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1 Introduction

Conventional rule for the optimal provision of public goods claims that the
sum of marginal rates of substitution over all individuals must be equal to
marginal rate of transformation. However, a seminal contribution by Pigou
(1947) questioned the above statement when lump-sum taxation is not avail-
able for the government. In fact, he stressed on the risk of overprovision if the
deadweight loss from distortionary taxes is not taken into account. Atkinson
and Stern (1974) found another relevant issue in this debate: as long as pub-
lic good provision incentives the consumption of taxed goods, government
intervention can decrease the provision cost of public spending. Discussion
continues nowadays under different scenarios: arbitrary distorting taxation
(Wildasin, 1984), heterogenous agents (Konishi, 1993), or non competitive
labor markets (Aronsson and Sjogren, 2001).
A part of the debate around the public goods provision deals with the

optimal level of public good provided. Indeed, the controversy here is rather
on the quantity of public good than on the optimal rules from first order
conditions. Papers such as Wilson (1991), Chang (2002) or Gaube (2000)
highlight this topic using in many cases numerical examples (and counterex-
amples). The underlying idea of these papers is that using distorting taxes
means an optimal level of public goods below its first best level.
Optimal provision of public inputs has received less attention. Feehan and

Matsumoto (2000) study the use of benefit taxation to provide productive
public spending. Also Feehan and Matsumoto (2002) show the differences
between the first best and the second best rules in the provision of public
inputs. But nothing is said about the optimal level of public input to be
provided.
This paper aims to go beyond the paper by Feehan and Matsumoto (2002)

by obtaining some insights about the levels of public input provided under
different tax settings. We believe that particular features of productive public
spending deserve a specific treatment. Both economic growth implications
and social welfare consequences derived from the provision of public inputs
justify this interest.
We use a simple general equilibrium model where public spending yields

productive services to firms. Two different tax settings are available for
government: one is a lump-sum tax and other a per unit tax on labor. After
obtaining optimal rules for the provision of public inputs under each scenario,
a numerical simulation is carried out to compute the level of public spending
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provided. The numerical procedure we follow, described by Martinez and
Sanchez (2004), allows us not only to achieve the optimal values for public
input and tax rate, but also to qualify these results according to the degree of
precision we desire. At this point, our contribution takes into consideration
the restrictions facing real governments by choosing the fiscal menu.
In the first part of the paper, we solve the model and discuss the opti-

mality conditions for provision of public inputs. In such a way, we find that
social cost of providing public spending must consider not only the cost of
the public funds due to the existence of distortionary taxes, but also the
tax revenue effect that this kind of public expenditure generates. Moreover,
we prove that the production efficiency condition is satisfied in both cases.
In the second part of the paper, we find that the level of public input pro-
vided under a second best scenario is bigger than that corresponding to a
first best outcome. A battery of results relaxing the precision requirements
is also offered so that several combinations of fiscal menus can be used by
the government.
The structure of the paper is as follows. Section 2 presents the basic

characteristics of the model (adapted from Boadway and Keen, 1996). Next
section obtains the conditions for the optimal provision of public inputs.
Section 4 explains the intuition of the numerical procedure used in the sim-
ulation. Section 5 discusses the results. Finally, section 6 concludes.

2 The model

Let an economy be populated by one representative household whose utility
function is given by the form:

u (x, l) , (1)

where x is a private good used as numeraire and l is labor supplied. Properties
of u (x, l) are the standard ones to ensure a well-behaved function: strictly
monotone, quasiconcave and twice differentiable. Weak separably in x and
l is to be assumed1. Representative household faces the following budget
constraint:

x = (ω − τ) l − T, (2)

1Non-separability would add complexity into analysis without new relevant insights.
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where ω is the wage rate, τ the per unit tax on labor, and T is a lump-sum tax.
Household’s optimization problem consists of maximizing (1) subject to (2)
to yield labor supply l (ω − τ , T ), and indirect utility function V (ω − τ , T ).
It is assumed that lωN > 0 and lT > 0, where the net wage rate is denoted
by ωN = ω − τ 2.
Output in the economy is produced using labor services and a public

input g according to the following aggregate production function:

F (l, g) (3)

This function satisfies the usual assumptions: increasing in its arguments
and strictly concave. Output can be used costlessly as x or g. Labor market
is perfectly competitive so that wage rate is linked to marginal productivity
of labor:

