1.15 Employing the
common procedure of identifying a schema with the set of “its instances”, FUS1 can be
precisely formulated as follows:

Let ψ be a formula in L1[◦]; then set
FUSψ : (the universal closure of)16 ∃x ψ −→ ∃z∀y(z ◦ y ↔ ∃x(x ◦ y ∧ ψ)).
FUS1 := {FUSψ | ψ is a L1[◦]-formula}.
The theory CI axiomatized by O, SUM and NEG (a set of axioms I call “Ax(CI)”)

is a common part both of ACI and Goodman’s theory, which therefore amounts to
CI+FUS1. As a matter of fact, it can be shown that CI+FUS1 is a subtheory of ACI
—see Niebergall (2007a,b).

Thus, we have CI, ACI and CI+FUS1 as calculi of individuals; yet, they are far from
being all consistent or all interesting extensions of CI (in L1[◦]). ACI and CI+FUS1,
for example, imply nothing about the number of the atoms; there may even be infinitely
many of them.17 Alternatively, a calculus of individuals may have models which are
atom-free, i.e., models which satisfy

AF ∀x∃y (y < x).18

Finally, instead of AT or AF, their negations may be added to CI. These remarks
motivate the consideration of further theories T extending CI (in L1[◦]).19

Here are their axiom-sets.

Ax(ACI≥n+1) := Ax(ACI) ∪ {∃≥n+1At} (n ∈ N),
Ax(ACIn+1) := Ax(ACI) ∪ {∃=n+1At} (n ∈ N),
Ax(ACI∞) := Ax(ACI) ∪ {∃≥n+1At | n ∈ N},
Ax(FCI) := Ax(ACI) ∪ {AF},
Ax(MCI) := Ax(ACI) ∪ {¬AT,¬AF},
Ax(MCI≥n+1) := Ax(MCI) ∪ {∃≥n+1At} (n ∈ N),
Ax(MCIn+1) := Ax(MCI) ∪ {∃=n+1At} (n ∈ N),
Ax(MCI∞) := Ax(MCI) ∪ {∃≥n+1At | n ∈ N}.

15 The other sentences considered as axioms in Goodman (1951) can be proved from O and FUS1.
16 I prefer axioms to be sentences; it usually simplifies the metalogical reasoning.
17 Again, in Goodman (1951, p. 53), Goodman is clear in stating that nominalism, as he understands it, is

not committed to finitism. And in Goodman and Quine (1947), finitism is also additional.
18 Here I use the definition: x < y :←→ x v y ∧ y 6v x.
19 In stating their axioms, I employ two abbreviations:

∃≥n+1At :←→ ∃x1 . . . xn+1(At(x1) ∧ · · · ∧At(xn+1) ∧ x1 6= x2 ∧ . . .
x1 6= xn+1 ∧ . . . xn 6= xn+1),

∃=n+1At :←→ ∃≥n+1At ∧ ¬∃≥n+2At.
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Moreover, arbitrary instances of FUS1 may be added to each of these sets as axioms.
I think it is quite natural to take the theories ACIn+1 and MCIn+1 (for n ∈ N),

ACI∞, FCI and MCI∞ induced by these sets of axioms into consideration and to
regard them as calculi of individuals. But could there be other theories which deserve that
classification? For one, think of those T which are stated in a language L different
from L1[◦]. The construction and investigation of appropriate candidates which are
formulated in (L =)L2[◦] is the main topic of the next sections of this paper. But then,
already in L1[◦] there are still uncountably many consistent extensions T of CI which
are different from the theories just mentioned. All of them may also be viewed as calculi
of individuals.

Nonetheless, it is not at all arbitrary to put a particular emphasis on the above
theories. For the following result can be shown:

TheoremA. 20 The maximally consistent extensions of CI+FUS1 inL1[◦] are exactly theACIn+1

and the MCIn+1 (n ∈ N), plus ACI∞, FCI and MCI∞ +FUS1.

Let’s call the consistent extensions of CI+FUS1 in L1[◦] “(1st order) calculi of
individuals”. Then Theorem A comes close to a classification result (as it may be called) of
the (1st order) calculi of individuals: although no full list of these theories is obtained, we
have a good grasp of them, since each of them has a maximally consistent extension—
which is one of the above theories.

TheoremA implies that no (1st order) calculus of individuals can relatively interpret21
PA nor even its weak subtheory Q.22 This means that the theories which most often are
regarded as the nominalistic theories cannot interpret even a small amount of what is
accepted mathematics. If the nominalist did not have any other theories at his disposal,
this would almost be a provable refutation of his reduction program. But, gladly, there
are theories which are commonly viewed as nominalistic which save the day. One sort of
them is provided by token concatenation theories: here we have samples which interpret
even ZF —see Niebergall (2005). And other examples may be found among the 2nd
order calculi of individuals.

Now, whatever the answer to the question whether there are such T in L2[◦] which,
moreover, are nominalistically admissible will be, the proper framework in which to
formulate those T has to be developed anyway. Since one has to be somewhat careful
with respect to the different types of semantics which can be used to interpret 2nd order
languages, let me therefore first give a short, but in part quite explicit, introduction to
2nd order languages and their possible models.

20 For a proof, see Niebergall (2007b); it is sketched in Niebergall (2007a). See also Hodges and Lewis
(1968) and Hendry (1982) for similar, but weaker results.

21 For relative interpretations, see Tarski, et al. (1953) and Feferman (1960). For a defense of the claim that
relative interpretability provides a good explicans for “reducibility”, see Niebergall (2000).

22 See Niebergall (2007a,b). For Q, i.e., Robinson Arithmetic, see Tarski, et al. (1953).
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2. Syntax and semantics of L2[◦]

2.1. 2nd order semantics: standard and generalized
Apart from minor variations there is exactly one generally accepted way23 to define
“〈M, I〉, β |= ψ” (i.e., satisfaction in a structureM) when ψ is a formula of a (1-sorted)
1st order language. For 2nd order formulas, in contrast, at least two nonequivalent types
of definitions of satisfaction in a structure are common.24 Moreover, for one of them two
different presentations are in use. Let me address the latter topic first.

To be specific, take the monadic 2nd order extension L2[◦] of L1[◦]25 (which, as
already mentioned, results from the latter through the addition of one-place 2nd order
variables (“X”, . . . )), and let ψ be a formula from L2[◦]. In order to define “variable
assignment β satisfies ψ in structure 〈M, I〉”, “structure” and “variable assignment”
have to be explained.

In one presentation, the structures in which formulas from L2[◦] are to be evaluated
are just the same relational systems or sets plus interpretation functions that are employed
to interpret 1st order formulas: i.e., they are of the form 〈M, I〉, with M 6= ∅ and
I(◦) ⊆M2. A variable assigment β, however, must also have 2nd order variablesX in
its domain, with β(X) ⊆ M in place of β(x) ∈ M (where x is a 1st order variable).
Given that, satisfaction is defined as in the 1st order case, with the following clause
added:

〈M, I〉, β |= ∀Xψ ⇐⇒ ∀C (C ⊆M =⇒ 〈M, I〉, β(X : C) |= ψ).26

In the second, in some sense equivalent, presentation the structures taken to interpret
L2[◦] are of the form 〈M,℘(M), I〉. Yet, as before,M 6= ∅ and I(◦) ⊆M2, and β is
again defined also on the 2nd order variablesX and has to satisfy β(X) ⊆M . Since this
may be rephrased as “β(X) ∈ ℘(M)”, ℘(M) may be taken as the domain of the 2nd
order variables now. Here, the evaluation of 2nd order quantification is formulated as

〈M,℘(M), I〉, β |= ∀Xψ ⇐⇒ ∀C (C ∈ ℘(M) =⇒ 〈M,℘(M), I〉,
β(X : C) |= ψ).

In comparison, the second presentation seems to be more flexible: it more easily
suggests generalizations. Thus, instead of taking the full powerset ℘(M) of the domain
M of the 1st order variables as the domain of the 2nd order variables, one might consider

23 For model theory, see for example Chang and Keisler (1973). Definitions of “logical truth” which do
not deliver the set of logical truths of classical 1st order logic (for some language L) are not taken into
account here.

24 For more on this topic, see Leivant (1994) and Shapiro (1991).
25 For explicitness, I will mostly deal only with the language L2[◦]. Of course, all the definitions presented

in this and the following subsection can be extended to arbitrary 2nd order languages; and usually, the
metatheorems can be transferred to these, too.

26 β(X : C) is a variant of β: it is that function which maps the variableX to C and agrees with β on all
other arguments.
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an arbitrary (but, of course, non-empty) subset Ω of ℘(M) in that role. This leads to
structures of the form 〈M,Ω, I〉 as possible models of 2nd order languages, where
∅ 6= Ω ⊆ ℘(M). Such structures are called “generalized 2nd order structures” (in short:
g2-structures), whereas those with Ω = ℘(M) are the so-called “standard 2nd order
structures” (in short: s2-structures).27 Evaluation in generalized 2nd order structures is
explained as 1st order evaluation extended by the following condition:

〈M,Ω, I〉, β |= ∀Xψ ⇐⇒ ∀C (C ∈ Ω =⇒ 〈M,Ω, I〉, β(X : C) |= ψ).28

With the distinction between g2- and s2-structures at hand, the metalogical vocabu-
lary, such as “satisfiability”, “logical truth” and “logical consequence”, for example, can
be explained in two versions. Let me illustrate this by explicitly stating the definitions of
the important relation of logical consequence:

Σ |=s2 ψ :⇐⇒ ∀M (M is a s2-structure =⇒ (M |= Σ =⇒M |= ψ)),

Σ |=g2 ψ :⇐⇒ ∀M (M is a g2-structure =⇒ (M |= Σ =⇒M |= ψ))

for L2[◦]-sentences ψ and sets Σ of L2[◦]-sentences.
Since each s2-structure is a g2-structure, this implies

Σ |=g2 ψ =⇒ Σ |=s2 ψ.

But for 2nd order languages in general, the converse is not at all true. In fact, for some
of them, standard 2nd order semantics and generalized 2nd order semantics are very
different.

On the one hand, the notorious incompleteness and categoricity results, resp., which
are so often attributed to 2nd order logic and to certain 2nd order theories, are only
true under the presupposition that the 2nd order languages for which they are stated are
interpreted via s2-structures. If all g2-structures are admitted as interpretations instead,
these “results” are not only false: in this case, 2nd order logic turns out to be nomore than
a notational variant of (2-sorted) 1st order logic. In particular, we have a completeness
theorem for 2nd order logical consequence with respect to g2-structures. That is, finitely
many axioms (or axiom-schemata) and rules can be stated (see Shapiro (1991) for a
workable list) such that for each set Σ of L2[◦]-sentences and each L2[◦]-sentence ψ, it
is the case that

Σ |=g2 ψ ⇐⇒ Σ ` ψ.

27 That is, in the case of L2[◦],
x is a s2-structure :⇐⇒ ∃MI (x = 〈M,℘(M), I〉 ∧ M 6= ∅ ∧ I is an interpretation of L2[◦]),
x is a g2-structure : ⇐⇒ ∃MΩI (x = 〈M,Ω, I〉 ∧ M 6= ∅ ∧ ∅ 6= Ω ⊆ ℘(M) ∧ I is an
interpretation of L2[◦]).

28 For the sake of completeness, let me mention that the new atomic 2nd order formulas are evaluated as
follows:

〈M,Ω, I〉, β |= Xy ⇐⇒ β(y) ∈ β(X).

It should be noted that in this case, β is supposed to be a function which maps 2nd order variables
only to those subsets ofM which are elements of Ω.
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It should be noted that “Σ ` ψ” is defined in the ususal style: as there is a finite sequence
of L2[◦]-formulas ending with ψ such that all its entries are logical axioms, elements of Σ or are
obtained from earlier lines by the rules of inference. Therefore, we also have compactness and
the various Löwenheim-Skolem theorems if all g2-structures are admissible; and the set
of the g2-consequences of a recursively enumerable set is recursively enumerable.

On the other hand, it is not only the interplay between the languages and the models
that depends on the different types of 2nd order semantics. The theories determined
by these different classes of structures have to be clearly distinguished from each other,
too. To be more explicit, consider the set Cng2(Σ) of g2-consequences of Σ and the
setCns2(Σ) of s2-consequences ofΣ.29 Certainly, there are cases in whichCng2(Σ) =
Cns2(Σ) (see section 4.2 for examples). But let me stress that often Cng2(Σ) is vastly
different from Cns2(Σ).

2nd order number theory provides a beautiful example of that phenomenon. Thus,
let L2[PA] be the monadic 2nd order language with the non-logical vocabulary “S”,
“+”, “·” and “0” and let Ax(ACA0) be the usual set of axioms for the theory ACA0,
stated in this language —see Simpson (1999). Now, consider Cng2(Ax(ACA0)) and
Cns2(Ax(ACA0)).

On the one side, Cng2(Ax(ACA0)) is a recursively enumerable theory which is
highly incomplete. More explicitly, Cng2(Ax(ACA0)) is a conservative extension of PA
and therefore much weaker than, e.g., ZF. In particular, “Conaca0” (i.e., the (natural)
consistency assertion for Cng2(Ax(ACA0))) is not contained in Cng2(Ax(ACA0)).

Cns2(Ax(ACA0)), on the other side, is not only a proper extension of Cng2
(Ax(ACA0)): actually, it is maximally consistent, even in L2[PA]. It contains, in par-
ticular, both “Conaca0” and “Conzf” (if ZF is consistent). As a matter of fact,
Cns2(Ax(ACA0)) contains each true arithmetic sentence from the 1st order language
L2[PA]; therefore, it is also far from being recursively enumerable.30

Section 4.3 contains examples of “Cng2(Σ) 6= Cns2(Σ)” in which Σ is formulated
in L2[◦].

So much for a general overview of the distinction between the g2- and the
s2-semantics for 2nd order languages. Since I have no preference for either of them,
I will consider both types of models. In fact, the comparison between them is at the
centre of this investigation.

2.2. 2nd order theories, maximal-consistency and categoricity
Let’s continue the topic of the dependency of metalogical notions on the type of 2nd
order semantics presupposed and deal with the problem of what proper definientia of
“categoricity”, but also of “maximal-consistency” and even of “theory” could be.
Definition 1. LetM be a g2-structure for L2[◦]. Then

Th2(M) := {ϕ | ϕ is a L2[◦]-sentence ∧M |= ϕ}.

29 That is, for Σ from L2[◦], Cng2(Σ) = {ψ | ψ is a L2[◦]-sentence ∧ Σ |=g2 ψ} and Cns2(Σ) =
{ψ | ψ is a L2[◦]-sentence ∧ Σ |=s2 ψ}.

30 See, e.g., Shapiro (1991) and Simpson (1999).
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Definition 2. Let Σ be a set of L2[◦]-formulas. Then

Σ is maximal-consistent: ⇐⇒ ∀ψ (ψ is a L2[◦]-sentence =⇒ ψ ∈ Σ ∨ ¬ψ ∈ Σ)
and Σ is consistent.

The following lemma may be regarded as sort of a justification of these definitions.

Lemma 3. Let Σ be a set of L2[◦]-sentences.
(i) If Σ is maximal-consistent, then Cng2(Σ) ⊆ Σ.
(ii) If M be a g2-structure for L2[◦], then Th2(M) is maximal-consistent.
(iii) If Σ is maximal-consistent, Σ′ is a consistent set of L2[◦]-sentences and if Σ ⊆ Σ′, then

Σ = Σ′.
(iv) If Σ is maximal-consistent, then there is a g2-structureM for L2[◦] such thatΣ = Th2(M).

Proof. (i) – (iii) are as usual.
(iv) If Σ is maximal-consistent, then there is a g2-structureM for L2[◦] such that

M |= Σ. Now, Th2(M) is consistent, and we also have Σ ⊆ Th2(M). By (iii), the
claim follows.

There are several possible definientia for “Σ is a 2nd order theory” (in L2[◦]). Here
are two extreme suggestions; others could be extracted from what is done in section 2.3.
(i) Σ is a 2nd order theory: ⇐⇒ Cng2(Σ) ⊆ Σ,
(ii) Σ is a 2nd order theory: ⇐⇒ Cns2(Σ) ⊆ Σ.

In this text, I accept (i). I prefer it intuitively over (ii). Furthermore, given (i), a
maximal-consistent set of sentences (in L2[◦]) is a 2nd order theory (by Lemma 3(i)).
Finally, there are consistent sets of sentences Σ such that Cns2(Σ) is inconsistent (see
the end of section 4.3 for an example); I take it to be implausible that such a Σ could
never be a theory.

Definition 4. Let Σ be a set of L2[◦]-sentences. Then

Σ is g2-categorical: ⇐⇒ ∀MM′(M,M′ is a g2-structure ∧ M,M′ |= Σ
=⇒M∼=M′),

Σ is s2-categorical: ⇐⇒ ∀MM′(M,M′ is a s2-structure ∧ M,M′ |= Σ
=⇒M∼=M′).

Let κ be a cardinal. Then

Σ is κ-g2-categorical: ⇐⇒ ∀MM′(|M | = |M ′| = κ ∧M,M′ is a g2-structure
∧ M,M′ |= Σ =⇒M∼=M′).

Σ is κ-s2-categorical: ⇐⇒ ∀MM′(|M | = |M ′| = κ ∧M,M′ is a s2-structure
∧ M,M′ |= Σ =⇒M∼=M′).
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Lemma 5. Let Σ be a set of L2[◦]-sentences.
(i) If Σ is g2-categorical, then Σ is s2-categorical.
(ii) If Σ is κ-g2-categorical, then Σ is κ-s2-categorical.
(iii) If Σ is s2-categorical and Cns2(Σ) is consistent, then Cns2(Σ) is maximal-consistent.
(iv) If Σ is g2-categorical and Cng2(Σ) is consistent, then Cng2(Σ) is maximal-consistent.
(v) Let κ be an infinite cardinal. If Σ is κ-g2-categorical and has only infinite g2-models, and if

Cng2(Σ) is consistent, then Cng2(Σ) is maximal-consistent.

Proof. (iii) Assume ψ is a L2[◦]-sentence such that ψ 6∈ Cns2(Σ). Then there exists a
s2-structure A such that (a) A |= Σ and (b) A |= ¬ψ. Now let B be a s2-structure
such that B |= Σ. Then since Σ is s2-categorical, A ∼= B by (a). But in this case, A and
B satisfy the same 2nd order formulas, whence by (b), B |= ¬ψ.

This shows: ∀B (B is a s2-structure∧B |= Σ =⇒ B |= ¬ψ), i.e., ¬ψ ∈ Cns2(Σ).
(iv) Like (iii).
(v) Assume that Σ is κ-g2-categorical and Cng2(Σ) is consistent, but not maximal-

consistent: i.e., there are L2[◦]-sentences ψ, ¬ψ such that ψ 6∈ Cng2(Σ) and ¬ψ 6∈
Cng2(Σ).

Then Σ ∪ {¬ψ} and Σ ∪ {ψ} have g2-models A and A′ which, by assumption,
must be infinite. Now, by an appropriate version of the Löwenheim-Skolem theorem,
take g2-structuresM andM′, both of cardinality κ, which satisfy the same sentences
as A and A′, resp. Thus, we haveM,M′ with

|M | = |M ′| = κ andM,M′ |= Σ.

By the κ-g2-categoricity of Σ, M ∼= M′—whence M and M′ satisfy the same
L2[◦]-sentences. YetM |= ¬ψ andM |= ψ. Contradiction.

It should be interesting to find out whether the claims from Lemma 5 can be
simplified or strengthened. This question will be taken up at the end of section 4.3.

2.3. Calculi of individuals in L2[◦]
The investigation of subsections 2.1 and 2.2 is carried out for the language L2[◦] (its syntax
and semantics) and for arbitrary theories in that language. In particular, it is not only
concerned with those theories formulated in L2[◦] that could be regarded as reasonable
choices for 2nd order analogues of the 1st order calculi of individuals. Let’s come to this
topic now.