ω = Fl [l (ω − τ , T ) , g] , (4)

where firms take g as given. It allows us to achieve a wage function such as
ω (g, τ , T ). Some results of comparative statics can be found now; they will
be used later:

ωg =
Flg

1− FlllωN
> 0 (5)

ωτ =
−FlllωN
1− FlllωN

> 0 (6)

ωT =
FlllT

1− FlllωN
< 0 (7)

The economic profits generated is equal to:

π (g, τ , T ) = F [l (ω (g, τ , T )− τ) , g]− l [ω (g, τ , T )− τ ]ω (g, τ , T ) (8)

Again, it is useful to obtain some results for later use:

πg = Fg − (FlllωNωg + Flg) l ≶ 0 (9)

πτ = (1− ωτ)FlllωN < 0 (10)

2Hereafter, a subscript is used for partial derivatives.
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πT = − lFlllT
1− FlllωN

> 0, (11)

where equilibrium condition in the labor market (4) and expression for ωT

have been used for obtaining the last equation. Note that the effect of the
public input on rents is ambiguous because g increases output (and hence,
the economic profits) but this type of productive public expenditure also
exerts a positive impact upon wage rate, reducing rents.
Revenue raised by government to finance public expenditure is:

g = τ l (ω (g, τ , T )− τ) + π (g, τ , T ) + T (12)

Note that all economic profits are taxed away by government because
they are efficient resources for public sector3. In such a way, we do not need
to qualify the public input as a factor-augmenting (using the nomenklature
of Feehan and Matsumoto, 2002), so long as the effects of rents arising by
constant returns to scale in all factors (including public input) have no con-
sequences on the indirect utility function.

3 First order conditions with lump-sum and
distorting taxes

In this section, we obtain the first order conditions for optimal provision of
public inputs in two different cases: with a lump-sum tax (τ = 0) and with a
distorting tax on labor (T = 0). The optimization problem of the government
for these two cases is as follows:

Max V (ω − τ , T )

s.t. : g = τ l (ω (g, τ , T )− τ) + π (g, τ , T ) + T , (13)

that is, the government chooses the values of g and T or τ to maximize the
representative household’s utility subject to budget constraint4.

3We establish here that the country is under-populated in order to avoid that a tax on
rents may suffice to finance a first-best level of public good (Wildasin, 1986).

4Wildasin (1986) demonstrates that it is relevant to distinguish between to maximize
the per capita utility or the total utility.
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First order conditions in the scenario with only lump-sum taxes are the
following ones:

VωNωg − µ+ µπg = 0 (14)

VωNωT + VT + µπT + µ = 0, (15)

where µ is the Lagrange multiplier. Since the tax is lump-sum, social and
private marginal utility of income coincide (VT = − µ = −λ, where λ is
the private marginal utility of income). Using Roy’s identity as well as the
expressions (7) and (11), optimal rule for the provision of the public input
can be written as follows:

VωNωg

λ
= 1− πg (16)

LHS of (16) are the benefits from one aditional unit of public input, while
RHS is the marginal cost of providing the public input. At this point, note
that marginal production cost of g is reduced by the revenue effect that the
provision of the public input yields through profit taxes. This a feature key of
the provision of public inputs, respect to the case where a pure consumption
public good is considered.
On the basis of (16), if (5), (9) and Roy’s identity are taken into con-

sideration, an important condition containing efficiency implications can be
derived:

Fg = 1 (17)

This is the production efficiency condition for the provision of public inputs.
It means that the production effects of the public input (its marginal pro-
ductivity) are equal to its marginal production cost.
Next we focus on the optimal provision of public inputs when distorting

taxes are used. In such a case, first order conditions for g and τ derived from
(13) are:

VωNωg − µ+ µτlωNωg + µπg = 0 (18)

(ωτ − 1)VωN + µl + µ (ωτ − 1) τ lωN + µπτ = 0, (19)
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where µ is the Lagrange’s multiplier. After some manipulation with equations
(18) and (19), using again Roy’s identity, and (6) and (10), second best
condition for the optimal provision of g can be written as follows:

VωNωg

λ
=

1

1− τlωN
l

(1− τ lωNωg − πg) (20)