As a start, let me note that it is in some sense trivial to obtain such 2nd order
analogues. Thus, take Ax(ACI) as an example. Now, simply treat it as being stated in
L2[◦]: the set of L2[◦]-sentences following from Ax(ACI) using some version of 2nd
order consequence is a 2nd order theory which is very close to (the 1st order) ACI, but is
different from it for the trivial reason that it contains L2[◦]-sentences. Of course, this
procedure leads to rather uninteresting 2nd order variants of 1st order theories. A much
more important and illuminating connection between 1st order languages and their 2nd
order extensions (and theories stated in them) is there where a 1st order schema can be
replaced by a 2nd order sentence. Thus, in our case it is the substitution of a 2nd order
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fusion-axiom for the 1st order fusion-schema FUS1 which is of prime relevance.31 The
former is stated as a single sentence of L2[◦]:

FUS-Ax ∀X (∃x Xx −→ ∃z∀y (z ◦ y ↔ ∃x(x ◦ y ∧Xx))).

Of course, stronger 2nd order versions of fusion-principles are easily formulated,
too. In particular, there is the “full” 2nd order fusion-schema FUS2:

Let ψ be a formula in L2[◦]; then set

FUSψ : (the universal closure of)32 ∃x ψ −→ ∃z∀y(z ◦ y ↔ ∃x(x ◦ y ∧ ψ)).
FUS1 := {FUSψ | ψ is a L1[◦]-formula}.

FUS-Ax is an instance of FUS2. But what about the feeling that FUS1 should be
a consequence of FUS-Ax? It may be argued that given a L1[◦]-formula ψ, one simply
specializes the “X” in FUS-Ax to the set of ψ’s. Yet, from a strictly axiomatic point of
view it is not guaranteed that this set exists. A comprehension principle has to be postulated
in order to obtain such sets. That is, one has to adopt (the universal closures of) formulas
of the form

∃X∀z (Xz ↔ ψ(z)),

where ψ is from L2[◦] and X does not occur in ψ, as further axioms for our 2nd order
theories.

Sometimes such formulas are regarded as logical truths.33 Indeed, when only
s2-structures are admitted to interpret L2[◦], the additional postulation of compre-
hension becomes redundant, because it is true in all such structures (cf. Lemma 8). But it
need not hold in g2-structures. Therefore, the assumption of comprehension principles
should not be left implicit.

Let me add here that there is a further principle which is often taken to be a logical
truth: it is a version of a Leibniz principle. More precisely:

LEIB ∀yz (∀X(Xy ↔ Xz) −→ y = z).34

LEIB will not be included in the axiom-sets taken into account here—not because
I doubt it, but because it will be a consequence of each of them. I will deal with two
versions of 2nd order comprehension-schemata in this paper, however. One is the “full”
2nd order comprehension-schema Comp2), the other is its restriction to 2nd order for-
mulas containing no bound 2nd order variables (Comp1). A precise rendering of these

31 Historically, this order is not accurate. I have already sketched in the introduction that the use of 2nd
order languages and of FUS-Ax came first: in the case of Leonard and Goodman (1940). As far as
I know, Goodman (1951) was the first publication where a 1st order language was put forward as
the right framework in which to formulate calculi of individuals and where, in particular, FUS1 was
suggested as preferable to FUS-Ax. Of course, other researches quickly followed Goodman’s lead; see,
e.g., Martin (1958), a few papers in Nous from the late 1960s and Eberle (1970).

32 I prefer axioms to be sentences; it usually simplifies the metalogical reasoning.
33 That is, logical truths of 2nd order logic, if one wants to use that term at all.
34 Recall that I suppose “=” to be axiomatized by reflexivity and substitutivity for each formula of L2[◦].
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schemata may be given along the lines of the presentation of the fusion schemata. Thus:

Let ψ be a formula in L2[◦] which does not contain the variable X ; then set

Compψ := (the universal closure of)∃X∀z (Xz ↔ ψ(z)).

Comp2 := {Compψ | ψ is an X-free L
2[◦]-formula}, and

Comp1 := {Compψ | ψ is an X-free L
2[◦]-formula

containing no bound 2nd order variables}.

Since the step from FUS1 to FUS-Ax provides the crucial connection between the
calculi of individuals in L1[◦] and their variants in L2[◦], it would be pointless to consider
L1[◦]-theories which do not prove FUS1 or 2nd order theories which do not contain
FUS-Ax (which should be regarded as the weakest 2nd order extension of FUS1).35 In
view of the options taken into account here as 2nd order additions to CI36—i.e., FUS-Ax
or FUS2, and Comp1 or Comp2—we obtain four different axiom sets in L2[◦] which
may qualify as the 2nd order analogues of Ax(CI):

Ax2(CI)1 Ax(CI), FUS-Ax,Comp1;
Ax2(CI)2 Ax(CI), FUS-Ax,Comp2;
Ax2(CI)3 Ax(CI), FUS2,Comp1;
Ax2(CI)4 Ax(CI), FUS2,Comp2.

In this paper, I have been somewhat pedantic (in particular notationally) both in
distinguishing between a set Σ of sentences and “the” theory induced by it, and in dis-
tinguishing between a theory T and a set of axioms Ax(T ) for it. It is granted that if
Σ is a set of 1st order sentences, it is often overdone to pay a particular attention to
the first distinction. For the theory induced by Σ will be chosen as Σ and will thus be
uniquely determined byΣ. But ifΣ is stated in a 2nd order language, we have at least two
reasonable ways to extend it to a theory: by closing under g2- or under s2-consequence.
Now we have already seen thatΣ itself,Cng2(Σ) andCns2(Σ) can all be different from
each other. Thus, talk of the induced theory is, in general, inappropriate; and in addition
to that, a clear specification of the set of sentences considered is not superfluous.

If Σ is one of the above mentioned four sets of axioms, we should not assume
from the outset that Cng2(Σ) = Cns2(Σ). That’s the topic of the first distinction. The
second one rest on a different, more trivial observation (which applies equally to 1st and
2nd order theories): one and the same theory T may be axiomatized by different sets of
axioms. In our case, ifΣ andΣ′ are two of the above axiom-sets,Cng2(Σ) = Cng2(Σ′)
may nonetheless be the case.37 Since ultimately I take theories to be the main objects of

35 This gives the main motive for dealing only with theories which contain FUS1 in this paper.
36 The investigation of just these axioms is inspired by the research done on 2nd order theories of

arithmetic. Cf. Simpson (1999).
37 Actually, it can also happen that Σ 6= Σ′ and Cng2(Σ) = Cns2(Σ′).
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my investigation, let me first address the second distinction and see whether (relative to
a fixed type of semantics) different axiom-sets do deliver the same theories.

In fact, one of the axiom-sets Ax2(CI)2 to Ax2(CI)4 is redundant:

Lemma 6. Let Σ be a set of L2[◦]-sentences, ψ be a L2[◦]-sentence. Then:

Σ ∪ Ax2(CI)2 |=g2 ψ ⇐⇒ Σ ∪ Ax2(CI)4 |=g2 ψ.

Proof. “=⇒” Each instance of FUS2 can be obtained by FUS-Ax applied to the set of
ψ’s, where that set is got from Comp2.

In view of this lemma, let’s set (if Σ is a set of L2[◦]-sentences):

Σg2+ := {ψ | ψ is a L2[◦]-sentence ∧ Σ ∪ Ax2(CI)2 |=g2 ψ}
(= Cng2(Σ ∪ Ax2(CI)2)),

Σg2
0 := {ψ | ψ is a L2[◦]-sentence ∧ Σ ∪ Ax2(CI)1 |=g2 ψ}

(= Cng2(Σ ∪ Ax2(CI)1)),

Σg2 := {ψ | ψ is a L2[◦]-sentence ∧ Σ ∪ Ax2(CI)3 |=g2 ψ}
(= Cng2(Σ ∪ Ax2(CI)3)).

As regards the relation between these theories, we obviously have some inclusions—
but, in general, not more than these:

Lemma 7. (i) If Σ is a set of L2[◦]-sentences, Σg2
0 ⊆ Σg2 ⊆ Σg2+.

(ii) If Σ is a set of L1[◦]-sentences, then Σ + CI+FUS1 ⊆ Σg2
0 .

Proof. (ii) By definition, Ax(CI) ⊆ Σg2
0 . Moreover, each instance of FUS

1 can be obtained
from Comp1 and FUS-Ax along the lines mentioned in the proof of Lemma 6.

In the case of s2-structures, we can simply replace “g2” by “s2” throughout the
above definitions and thereby obtain Σs2+,Σs2

0 and Σs2. Luckily, the relation between
these theories is much simpler than that between the g2-versions. For when it comes to
s2-structures, there is this well-known lemma:

Lemma 8. For eachM 6= ∅, 〈M,℘(M), ◦M 〉 |= Comp2.

Therefore, ifM is a s2-model of Ax2(CI)1, it is a s2-model of Ax2(CI)4, too; and
Σs2

0 = Σs2 = Σs2+. Actually, since already {O,FUS-Ax} ∪ Comp1 |=g2 SUM, NEG,
we have

Σs2 = {ψ | ψ is a sentence from L2[◦] ∧ Σ ∪ {O,FUS-Ax} |=s2 ψ};

I will take this equality as the “official” definition for Σs2.
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Lemma 9. If Σ is a set of L2[◦]-sentences, Σg2+ ⊆ Σs2.

Proof. IfM is a s2-structure satisfyingΣ, O andFUS-Ax, it is a g2-model ofAx2(CI)4.

Let me finally come back to the task of giving an explication of “T is a 2nd order
calculus of individuals” for theories T in L2[◦]. I have to be content with a few admittedly
superficial remarks on the limits of what should be admissible as its explicans, using the
foregoing considerations as a background. What I would like to have is:

(I) T is a 2nd order calculus of individuals: ⇐⇒ T is a consistent analogue of a
1st order calculus of individuals.

But this is too vague to stop here. Now, take these specifications of (I):

(I.1) T is a 2nd order calculus of individuals: ⇐⇒ T is a consistent extension of
Ax2(CI)1.

(I.2) T is a 2nd order calculus of individuals: ⇐⇒ there is a 1st order calculus
of individuals S such that T = Cng2(S ∪ Ax2(CI)1).

They are precise, but I think they are no adequate renderings of (I). At any rate, I
regard them as unacceptable: the definiens of (I.1) seems to be is too wide and the definiens
of (I.2) seems to be too narrow. 2nd order calculi of individuals should be something in
between; but for this intuition, I do not have a precise criterion at hand.

3. Mereologies and Boolean algebras

In order to obtain more interesting and specific metatheorems about theories of the type
Σg2

0 , Σ
g2, Σg2+ and Σs2, I find it useful to employ a certain correspondence between

models of CI and Boolean algebras that was known already to Tarski. In what follows,
this correspondence is extended to 2nd order structures.

For convenience, I take a Boolean algebra to be a structure B of the form 〈B,≤B,
0B, 1B〉 (i.e., a Boolean lattice rather than the more common 〈B,uB,tB,−B, 0B, 1B〉;
see Halmos (1963)) where≤B is a 2-place relation onB and 0B and 1B are different dis-
tinguished elements of B. L1[BA] is the 1st order language of the appropriate signature,
containing the 2-place relation sign “≤” and the constants “0” and “1”. Moreover, let
Ax(BA) be some (finite) axiomatization of the 1st order theory BA of Boolean algebras
in this language.

L1[BA] may be extended to a monadic 2nd order language L2[BA] just as L1[◦] has
been extended to L2[◦]. And g2- and s2-structures appropriate to L2[BA]may be defined
similarly to the g2- and s2-structures for L2[◦]. It is convenient to fix a notation for
all these structures: for 〈M, ◦M 〉 of the signature of L1[◦] I write “M”,38 for 〈B,≤B,

38 I identify, as it is common, structures 〈M, ◦M 〉 with those of the form 〈M, I〉, given that I(◦) = ◦M
(similarly for other languages).
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0B, 1B〉 of the signature of L1[BA] I write “B”. Then,M2 := 〈M,℘(M), ◦M 〉 is a
s2-structure for L2[◦] and B2 := 〈B,℘(B),≤B, 0B, 1B〉 is a s2-structure for L2[BA].

Now we have two mappings between s2-structures for L2[◦] and s2-structures for
L2[BA].

Definition 10. For a s2-structure M2 for L2[◦] and n 6∈ M , set (M2)+n := 〈M+n,
℘(M+n),≤M+n, n, 1M+n〉, with

M+n := M ∪ {n},
a ≤M+n b :⇐⇒ (a ∈M ∧ b ∈M ∧ a vM b) ∨ a = n (for a, b ∈M+n),
1M+n := the element a ofM such that ∀b ∈M (b vM a).39

Definition 11. For a s2-structure B2 for L2[BA], set (B2)− := 〈B−, ℘(B−), ◦B−〉,40 with

B− := B \ {0B},
a ◦B− b :⇐⇒ ∃c ∈ B (c ≤B a ∧ c ≤B b ∧ c 6= 0B) (for a, b ∈ B−).

Lemma 12. (i) If B2 |= Ax(BA), then (B2)− |= Ax(CI).
(ii) IfM2 |= Ax(CI) and n 6∈M , then (M2)+n |= Ax(BA).

These model-constructions are now used to establish a correspondence between
L2[BA] and L2[◦], too. To be more explicit, there is a function J from the set of
L2[◦]-formulas to the set of L2[BA]-formulas which can be inductively defined as
follows:41

J ( s ◦ t ) = ∃x (x ≤ s ∧ x ≤ t ∧ x 6= 0) ,
J ( Xs ) = Xs ∧ ¬X0 ,
J commutes with the negation sign and the conditional,
J ( ∀xϕ ) = ∀x (x 6= 0→ J (ϕ)) ,
J ( ∀Xϕ ) = ∀X (¬X0→ J (ϕ)) .42

Lemma 13. If B2 is a s2-structure for L2[BA] and if β is an assignment over (B2)−, then

∀ψ ∈ L2[◦] ((B2)−, β |= ψ ⇐⇒ B2, β |= J (ψ)).

Proof. Induction on the built-up of ψ (from L2[◦]).

39 The notation of (definitional extensions of) L2[◦] is supposed to be transferred to the metalanguage.
40 Note that B− 6= ∅.
41 I use quasi quotation only at some important places.
42 Officially, relative interpretations map 1st order formulas to 1st order formulas. But J is a good

choice for what may be called a “2nd order interpretation” (for more on this topic see Krajewski
(1974)). I think that for such mappings, it is worth considering as a general criterion that if δ(x) is
the relativizing formula for the 1st order quantifiers, the one for the 2nd order quantifiers should
be ∀x (Xx → δ(x)) . Now in our case, where δ(x) = x 6= 0 , this amounts to the formula
∀x (Xx→ x 6= 0) ; but (up to logical equivalence) this is just ¬X0 .
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• ψ ≡ y◦z : then (B2)−, β |= y◦z ⇐⇒ β(y)◦B−β(z) since β(y), β(z) ∈ B−

⇐⇒ ∃c ∈ B(c ≤B β(y)∧c ≤B β(z)∧c 6= 0B)
⇐⇒ B2, β |= ∃x (x ≤ y ∧ x ≤ z ∧ x 6= 0)
⇐⇒ B2, β |= J (y ◦ z).

• ψ ≡ Xs : then (B2)−, β |= Xs ⇐⇒ s(B
2)−,β ∈ β(X) ∧ β(X) ∈ ℘(B−)

⇐⇒ β(s) ∈ β(X) ∧ β(X) ∈ ℘(B) ∧ 0B 6∈ β(X)
⇐⇒ B2, β |= Xs ∧ ¬X0
⇐⇒ B2, β |= J (ψ).

• the cases of the propositional operators are trivial.

• ψ ≡ ∀xϕ : then (B2)−, β |= ψ ⇐⇒ ∀a(a ∈ B− =⇒ (B2)−, β(x : a) |= ϕ)
⇐⇒ ∀a (a ∈ B ∧ a 6= 0B =⇒ (B2)−, β(x : a) |= ϕ)
⇐⇒ ∀a (a ∈ B ∧ a 6= 0B =⇒ B2, β(x : a) |= J (ϕ)) (by I. H.)
⇐⇒ ∀a (a ∈ B =⇒ (B2, β(x : a) |= x 6= 0 =⇒ B2, β(x : a) |= J (ϕ)))
⇐⇒ ∀a (a ∈ B =⇒ B2, β(x : a) |= x 6= 0→ J (ϕ))
⇐⇒ B2, β |= ∀x(x 6= 0→ J (ϕ))
⇐⇒ B2, β |= J (ψ).

• ψ ≡ ∀Xϕ : then (B2)−, β |= ψ

⇐⇒ ∀C (C ⊆ B− =⇒ (B2)−, β(X : C) |= ϕ)
⇐⇒ ∀C (C ⊆ B ∧ 0B 6∈ C =⇒ (B2)−, β(X : C) |= ϕ)
⇐⇒ ∀C (C ⊆ B ∧ 0B 6∈ C =⇒ B2, β(X : C) |= J (ϕ)) (by I.H.)
⇐⇒ ∀C (C ⊆ B =⇒ (B2, β(X : C) |= ¬X0 =⇒ B2, β(X : C) |= J (ϕ)))
⇐⇒ ∀C (C ⊆ B =⇒ B2, β(X : C) |= ¬X0→ J (ϕ))
⇐⇒ B2, β |= ∀X(¬X0→ J (ϕ))
⇐⇒ B2, β |= J (ψ).

Lemma 13 can be used to establish, loosely speaking, the equivalence of complete
Boolean algebras with s2-structures satisfying FUS-Ax: see Lemma 14 and Lemma 16.

Lemma 14. If B is a complete Boolean algebra, then (B2)− |= FUS-Ax.43

Proof. Let β be a variable-assignment over (B2)− and assume (B2)−, β |= ∃x Xx.
By Lemma 7, B2, β |= J (∃x Xx), i.e., B2, β |= ∃x(x 6= 0 ∧ J (Xx)). Therefore,

D := {a ∈ B | a 6= 0B ∧ B2, β(x : a) |= J (Xx)}

43 A Boolean algebra B is complete iff for each nonempty subset Ω of B, there is a b ∈ B which is the
supremum, i.e., the least upper bound, of A.
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is a non-empty subset of B. Now, by the assumed completeness of B, an element of
B exists which is the supremum of D; let’s call ist “

∨
D”. Since

∨
D 6= 0B , actually∨

D ∈ B−.

In order to show the lemma, it then suffices to establish the following
Claim. (B2)−, β(z :

∨
D) |= ∀y (y ◦ z ←→ ∃x(Xx ∧ y ◦ x)).

Proof. Let b ∈ B−. Reasoning with complete Boolean algebras we obtain

∃c ∈ B (c ≤B b ∧ c ≤B
∨
D ∧ c 6= 0B)

=⇒ ∃c ∈ B (c ≤B b ∧ ∃a ∈ D∃d ∈ B (d ≤B c ∧ d ≤B a ∧ d 6= 0B) ∧ c 6= 0B)

=⇒ ∃a (a ∈ D ∧ ∃d ∈ B (d ≤B b ∧ d ≤B a ∧ d 6= 0B))

=⇒ ∃c ∈ B (c ≤B b ∧ c ≤B
∨
D ∧ c 6= 0B),

that is

∃c ∈ B (c ≤B b ∧ c ≤B
∨
D ∧ c 6= 0B) ⇐⇒ ∃a (a ∈ D ∧ b ◦B−

a).

Therefore,

(B2)−, β(z :
∨
D)(y : b) |= y ◦ z ⇐⇒ b ◦B− ∨

D

⇐⇒ ∃a (a ∈ D ∧ b ◦B−
a).

But we also have (since “z” is new, and by using Lemma 13 for the third equivalence)

(B2)−, β(z :
∨
D)(y : b) |= ∃x (Xx ∧ y ◦ x)

⇐⇒ ∃a (a ∈ B− ∧ (B2)−, β(y : b)(x : a) |= Xx ∧ y ◦ x)
⇐⇒ ∃a (a ∈ B ∧ a 6= 0B ∧ b ◦B−

a ∧ (B2)−, β(x : a) |= Xx)

⇐⇒ ∃a (a ∈ B ∧ a 6= 0B ∧ b ◦B−
a ∧ B2, β(x : a) |= J (Xx))

⇐⇒ ∃a (a ∈ D ∧ b ◦B−
a).

The claim follows.

Corollary 15. If B is a complete Boolean algebra, then (B2)− |= Ax(CI),Comp2, FUS-Ax.

The converse of Lemma 14 can also be shown:

Lemma 16. IfM2(:= 〈M,℘(M), ◦M 〉) satisfies Ax(CI), FUS-Ax and if n 6∈ M , then
M+n(:= 〈M+n,≤M+n, n, 1M+n〉) is a complete Boolean algebra.
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Proof. By Lemma 12(ii),M+n is a Boolean algebra. For completeness, let A ⊆ M+n

be nonempty.
If A = {n}, its supremum (inM+n) equals n.
If A 6= {n}, consider C := A \ {n}, which is a nonempty element of ℘(M): that

is, if β is an assignment overM2,

M2, β(X : C) |= ∃x Xx.