In essence, the interpretation of equation (20) is the following. As before,
LHS are the marginal benefits received by household when an additional unit
of public input is provided. In other hand, two terms can be distinguished
in the RHS. The first one is the marginal cost of the public funds (MCPF ),
which is bigger than one under the assumption of lωN > 0. The second term
is the tax revenue effect that arises so long as g may affect positively or
negatively tax base through economic profits and wage rate; in such a way,
the indetermined sign of πg does not ensure that the marginal production cost
of the public input to be reduced through tax collection. By contrast, term
τ lωNωg unambiguously lowers the production marginal cost. Both terms of
RHS define the marginal cost of providing a public input (MCP ). Whereas
in the case of a consumption public good the MCPF and the MCP are
equal, the distinction is required when a public input is considered .
When expressions (5) and (8) are inserted into (20), manipulation gives

again the production efficiency condition (17). At this point we obtain a
result found firstly by Diamond and Mirrless (1971), and later confirmed by
Feehan and Matsumoto (2002). As is well-known, we have that production
effects of public inputs are equal to its marginal production cost, though dis-
tortionary (but optimally set) taxation is used. Since there are no differences
in terms of efficiency in production between lump-sum and distorting taxes,
condition (17) cannot be used to see what happens with the quantities pro-
vided of public input under each tax scenario. Hence, in the following section
we use a numerical approach to solve the equations systems defined by first
order conditions (14)-(15) and (18)-(19) plus government budget constraint.

4 Numerical simulation

Literature provides different approaches to solve numerically our theoretical
framework. One of the main methods is using the gradient in a derivative-
based methodology; this is the case of the well-known Newton’s procedure.
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On the other hand, a non-derivative methodology based on the multisection
of the initial set and on the evaluations of the objective function also can
be used. We have chosen this one (with a simpler implementation but also
theoretically-consistent) because it allows us to proxy the real government’s
behavior through the iterative process followed to find the optimal solution.
The different stages of this method, to be explained shortly, can be inter-
preted as different requirements have to be faced by policy-makers to design
taxes. Moreover, our methodology permits to answer simple questions that
politicians ussually ask to economists, such as what is the tax rate needed to
finance a determined level of public spending.
Roughly, the methodology we follow is based on Casado, Csendes and

García (2000), and consists of a subdivision of the initial decision variables
set. Then we select the points of the grid which satisfy the budget restriction
of the government with a determined precision in each stage5. This process
continues until the maximum previously-fixed precision is achieved. Whereas
Casado, Csendes and García (2000) do not consider different levels of preci-
sion (they use a comparison of values of the objective function as stopping
criteria), our numerical approach has been adapted to take the precision
which the restriction is satisfied into account as the primary criterium.
A brief formal description of the algorithm we use is next. First, we

describe all the elements which participate in the method. Let V be the
objective function we want to optimize:

V : FV × P ⊆ RN × RJ −→ R
(f, p) −→ V (f, p),

where FV is the set of feasible values for the decision variables (f); FV may
be one interval or the union of them. P is the set of parameter values (p) and
they will be fixed throughout all the process. N is the number of decision
variables and J the number of parameters. In the same way, let R be the set
of restrictions in our problem:

R : FV × P ⊆ RN ×RJ −→ RM

(f, p) −→ R(f, p)

where M is the number of restrictions. In addition, given > 0 and a set
Z ⊆ FV , we define the set of compatible values, BR( , Z), as a subset where

5The results we obtain in each stage could be interpreted as the solution of the problem
with the precision we have required.
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the restrictions are satisfied with a precision , i.e.:

BR( , Z) = {z ∈ Z | R(z, p) < }

Roughly, the problem we are interested in solving is:½
maxV (f, p)
f ∈ BR( , FV ), p ∈ P

(21)

In order to perform our numerical procedure, we define some instrumental
but essential parameters. As the resolution of the problem consists of using
different stages where we fix a precision and a number of subdivisions for
each interval, we set:

• Precision path: PG = [PG1, ..., PGST ]

• Subdivision path: NG = [NG1, ..., NGST ]

where ST is the number of stages. PG means the precision we require in
each stage and NG refers to the number of subdivisions of each interval we
use to obtain PG.
Finally, in the stage k ∈ {1, . . . , ST}, we define f̃ ∈ BR(PGk, FVk) as the

solution to the problem (21), that is, the point which satisfies the condition:

V (f̃ , p) > V (f, p), ∀f ∈ BR(PGk, FVk) (22)

For each new stage k+1, we form a new initial set based in the points which
satisfies the restriction with the precision we require in the previous stage,
that is the set FVk+1 is equal to BR(PGk, FVk).
More details on this numerical procedure can be found in Martinez and