Now sinceM2 |= Ax(CI), FUS-Ax, for some e ∈M

M2, β(X : C)(z : e) |= ∀y (y ◦ z ←→ ∃x (Xx ∧ y ◦ x)) (∗)

e is the supremum of A inM+n.
For first, ∀a (a ∈ A⇒ a ≤M+n e): if a = n, this is trivial; and if a ∈ C , a ≤M+n e

holds by (∗).
And second, assume ∀a (a ∈ A⇒ a ≤M+n e′) with e′ ∈M+n; then ∀a (a ∈ C ⇒

a ≤M+n e′) and e′ 6= n, i.e., e′ ∈ M . Thus, by (∗), e vM e′, whence by definition,
e ≤M+n e′, too.

4. 2nd order extensions of CI: some metatheorems

In the light of TheoremA from section 1.2, the “strongest” result one could hope for here
is that in L2[◦], themaximal-consistent extensions of ∅g20 are exactly the (Ax(ACIn+1))s2

and the (Ax(MCIn+1))s2 (n ∈ N), (Ax(ACI∞))s2, (Ax(FCI))s2 and (Ax(MCI∞))s2.
It will turn out, however, that this is not the case: see section 4.3. Actually, the situation
seems to be much more complicated than in the 1st order setting. More modestly, one
could ask whether those theories have at least s2-models. Here the answer is positive:
see section 4.1. Sections 4.2 and 4.4 are concerned with the relation between 1st order
calculi of individuals and 2nd order extensions of ∅g20 ; in particular, they contain the
description of several maximal-consistent examples of the latter.

4.1. s2-satisfiability
Lemma 17. Each of the (Ax(ACIn+1))s2 and the (Ax(MCIn+1))s2 (n ∈ N), (Ax
(ACI∞))s2, (Ax(FCI))s2 and (Ax(MCI∞))s2 has a s2-model.

Proof. Let Ax be any of the axiom-sets Ax(ACIn+1), Ax(ACI∞), Ax(FCI),
Ax(MCIn+1) and Ax(MCI∞).

In order to get the desired result, it suffices by Corollary 15 to show:
Claim. There is a complete Boolean algebra B such that (B2)− |= Ax.

Proof. For Ax(ACIn+1), Ax(ACI∞) and Ax(FCI), it is easy to find these Boolean
algebras:

• Ax(ACIn+1): set B := 〈℘({0, . . . , n}),⊆, ∅, {0, . . . , n}〉.
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• Ax(ACI∞): set B := 〈℘(N),⊆, ∅,N〉.
• Ax(FCI): set B := 〈RO(R),⊆, ∅,R〉. RO(R) is the set of the regular open
subsets of R (with its usual topology). It is well known that B is a complete Boolean
algebra —see Halmos (1963). Moreover, it is atomfree: therefore, (B2)− |= AF.

For Ax(MCIn+1) and Ax(MCI∞), products of the above mentioned Boolean algebras
do their jobs:

• Ax(MCIn+1): set B :=〈℘({0, . . . , n}),⊆, ∅, {0, . . . , n}〉×〈RO(R),⊆, ∅, R〉.
• Ax(MCI∞): set B := 〈℘(N),⊆, ∅,N〉 × 〈RO(R),⊆, ∅,R〉.

Corollary 18. For each (1st order) modelM(= 〈M, ◦M 〉) of CI+FUS1, there is a complete
Boolean algebra 〈B,≤B, 0B, 1B〉 such that 〈B−, ◦B−〉 ≡ M.

Proof. Consider Th(M) (i.e., the set of L1[◦]-sentences true inM); it is a maximally
consistent extension of CI+FUS1 (in L1[◦]), hence by Theorem A equal to one of the
theories ACIn+1, MCIn+1 (n ∈ N), ACI∞, FCI or MCI∞ +FUS1. Therefore, by the
claim from Lemma 17, there is a complete Boolean algebra B(= 〈B,≤B, 0B, 1B〉) such
that (B2)− |= Th(M). Now Th(M) contains only 1st order sentences; therefore,

〈B−, ◦B−〉 |= Th(M),

too. But then 〈B−, ◦B−〉 ≡ M.

4.2. Finite g2- and s2-models
For finite structures, being a g2-structure and being a s2-structure amounts to the same.

Lemma 19. (i) If 〈M,Ω, ◦M 〉 |= Comp1 andM is finite, then Ω = ℘(M).
(ii) If all g2-models of Σ ∪ Ax2(CI)1 are finite, then Σg2

0 = Σg2 = Σg2+ = Σs2.

Proof. (i) Let C ⊆ M , i.e. C = {a1, . . . , an}, with a1, . . . , an ∈ M . Now, since
〈M,Ω, ◦M 〉 |= Comp1, we have in particular (for arbitrary assignments β overM )

〈M,Ω, ◦M 〉, β |= ∀x1 . . . xn∃X∀y (Xy ↔ y = x1 ∨ · · · ∨ y = xn).

Therefore, 〈M,Ω, ◦M 〉, β(x1 : a1) . . . (xn : an) |= ∃X∀y (Xy ↔ y = x1∨· · ·∨
y = xn), whence

∃B ∈ Ω∀r ∈M (r ∈ B ⇐⇒ r = a1 ∨ · · · ∨ r = an).

That is, C = {a1, . . . , an} = B, and since B ∈ Ω, C ∈ Ω follows.
This shows ℘(M) ⊆ Ω.
(ii) It suffices to show “Σs2 ⊆ Σg2

0 ”. Thus, assume (∗) Σ ∪ {O,FUS-Ax} |=s2 ψ
and let 〈M,Ω, ◦M 〉 be a g2-structure satisfying Ax2(CI)1 and Σ. By assumption,M is
finite; therefore, by (i),Ω = ℘(M), and 〈M,Ω, ◦M 〉 is actually a s2-structure. Moreover,
〈M,Ω, ◦M 〉 satisfiesΣ, O and FUS-Ax. Therefore, (∗) implies that 〈M,Ω, ◦M 〉 |= ψ.
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Theorem 20. For each n ∈ N,
(i) Ax(ACIn+1) is s2- and g2-categorical, and (Ax(ACIn+1))s2 is maximal-consistent.
(ii) (Ax(ACIn+1))

g2
0 = (Ax(ACIn+1))g2 =(Ax(ACIn+1))g2+ =(Ax(ACIn+1))s2

=Th2(〈(℘({0, . . . , n}))−, ℘((℘({0, . . . , n}))−), ∩d(℘({0, . . . , n}))−〉).
(iii) (Ax(ACIn+1))s2 is decidable.
Proof. (i) All s2-models of Ax(ACIn+1) have exactlyn+1 atoms and are isomorphic with
each other. Moreover, each g2-model of (Ax(ACIn+1))s2 is finite and satisfies Comp1;
thus, by Lemma 19(i), the g2- and the s2-models of (Ax(ACIn+1))s2 are the same
objects. Since (Ax(ACIn+1))s2 is s2-categorical and consistent, it is maximal-consistent
by Lemma 5(iii).

(ii) Since all g2-models of Ax(ACIn+1) are finite and 〈(℘({0, . . . , n}))−, ℘((
℘({0, . . . , n}))−), ∩d(℘({0, . . . , n}))−〉 is one of them, Lemma 3(iv) and 19(ii) imply
the claim.

(iii) Being the deductive closure of a recursively enumerable set of axioms, (Ax
(ACIn+1))g2 is recursively enumerable. Therefore, by (i) and (ii), (Ax(ACIn+1))s2 is
decidable.

4.3. On extensions of ACI∞
Certainly, Lemma 5 has a somewhat restricted applicability. For similarly to the 1st order
case, if a set Σ of 2nd order sentences has infinite models, it cannot be g2-categorical
(by the Löwenheim-Skolem theorems). Moreover, it is in general more likely that Σ is
κ-s2-categorical than κ-g2-categorical. But it is only from the latter that we obtain the
maximal-consistency of Σg2. Nonetheless, at least for theories around (Ax(ACI∞))s2,
the concepts from section 2.2 prove to be useful.

To start with, we easily obtain an approximation to categoricity:
Lemma 21. Ax(ACI∞) ∪ {FUS-Ax} is 2ℵ0 -s2-categorical.

Proof. LetM2 andM′2 be s2-models of Ax(ACI∞)∪{FUS-Ax} with |M | = |M ′| =
2ℵ0 . Then, B(:= 〈M+n,≤M+n, n, 1M+n〉) and B′(:= 〈M ′+n,≤M ′+n, n, 1M

′+n〉)
(with new n) are atomistic Boolean algebras which are also complete (by Lemma 16).

Now, we have the following fact concerning Boolean algebras:44

Fact. If B is an atomistic, complete Boolean algebra and AtB is the set of atoms of B,
then B ∼= 〈℘(AtB),⊆, ∅, AtB〉.

Since |M+n| = |M ′+n|, we also have |AtB| = |AtB′ |. But then, B ∼= B′. The
isomorphism between these structures can first be restricted to M , giving an isomor-
phism between 〈M, ◦M 〉 and 〈M ′, ◦M ′〉. And this, in turn, can be extended to an
ismorphism betweenM2 andM′2.45

44 See Halmos (1963), Ridder (2002).
45 If f : M −→ M ′ is a bijection, set g(a) = {f(k) | k ∈ a} for a ⊆ M : g is a bijection from ℘(M)

to ℘(M ′).
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Yet, this lemma does not imply the maximal-consistency of (Ax(ACI∞))s2: for
not all s2-models of (Ax(ACI∞))s2 need have cardinality 2ℵ0 . But maybe 2nd order
sentences can be added to that theory which force theirmodels to have that cardinality?—
It turns out that these sentences can already be found in Lewis (1991). Thus, the following
definitions and lemmata are mainly taken from or inspired by this book.46

Definition 22. (i) x =
∨
X :←→ ∀y (y ◦ x↔ ∃z(Xz ∧ y ◦ z)),

(ii) 1 =
∨
X :←→ ∃x (x =

∨
X ∧ ∀y y v x),

(iii) inf(x) :←→ ∃X (∃y Xy ∧ x =
∨
X ∧ ∀y(Xy → ∃z(Xz ∧ y < z))),

(iv) large(x) :←→ ∃X [∃y Xy ∧ ∀yz(Xy ∧Xz ∧ y ◦ z → y = z) ∧ 1 =
∨
X

∧∀y(Xy → ∃1z(At(z) ∧ z v y ∧ z v x) ∧ ∃≤2z(At(z) ∧ z v y))].