Sanchez (2004). Moreover, they compare this methodology with the well-
known Newton-Raphson method, obtaining results in favor of our numerical
methodology.
In order to implement our numerical simulation, we distinguish two sce-

narios. As is said before, the first one comes from using lump-sum taxation.
The second one uses distortionary taxes to finance productive public spend-
ing. Functions and parameters used are defined next.
According to the above theoretical model, we assume the following util-

ity function: V (ω, t) = xa(L̄ − l(ω, t))1−a, where t refers to tax rate (both
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lump-sum and per unit tax on labor), a = 0.4 and L̄ is time endowment
of households and equal to 24. Production function we employ is F (l, g) =
l(ω, t)αg1−α, where α = 0.6. Initial set of values where numerical procedure
will begin its search is [0, 3] for t, [0.1, 8] for g in the distortionary tax set-
ting and [0.1, 37] for g in the lump-sum scheme6. Precision requirements we
impose for searching solutions is the parameters vector PG = [1, 10−2, 10−4]
. With the aim of achieving this precision, we use the next number of sub-
division of each interval NG = [30, 10, 10]. Routines used in the simulations
are available upon request.
Given these functions and parameters, we solve the lump-sum problem

-equations (14) and (15)- and the distortionary scenario -equations (18) and
(19). Obsviously, both cases employ government budget constraint.

5 Discussion of the results

Numerical simulation provides results for different levels of precision. Firstly,
we focus on the optimal solutions found after three stages with a precision
for the grid of 10−4. Table 1 shows details of the optimum under two tax
settings: lump-sum and distorting taxation. At least two comments can be
made in viewing these computations. The first one is a striking point: utility
level is bigger in a second best scenario than under a lump-sum tax setting.
So far we can only provide a tentative explanation; it is based on tax revenue
effect that the provision of public inputs may produce through the positive
impact of g on labor supply. Indeed, the RHS of expression (20) indicates
that the social marginal cost of providing g depends not only on the MCPF
but also on the tax revenue effect that may reduce the production marginal
cost of public input. Note that in the optimal rule for the provision of g with
lump-sum taxation -expression (16)-, this tax revenue effect is limited to πg,
whose sign in indetermined, while in the second best tax setting the positive
term τ lωNωg is found as well.

Insert Table 1

A second comment that is worth to note from Table 1 is the bigger level of
public input provided under labor taxes respect to the first best framework.
This issue is related with the debate about the difference between the first

6These intervals are large enough to obtain feasible solutions under each scenario.
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order conditions (for the provision of g) and the level of public input pointed
out in the Introduction. Again the tax revenue effect linked to distortionary
taxation have played a role, decreasing social marginal cost of providing the
public input.
Regarding labor market, the results are consistent. Representative indi-

vidual works more under a lump-sum scenario than when distorting taxes
are considered. Although Table 1 does not report on net wage, it is easy
to note that per unit taxes on labor lower gross wage and then desincetive
the labor supply. This fact supports a part of the above argument on the
relevance of the tax revenue effect. Indeed, differences in wages and labor
supply make explicit the consequences of distortionary taxation in terms of
deadweight loss; but what is also clear is that the magnitude of the revenue
effect involved through productive public spending will be high enough to
overshoot the tax burden excess.

Insert Table 2 and 3

Table 2 and 3 report the results we have obtained in the penultimate
stage (the second in our simulation) around the optimum value in a lump-
sum scenario and with distorting taxes, respectively. Given an interval, we
inform about its initial point (using subindex ini), final point (using subindex
end) and precision required in computation for each decision variable (t, g).
We report the compatible values found and the value of indirect utility func-
tion in those case. When no compatible values are found, the minimum of
the government restriction R is compared to the precision we have required
PG. This fact shows the trade-off between the precision of the results and
the ability of government to achieve an efficient result. Both tables are an
illustration of the multisection iterative process followed by the numerical
simulation. They show how relaxing the precision requirements by searching
optimal values, a bigger number of combinations of t and g satisfy govern-
ment budget constraint, and they can be considered as solutions of problem
(13). However, if these solutions are ranked by the utility they produced,
the optimal combinations provided in table 1 are those maximizing social
welfare.
From another point of view, Tables 2 and 3 allow us to give an idea about

limitations of the policy-makers in the real world. Governments are usually
subject to constitutional restrictions that force them to set tax rates inside a
determined interval. If the welfare-maximizing t is not included among the
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legislative possibilities of the policy-makers, government can proxy as close
as possible the tax rate to the optimum t, according to the utility derived
from each (t, g) pair. In such a way, we offer a battery of combinations of
(t, g) related to utility level achieved by each one.