(CountAt)∀x (inf(x) −→ large(x)).

Lemma 23. LetM be a g2-structure withM |= Ax(CI). Then

(i) M, β |= inf(x) =⇒ {a ∈M | a vM β(x)} is infinite,
(ii) M |= ∃x inf(x) =⇒M is infinite.

Proof. (i) If M, β |= inf(x), then for some nonempty B ⊆ M we have β(x) =∨M B,47 and ∀r ∈ B∃s ∈ B r <M s. Thus, B is infinite; and since B ⊆ {a ∈ M |
a vM β(x)}, {a ∈M | a vM β(x)} is infinite, too.

(ii) IfM |= ∃x inf(x), then by (i) ∃b (b ∈ M ∧ {a ∈ M | a vM b} is infinite),
whenceM is infinite.

Lemma 24. LetM be a s2-structure withM |= Ax(ACI), FUS-Ax. Then

(i) {a ∈M | a vM β(x)} is infinite =⇒M, β |= inf(x),
(ii) M is infinite =⇒M |= ∃x inf(x).

Proof. (i) Let B := {b ∈ M | ∃a1 . . . ak (a1, . . . , ak are atomsM ∧ b =
∨M{a1, . . . ,

ak} ∧ b vM β(x))}.
Then B ∈ ℘(M), and since M is atomistic, ∅ 6= B. Moreover, since M is a

s2-structure which satisfies FUS-Ax,
∨M B exists and is an element ofM . In addition,

we haveβ(x) =
∨M B: for if c◦Mβ(x), then for some atomM a,a vM c∧a vM β(x);

therefore,
∨M{a} ∈ B, whence a ∈ B and a vM

∨M B—which implies c◦M
∨M B.

46 As for the formal details, I sometimes follow the presentation from Ridder (2002).
47 For β(X) = B we have

M, β |= x =
_
X ⇐⇒ M, β |= ∀y (y ◦ x↔ ∃z(Xz ∧ y ◦ z))
⇐⇒ ∀b ∈M (b ◦M β(x)⇔ ∃c ∈M (c ∈ B ∧ b ◦M c))

⇐⇒ ∀b ∈M (b ◦M β(x)⇔ ∃c (c ∈ B ∧ b ◦M c)),

which is abbreviated by “β(x) =
WM B”.
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Finally, let r ∈ B; then r is a finite fusionM of atomsM a1, . . . , ak with r vM β(x).
Now, since {a ∈ M | a vM β(x)} is supposed to be infinite, r = β(x) cannot be the
case. Thus, there is an atomM a such that a vM β(x) and a is disjointM from r (again,
because of atomicity). Taking s :=

∨M{a1, . . . , ak, a} provides for a finite fusionM
of atomsM which is a partM of β(x), and therefore, for an element s ∈ B such that
r <M s.

(ii) SinceM |= CI, there is a maximal element 1M inM , i.e., an object b ∈M such
that ∀a (a ∈M ⇒ a vM b). Thus,M = {a ∈M | a vM 1M}. Now, ifM is infinite,
{a ∈M | a vM 1M} is infinite, andM |= ∃x inf(x) follows by (i).

Lemma 25. LetM be a s2-structure withM |= Ax(ACI∞), FUS-Ax. Then

(i) M, β |= large(x) ⇐⇒ |{a ∈M | a is an atomM}| = |{a ∈M | a is an atomM ∧
a vM β(x)}|.

(ii) M |= (CountAt) ⇐⇒ {a ∈M | a is an atomM} is countable (and infinite).48

Proof. 49 (ii) “=⇒” Let A ⊆ M be a countably infinite set of atomsM ; such a set exists
because, by assumption,M |= Ax(ACI∞). Furthermore,

∨M A ∈ M , sinceM is a
s2-structure which satisfies FUS-Ax. A consequence is (∗):

A = {a ∈M | a is an atomM ∧ a vM
M∨
A}.

Now, assumeM, β |= (CountAt); thenM, β(x :
∨M A) |= inf(x) −→ large(x).

And by Lemma 24(i), the choice of A and (∗),M, β(x :
∨M A) |= inf(x). Thus, it

follows thatM, β(x :
∨M A) |= large(x). Because of (i) and (∗), this yields |{a ∈

M | a is an atomM}| = |{a ∈M | a is an atomM ∧ a vM
∨M A}| = |A|. But A was

chosen to be countably infinite. Thus, {a ∈ M | a is an atomM} has to be countable
(and infinite), too.

“⇐=” Assume that B := {a ∈ M | a is an atomM} is countable and infinite. In
addition, let b ∈ M be arbitrary and assume that M, β(x : b) |= inf(x). Then by
Lemma 23(i), C := {a ∈M | a vM b} is infinite.

Now, consider A := B ∩ C , i.e., = {a ∈M | a is an atomM ∧ a vM b}.
A 6= ∅, sinceM |= Ax(ACI). And for the same reason,A is not finite: for if it were,

b would be the fusionM of finitely many atomsM a1, . . . , ak. But then, C would have
only finitely many elements, too (2k − 1, that is); contradiction. Thus, A is infinite, and
we have |{a ∈M | a is an atomM}| = |{a ∈M | a is an atomM ∧ a vM b}|.

By (i), it follows thatM, β(x : b) |= large(x).

48 Let me note that the L2[◦]-formula put forward as a formalization of “there are countably many atoms”
in Lewis (1991) and Ridder (2002) is not (CountAt), but the more complicated
(CountAt′)∀Xx (x =

W
X ∧ ∀y(Xy → At(y)) ∧ inf(x) −→ large(x)).

The following can however be shown: Ax(ACI) |=g2 (CountAt)←→ (CountAt′).
49 I skip the proof of (i). A few hints can be found in Lewis (1991) and Ridder (2002).
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Let’s put these sentences of L2[◦] to use.

Theorem 26. (i) All s2-models of Ax(ACI∞) ∪ {FUS-Ax, (CountAt)} have cardinality
2ℵ0 .

(ii) Ax(ACI∞) ∪ {FUS-Ax, (CountAt)} is s2-categorical.
(iii) (Ax(ACI∞) ∪ {(CountAt)})s2 is maximal-consistent.
(iv) (Ax(ACI∞) ∪ {(CountAt)})s2 = Th2(〈(℘(N))−, ℘((℘(N))−),
∩d(℘(N))−〉).

Proof. (i) Let M be a s2-structure satisfying Ax(ACI∞), FUS-Ax, (CountAt). By
Lemma 25(ii), M has ℵ0 atoms. Therefore (employing the fact from the proof of
Lemma 21), |M | = 2ℵ0 .

(ii) Because of (i) and Lemma 21.
(iii) Because of (ii) and Lemma 5(iii).
(iv) 〈(℘(N))−, ℘((℘(N))−),∩d(℘(N))−〉 is a s2-structure satisfying

Ax(ACI∞), FUS-Ax, (CountAt). The claim follows from (iii) and Lemma 3(iii).

Furthermore, we have

Lemma 27. (i) Ax(ACI∞) ∪ {FUS-Ax} |=s2 ∃x inf(x).
(ii) “∃x inf(x)” 6∈ (Ax(ACI∞) ∪ {(CountAt)})g2+, “¬∃x inf(x)” 6∈ (Ax(ACI∞)∪
{(CountAt)})g2+.

(iii) (Ax(ACI∞))g2+ ⊂ (Ax(ACI∞))s2, (Ax(ACI∞) ∪ {(CountAt)})g2+ ⊂
(Ax(ACI∞) ∪ {(CountAt)})s2.

Proof. (i) IfM is a s2-structure withM |= Ax(ACI∞), thenM is infinite. Thus, since
alsoM |= FUS-Ax, it follows by Lemma 24(ii) thatM |= ∃x inf(x).

(ii) For assume the contrary: i.e., Ax(ACI∞) ∪ Ax2(CI)2 ∪ {(CountAt)} |=g2

∃x inf(x). Then by the completeness theorem for g2-consequence, Ax(ACI∞) ∪
Ax2(CI)2∪{(CountAt)} ` ∃x inf(x). But in this case, “∃x inf(x)” would be derivable
from a finite subset of this set of axioms, whence fromΣ := Ax(ACIn+1)∪Ax2(CI)2∪
{(CountAt)} (for some n ∈ N).

Now take a s2-structure 〈M,℘(M), ◦M 〉 which is a model of Ax(ACIn+1). It also
satisfiesAx2(CI)2 (by Theorem20). In addition, sinceM must be finite, 〈M,℘(M), ◦M 〉
trivially makes (CountAt) true. Thus, 〈M,℘(M), ◦M 〉 |= Σ, which implies 〈M,℘(M),
◦M 〉 |= ∃x inf(x). Yet by Lemma 23(ii), this yields thatM must be infinite. Contradic-
tion.

(iii) By Lemma 27(ii) and because by Lemma 24(ii), each s2-structure which satisfies
Ax(ACI∞) is infinite and therefore a model of “∃x inf(x)”.

Let’s conclude this subsectionwith counterexamples to some of themore noteworthy
modifications and strenghtenings of Lemma 5. Here are the candidates (for consistent
sets Σ of L2[◦]-sentences):
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(iii.1) If Σ is s2-categorical and Cns2(Σ) is consistent, then Cng2(Σ) is maximal-
consistent.

(iii.2) If Σ is s2-categorical and Cng2(Σ) is consistent, then Cns2(Σ) is maximal-
consistent.

(v.1) Let κ be an infinite cardinal. If Σ is κ-s2-categorical and has only infinite
s2-models, and if Cns2(Σ) is consistent, then Cns2(Σ) is maximal-consistent.

(iii.1) is refuted by Σ := Ax(ACI∞) ∪ {FUS-Ax, (CountAt)} (by Theorem 26(ii),
(iii) and Lemma 27(ii)). (iii.2) is refuted by Σ := Ax(ACI∞) ∪ {FUS-Ax, (CountAt),
¬∃x inf(x)} (by Theorem 26(ii), Lemma 27(ii) and sinceCns2(Σ) fails to be consistent
(see Lemma 27(iii))).50(v.1) is refuted by Σ := Ax(ACI∞) ∪ {FUS-Ax}; for although
Σs2 is 2ℵ0-s2-categorical (by Lemma 21) and consistent, it neither contains (CountAt)
(because it has models with uncountably many atoms) nor ¬(CountAt).