6 Concluding remarks

This paper has dealt with an issue on which literature has not paid much
attention: the optimal level of public inputs under different tax settings.
Previous contributions have focused on the case of consumption public goods
or have discussed the optimal rules of productive public spending. However,
both social welfare implications of taxation and characterization of public
inputs as growth-enhacing public instruments drive to consider this issue as
relevant for policy-makers.
We have built a simple general equilibrium model where public inputs

provide productive services. Two different tax settings have been considered:
one with lump-sum taxation and other using per unit tax on labor. Firstly,
we have found the optimal conditions for the provision of public inputs under
each scenario. At this point, a distinction between the marginal cost of public
funds and the marginal cost of providing public inputs is required. The reason
for that is the tax revenue effect caused by the productive public spending
through increases in tax bases.
Secondly, a new numerical procedure described in Martinez and Sanchez

(2004) has been implemented to obtain values for tax rates and public input
maximizing social welfare. Methodology is based on an multisection itera-
tive process of the initial set that evaluates the representative agent’s utility
function (as objetive function), obtaining compatible values of tax rates and
public inputs under several precision requirements. More stages we consider,
more detailed values we will obtain for t and g.
Results show that utility achieved under a distorting tax setting is bigger

than when a first best scenario is considered. This may be caused by the tax
revenue effect linked to the productive public spending. Level of public input
provided is also higher with labor taxes than with lump-sum taxes. More-
over, a battery of non-optimal results is shown by comparing to the efficient
solution and by allowing some restrictions in the government’s performance.
This paper can be improved along several directions. Firstly, influence of

non-distorting taxes on profits upon the results in favor of the second best
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solution should be studied in a deeper way. Secondly, results obtained for
each stage of the numerical procedure can be used to measure the inefficiency
of non-optimal compatible values and how far they are in terms of social
welfare from the optimum values. Thirdly, we are interested in studying other
theoretical concepts described in the theorical framework (MCPF, MCP, etc)
and, in such a way, to determine the optimum value with a more itemized
criterium.

13



References

[1] Atkinson, A. B. and Stern, N. H. (1974), Pigou, taxation and public
goods, Review of Economic Studies 41, 119-128.

[2] Aronsson, T. and Sjogren T., (2001), Income taxation, commodity tax-
ation and the provision of public goods under labor market distortions,
FinanzArchiv, 59, 347-370.

[3] Boadway, R. and Keen, M. (1996), Efficiency and the optimal direction
of federal-state transfer, International Tax and Public Finance 3, 137-
155.

[4] Casado, L.G. , Csendes, T. and García,I. (2000) A New Multisection
Technique in Interval Methods for Global Optimization, Computing, 65
(3), 263-269.

[5] Diamond, P. A. and Mirrlees, J. A. (1971), Optimal taxation and public
production I-II, American Economic Review, 61, 8-27 and 261-278.

[6] Feehan, J. P. and M. Matsumoto (2000), Productivity-enhancing public
investment and benefit taxation: the case of factor-augmenting public
inputs, Canadian Journal of Economics 33 (1), 114-121.

[7] Feehan, J. P. and Matsumoto, M. (2002), Distortionary taxation and
optimal public spending on productive activities, Economic Inquiry, 40
(1), 60-68.

[8] Gaube, T. (2000), When do distortionary taxes reduce the optimal sup-
ply of public goods?, Journal of Public Economics 76, 151-180.

[9] Kolda, T. G., Lewis R. M., and Torczon, V. (2003) Optimization by
direct search: new perspectives on some classical and modern methods,
SIAM Review, 45 (3), 385-482.

[10] Konishi, H. (1993), A note on public good provision and commodity
taxes, The Economic Studies Quarterly 44 (2), 178-184.

[11] Martinez, D. and Sanchez, A. J. (2004), A new numerical methodology
to solve general equilibrium model. An application to optimal provision
of public inputs, Centro de Estudios Andaluces, mimeo.

14



[12] Neumaier, A. (2004) Complete Search in Continuous Global Optimiza-
tion and Constraint Satisfaction, Acta Numerica 2004 (A. Iserles, ed.),
Cambridge University Press.