4.4. Conservative extensions
Let me close themetalogical part of this paper with a further topic: what is the strength of
the 1st order portions of the 2nd order variants of calculi of individuals? This is connected
with the theme conservativity. In our context, “conservativity” may be explained as follows:

Definition 28. Let T be a set of L2[◦]-sentences such that T g2 ⊆ T and S be a theory in
L1[◦]. Then: T is a conservative extension of S: ⇐⇒ S ⊆ T and for all L1[◦]-sentences
ψ (ψ ∈ T ⇐⇒ ψ ∈ S).

Since the ACIn+1 and the MCIn+1, ACI∞, FCI and MCI∞ +FUS1 are maximally
consistent (in L1[◦]), it is clear that for each of them, each consistent extension in L2[◦]
is conservative over that very L1[◦]-theory. This, however, is a quite weak claim.

Now, there is a general method for obtaining stronger conservativity results which
can be applied also here:51 Start with a 1st order structureM(= 〈M, ◦M 〉) and extend
it to the g2-structure 〈M,Def1(M), ◦M 〉, where Def1(M) contains the subsets ofM
which are parametrically definable overM. It can be shown thatMDef |= Comp1, and that
ifM |= FUS1, thenMDef |= FUS-Ax. Eventually, this yields this conservativity claim:

Lemma. If Σ is a set of L1[◦]-sentences, thenΣg2
0 is a conservative extension ofΣ+CI+FUS1.

But here, with Corollary 18 at hand, a much stronger conservativity result can be
established.

Theorem 29. If Σ is a set of L1[◦]-sentences, then Σs2 is a conservative extension of Σ +
CI+FUS1.

50 Employing these examples, it can even be shown that:
If Σ is s2-categorical and Cns2(Σ) is maximal-consistent, then Cng2(Σ) is maximal-consistent.
If Σ is s2-categorical and Cng2(Σ) is maximal-consistent, then Cns2(Σ) is maximal-consistent.
are false.

51 See Leivant (1994) and Simpson (1999) for more on this.
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Proof. First, by Lemma 7(ii), Σ + CI+FUS1 ⊆ Σs2.
Second, letϕ be a L1[◦]-sentence and assumeϕ ∈ Σs2, i.e., (i)Σ∪{O,FUS-Ax} |=s2

ϕ; furthermore, assume (ii) 〈M, ◦M 〉 |= Σ + CI+FUS1: “〈M, ◦M 〉 |= ϕ” has to be
shown.

Because of (ii) and Corollary 18, there is a complete Boolean algebra 〈B,≤B,
0B, 1B〉 such that

(iii) 〈M, ◦M 〉 ≡ 〈B−, ◦B−〉,
(iv) 〈B−, ◦B−〉 |= Σ.

By (iv), since Σ is a set of L1[◦]-sentences, we have 〈B−, ℘(B−), ◦B−〉 |= Σ; and
by Lemma 14, 〈B−, ℘(B−), ◦B−〉 |= FUS-Ax. Therefore, (i) yields that 〈B−, ℘(B−),
◦B−〉 |= ϕ.

Now ϕ is a L1[◦]-sentence, whence also 〈B−, ◦B−〉 |= ϕ. Together with (iii), this
implies the desired result.

Corollary 30. If Σ is a set of L1[◦]-sentences, then Σg2
0 , Σ

g2, Σg2+ and Σs2 contain the same
sentences from L1[◦].

Proof. By Theorem 29 and Lemma 7(ii).

I stop the investigation of the 2nd order extensions of CI+FUS1 here. There are
two natural next steps. The first would be an analysis of the 2nd order analogues of
FCI, the MCIn+1 (n ∈ N) and MCI∞ + FUS1. I do not have results comparable to
the ones just presented for the 2nd order extensions of the ACIn+1(n ∈ N) and of
ACI∞, however: what is missing are L2[◦]-formulas “expressing” cardinalities similar
to the ones stated in Definition 22. The other step would be to find out more about
the relation between (Ax(ACI∞) ∪ {FUS-Ax, (CountAt)})s2 and, e.g., (Ax(ACI∞) ∪
{FUS-Ax, (CountAt)})g2. That should be possible by employing the methods of Weese
(cf. Weese (1989)); but this is beyond the scope of this paper.52

5. Field and the complete logic of the part/whole relation

To close this paper, let me return to one of themotivations for writing it—to the question
how the expressions “the complete logic of the part/whole relation” and “the complete
logic of Goodmanian sums” are understood in Field (1980) or could be understood.53
Let it be clear from the outset that there are no explicit explanations (e.g., definitions)
for these phrases in that book. Rather, Field simply uses them. It will therefore be no
surprise that the subsequent thoughts about a proper Fieldian analysis of them will turn
out to be rather conjectural.

52 The conjecture would be that the first theory ismuchmore complex from a recursion-theoretic viewpoint
and much stronger with respect to relative interpretability than the second.

53 Let me stress that I am not concerned with Field’s later writings on this topic; see, e.g., Field (1989).
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As a starter, here is a reminder how Field introduces the expressions “the complete
logic of the part/whole relation” and “the complete logic of Goodmanian sums”.

On p. 25 ff., Field presents a theory (of geometry) which he sometimes callsHilbert’s
formulation of the Euclidean theory of space and time; let me abbreviate this by “H”. H is
formulated in a monadic 2nd order language L2[B,Cong] which has a vocabulary
consisting of two non-logical predicates: the 3-place “B” (“Bxyz” is read “y is between
x and z”) and the 4-place “Cong” (“Cong(a, b, x, y)” is read “the distance between a
and b is identical with the distance between x and y”). On p. 37 ff., Field addresses the
problem of interpreting L2[B,Cong]—which, being a 2nd order language, seems to be
committed to sets—in a nominalistically admissible way. What he suggests is: interpret
the 2nd order variables as having regions as their values. In Field’s words (1980, p. 37):

(1) So we can regard the second-order quantifiers in Hilbert’s theory as ranging over
regions.54

It is a few lines after (1) that we encounter the first occurence of “the complete logic
of the part/whole relation” and “the complete logic of Goodmanian sums” Field (1980,
p.38):

(2) It [i.e., H] does, admittedly, have a logic that one might find objectionable:it
involves what might be called the the complete logic of the part/whole relation, or the
complete logic of Goodmanian sums, and this is not a recursively axiomatizable logic.

In what follows, I will concentrate on the phrase “the complete logic of the
part/whole relation”. My approach is to discuss its components “logic”, “complete”,
“complete logic” and also “part/whole relation” in the hope that this will lead to an
interpretation of the entire phrase.

To start with, it is remarkable that there seems to be no explicans of “logic” which
is both precise, generally applicable and intuitively convincing and which, moreover, is
widly accepted. “x is a formal language” and “y is a logical truth from x”—these are the
predicates which are well-understood and which have received convincing explications
(though opinionsmay differ as to which ones aremost appropriate). But the word “logic”

54 Field continues with
(∗) If we write Hilbert’s theory in this way, then the quantifiers (both first-order and second-order)
range only over regions of space.
Yet this is somewhat peculiar. First, the phrase “in this way” may be interpreted as referring to (1).
But in (1), the question of how to write H is not addressed. Rather, it deals with how to interpret H
or L2[B,Cong]. Second, the expression “If ” beginning (∗) may be understood as conveying that at a
certain point, Field had envisaged writing a version of H which is not formulated in L2[B,Cong];
but this he never did in Field (1980).
For later use, here is a suggestion: translate L2[B,Cong] via a mapping I into the 1st order lan-
guage L1[B,Cong, ◦] with the additional predicate “◦” such that, among others, I( ∀xψ ) =
∀x (At(x) → I(ψ)) and I( ∀Xψ ) = ∀x I(ψ) (alternatively, the predicate “region” could
belong to the 1st order language, and ∀Xψ could be translated as ∀x region(x)→ I(ψ)) ). As
applied to the theory H, this leads to a 1st order theory H1 which really is sort of a rewritten variant
of H.
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typically remains simply unexplained. Moreover, if it is understood at all, it is usually
vague or ambiguous. Thus, given a formal language L, for example, it may be understood
as the set of logical truths from L, or as that language itself (for example, its vocabulary
or its set of formulas or its set of formation rules); it could be a consequence relation, in
particular one which has the set of logical truths (of L) as the set of consequences of the
empty set. Construed more liberally, a logic could be an arbitrary class of structures (of
a signature appropriate to L) and, therefore, a theory in L which does not contain only
logical truths. Finally, it may be a complex of the items just suggested—or something else.

Since “logic” is also not explained in Field (1980) it can only be guessed which of
these conceptions Field had in mind when he employed the words “the complete logic
of the part/whole relation”. Yet, I think that his additional claim in (2), i.e., that it “is
not a recursively axiomatizable logic”, sheds some light on his understanding. For of
all the interpretations of “logic” mentioned above, the one that takes a logic to be a
set of sentences is that where it makes most sense to ask if a logic could be recursively
axiomatizable. In this case, the first choice for a or the logic relative to L2[B,Cong]
would be the set of logical truths which are formulated in L2[B,Cong]. But recall that
we have at least two ways to define this set: as “the setPLg2 of all L2[B,Cong]-sentences
true in all g2-structures appropriate to L2[B,Cong]”, but also as “the set PLs2 of all
L2[B,Cong]-sentences true in all s2-structures appropriate to L2[B,Cong]”.

With this as a background, let me now turn to “complete”. I think that it is most
plausible to reason as follows: By the completeness theorem for 2nd order logic provided
with g2-structures, PLg2 is recursively enumerable. Thus, when it is construed as the
set of logical truths (in L2[B,Cong]), the complete logic of the part/whole relation should be
regarded rather as PLs2 than as PLg2. Yet, if it is not the recursive enumerability but the
completeness which is emphasized, the opposite is suggested: the completeness theorem
we have for PLg2, but not for PLs2. Now, the complete logic of the part/whole relation should
be regarded rather as PLg2 than as PLs2.

Is there a sense in which PLs2 is, but PLg2 fails to be complete? The one idea55 that
comes to my mind is: PLs2 contains each instance of Comp2—the “full” or “complete”
2nd order comprehension schema—but PLg2 doesn’t.

These considerations on the phrase “the complete logic of the part/whole relation”,
however, share the weakness of ignoring its “part/whole relation”-part. For whatever
“logic” might mean, I take it that a logic is intimately connected with a language or a
vocabulary; and Field tells us that H has or involves the complete logic of the part/whole
relation. This, then, suggests that (2) should have the following consequence:
(A) The part-of relation is expressible in H’s language, i.e., in L2[B,Cong].
Yet, as far as I can tell, this is simply not the case:56 L2[B,Cong] does not contain

“v”; it is far from evident whether “v” could be defined in an appropriate way in H;

55 PLs2 may be claimed to be complete in the sense that it contains each logical truth (of L2[B,Cong]),
but the same could be said about PLg2: that depends, of course, on what one understands by “logical
truth”. Furthermore, PLg2 and PLs2 fail to be maximal-consistent and are therefore, in this sense,
both incomplete.

56 Note that the theory H1 suggested above is stated in a language in which “v” is expressible. But there
we have a crucial difference between H and H1.
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and at this point of his book, Field does not show any interest in such a definition or
in enlarging the vocabulary of L2[B,Cong] by “v”.57 Whatever the precise meaning of
(2) may be, it seems to be trivially false under this interpretation of Field’s text.

In principle, I see two ways out of the difficulty addressed with (A). The first way is
to deal with an extension of L2[B,Cong] by “v” or, say, “◦”, instead of L2[B,Cong];
the second way is to replace (A) by the requirement that the part-of relation should by
expressible in a metalanguage of L2[B,Cong]. Now, it may well be that Field adopted
one of these strategies in Field (1980). Here are some details.

First strategy:
In a later passage from Field (1980, p.99), Field actually takes L2[B,Cong] to be

extended by “◦” to a monadic 2nd order language (which I call “L2”). When asked what
the complete logic of the part/whole relation could be with respect to L2, however, we still do
not have a definite answer. Similarly to the case L2[B,Cong], it could be PLg2∗, the
set of all L2-sentences true in all g2-structures appropriate to L2, but also PLs2∗, the set
of all L2-sentences true in all s2-structures appropriate to L2. Now surely both PLg2∗
and PLs2∗ contain sentences involving “◦” or “v”; but it is not at all settled that any of
these sets should be regarded as the complete logic of the part/whole relation. For in none
of these sets, “◦” or “v” plays an assential role: in particular, PLg2∗ and PLs2∗ do not
suggest, let alone determine, that “v” should be read or interpreted as part-of.

As amatter of fact, now that we have “◦” as part of the formal language, other options
for an explication of “the complete logic of the part/whole relation” can be taken into
account.58 The ones presented here are inspired by occurences of “completeness” which
can be found in arithmetical contexts.

(i) It is not uncommon to use the predicate “the complete arithmetic” for the set of
all sentences from L2[PA] which are “true in the standard model”. Similarly, the complete
logic of the part/whole relation could be understood as the set of all truths in L2 about the
part-whole relation; let’s call it Th(v). I think that this suggestion, however, has a rather
obvious shortcoming: Th(v) is not well-defined; I have not the slightest idea what it
could be and doubt that anybody else has; and calculi of individuals were not invented
for having just “one intended model”.

(ii) Sometimes, the induction schema from L2[PA] is regarded as expressing not the
full induction principle, but only its 1st order approximation. Full induction is supposed to
be formalized as an induction axiom in L2[PA]. Transferred to our situation, this suggests
to accept FUS-Ax instead of FUS1 when we want to have the full—or: complete—logic of
Goodmanian sums.

Let me sum up: When construed as a set of sentences in L2[B,Cong], the complete
logic of the part/whole relationmay be PLs2 or PLg2; but in this case, (A) is violated. When
regarded as a set of sentences in L2, the complete logic of the part/whole relationmay be PLs2∗
or PLg2∗, but also, for example, the set of truths (in L2) about the part-of-relation or a
theory (in L2) which contains FUS-Ax.

57 Field mentions that apart from “B” and “Cong”, further expressions may belong to L2[B,Cong]:
e.g., “is a point”. But he nowhere envisages “◦” or “v” to be one of them.

58 Note that they are not applicable to L2[B,Cong], since “◦” is missing in that language.
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This last-mentioned option points to a different approach to (2), which I will briefly
address before presenting the second strategy. Its main idea is that instead of asking
what “the complete logic of the part/whole relation” could mean, one should try to
understand the full

(∗) H involves the the complete logic of the part/whole relation.

As I see it, the considerations just put forward are useful here, too. Drawing on
them, here are some suggestions for an interpretation of (∗): H is closed under s2-con-
sequence;59 H contains FUS-Ax; H contains each instance of Comp2; H contains each
truth (in L2) about the part-of-relation.

Thus, here again (2) seems to be compatible with several nonequivalent interpreta-
tions. But let me finally come to the second strategy and, herewith, to a new perspective.

Second strategy:
The starting point is the thought that perhaps all that Field wanted to convey with

(2) is that he preferred to interpret L2[B,Cong] by using only s2-structures. As a matter
of fact, already before he introduced the problematic expressions discussed here, he
had considered just s2-structures as possible models for L2[B,Cong]: see Field (1980,
pp. 25–26). Furthermore, throughout his entire book, Field wants the 2nd order theories
he deals with to be categorical; and this he will no get if he interprets them via arbitrary
g2-structures.

Once more, this reading of Field (1980) has an obvious weakness: Interpreting a
language L only via s2-structures has nothing specific to do with the part-of relation.
First, a language L which is interpreted solely via s2-structures need not contain means
to express part-of.60 Second, even L2 need not be interpreted admitting only s2-structures:
each g2-structure of the right signature could be allowed as a possible model for L2.

So where does an interplay between s2-structures and the part-of-relation enter the
stage? In order to find out, let’s go back to (1) and (∗), i.e., to the context in Field (1980)
preceeding the introduction of the “the complete logic of the part/whole relation”-talk.
At this point, it may be that Field employs the complete logic of the part/whole relation as
a means to specify “x is a region”. But as I have already pointed out, this formula is
not formulated in L2[B,Cong]. Rather, the predicate “is a region” belongs to some
metalanguage ML of L2[B,Cong]: it is used to apply to structures in which expressions
from L2[B,Cong] can be evaluated, but it is not evaluated in such structures.

Since I understand Field’s use of the predicate “is a region” as being exchangeable
by “is a part of ”, I now read (2) as implying

59 Under this interpretation of (2), I take it to be inappropriate to construe “the complete logic of the
part/whole relation is not recursively axiomatizable” as “the set of logical truths (of one of the
above mentioned languages L) is not recursively enumerable”. Rather, I prefer to think of it as being
adequately explained by “the of sentences from L which are consequences of Σ is not recursively
enumerable in Σ” (where Σ is a suitable set of sentences from L). Now since Cng2(Σ) is always
recursively enumerable in Σ, closure of H under g2-consequence would not be relevant.

60 If L = L2[B,Cong], this objection is reminiscent of (A).
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(B) The part-of relation is expressible in a metalanguage ML of H’s language,

—and (A) no longer poses a threat.
Statements such as (1) make it, moreover, plausible that ML should be regarded

as a semantical metalanguage of L2[B,Cong]: to ML, sentences should belong which
express that certain expressions of L2[B,Cong] are interpreted by certain entities. Now,
typically it is set theoretical languages which are used for this role. After all, in order to
get the semantic machinery going, one is used to employ set theory (at the metalevel) as
a means to obtain sets as extensions of predicates and to define the satisfaction relation.
In particular, phrases such as “value-assignment β assigns the set β(X) to the 2nd
order variable X” are meaningful in this context. But for Field, these formulations are
to be avoided. Rather, in ML, it has to be possible to formulate sentences like “value-
assignment β assigns the region β(X) to the 2nd order variable X”: think of (1)—this
is just the crucial idea.

Let me emphasize that from this point of view, the possible models for L2[B,Cong]
are, strictly speaking, neither s2- nor g2-structures. Rather, they are of the form 〈A,Λ, I〉,
where Λ is the set of all regions in A or, alternatively, a nonempty subset of the set of all
regions in A. This leads to structures which may be called n-s2- and, alternatively, n-
g2-structures. Now, (2) can be understood as expressing that Field preferred to interpret
L2[B,Cong] by using only n-s2-structures.

At first sight, this may seem to be a far-fetched interpretation of Field’s remarks
on “the complete logic of the part/whole relation”. From a systematic point of view,
though, it has its strenghts: it solves the problem given by (A); it fits to claims like (1); and
it delivers the categoricity results Field aims at, but is not just the (trivial) commitment
to a s2-semantics.

When it comes to the textual evidence provided by Field (1980), the distinction
between what I have called L2[B,Cong] and ML is, as far as I can tell, not explicitly
made.61 It is therefore difficult to pin down whether (A) or (B) is closer to Field’s
intentions. What may be more important, though, is that the second strategy also does
not really give an answer as to what the complete logic of the part/whole relation could be. On
the one side, if it is a set Σ of sentences from L2[B,Cong], presumably it is one which
has a n-s2-model. But this is compatible, for example, with all of the suggestions put
forward for such a Σ at the end of the first strategy. On the other side, if it is a set of
sentences from ML, Field (1980) does not give the slightest hint which one. And if the
complete logic of the part/whole relation is not set of sentences at all, I am completely lost.

With these—admittedly rather inconclusive—thoughts I close the section on Field
(1980). Although I still have no convincing interpretation of “the complete logic of the
part/whole relation” and “the complete logic of Goodmanian sums” at hand, I do not
view this section as a failure. For it should have made clear enough that different—
nonequivalent—interpretations of these phrases are admitted by Field’s book, and the

61 That is, almost nothing can be found concerning the specification of ML. We may assume that its
vocabulary contains “v”. But beyond this, there is, in particular, no information whether ML is a 2nd
order language or whether it contains set-theoretical vocabulary. In addition, it may be wondered how
theories formulated in ML could be suitable as semantic metatheories for L2[B,Cong] and H.

Theoria 65 (2009): 169-202



On 2nd Order Calculi of Individuals 201

metalogical concepts and results from the previous sections should have helped in
understanding that and how these interpretations differ from each other.
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