[13] Pigou, A. C. (1947), A study in Public Finance, Third edition, Macmil-
lan: London.

[14] Wildasin, D. E. (1984), On public good provision with distortionary
taxation, Economic Inquiry 22, 227-243.

[15] Wildasin, D. E. (1986), Urban Public Finance, Harwood Academic.
Chur, Switzerland.

15



Tables

Table 1: Comparison of the optimum obtained in the different theorical
schemes
Theorical scheme Utility Public Input Tax Rates Labor Wages
Distorting1 7.3003 4.9711 0.1351 11.9644 0.4233
Lump sum2 6.8934 4.5551 0.0391 16.2896 0.3601

(1): R = 6.63*10−5; (2) R = 8.29*10−8
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Table 2: Lump sum tax setting. Around the optimum.
STAGE = 2 / 3 INTERVAL = 1 / 23

tini = 0.0001 tfin = 0.1001 BWt = 0.01
gini = 0.1001 gfin = 0.7001 BWg = 0.01

No compatible values found
Min R = 0.0929284 PG = 0.01

STAGE = 2 / 3 INTERVAL = 2 / 23
tini = 0.0001 tfin = 0.1001 BWt = 0.01
gini = 4.5001 gfin = 8.3001 BWg = 0.01

t g Vmax
0.0401 4.5701 6.88969
0.0501 4.9101 6.8225
0.0601 5.2401 6.7593
0.0701 5.5901 6.69609
0.0801 5.9101 6.63729
0.0901 6.2301 6.57775
0.1001 6.5501 6.5222

STAGE = 2 / 3 INTERVAL = 3 / 23
tini = 0.1001 tfin = 0.2001 BWt = 0.01
gini = 0.1001 gfin = 0.7001 BWg = 0.01

No compatible values found
Min R = 0.231506 PG = 0.01

STAGE = 2 / 3 INTERVAL = 4 / 23
tini = 0.1001 tfin = 0.2001 BWt = 0.01
gini = 4.5001 gfin = 11.3001 BWg = 0.01

t g Vmax
0.1001 6.5501 6.5222
0.1101 6.8701 6.46775
0.1201 7.1901 6.41554
0.1301 7.5101 6.36386
0.1401 7.8201 6.31608
0.1501 8.1301 6.26861
0.1601 8.4401 6.22329
0.1701 8.7501 6.17863
0.1801 9.0601 6.13545
0.1901 9.3701 6.09295
0.2001 9.6701 6.05314

STAGE = 2 / 3 INTERVAL = 5 / 23
tini = 0.2001 tfin = 0.3001 BWt = 0.01
gini = 0.1001 gfin = 0.4001 BWg = 0.01

No compatible values found
Min R = 0.3669 PG = 0.01

Source: Simulation with the conditions described above.
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Table 3: Distorting tax setting. Around the optimum.
STAGE = 2 / 3 INTERVAL = 1 / 30

tini = 0.0001 tfin = 0.1001 BWt = 0.01
gini = 0.1001 gfin = 7.1001 BWg = 0.01

t g Vmax
0.0001 3.1601 7.16566
0.0101 3.3801 7.16904
0.0201 3.6101 7.17654
0.0301 3.8301 7.18215
0.0401 3.9901 7.19618
0.0501 4.1701 7.20777
0.0601 4.3301 7.22184
0.0701 4.4701 7.23714
0.0801 4.5901 7.25315
0.0901 4.7001 7.26608
0.1001 4.8001 7.2785

STAGE = 2 / 3 INTERVAL = 2 / 30
tini = 0.1001 tfin = 0.2001 BWt = 0.01
gini = 0.1001 gfin = 7.5001 BWg = 0.01

t g Vmax
0.1001 4.8201 7.27903
0.1101 4.8601 7.28965
0.1201 4.9101 7.29694
0.1301 4.9401 7.30036
0.1401 4.9901 7.29968
0.1501 4.9801 7.29276
0.1601 4.9101 7.27622
0.1701 4.8701 7.25222
0.1801 4.7601 7.21989
0.1901 4.6301 7.16241
0.2001 4.4701 7.09824

Source: Simulation with the conditions described above.
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Table 4: (Cont.) Distorting tax setting. Around the optimum.
STAGE = 2 / 3 INTERVAL = 3 / 30

tini = 0.2001 tfin = 0.3001 BWt = 0.01
gini = 0.1001 gfin = 7.5001 BWg = 0.01

t g Vmax
0.2001 4.4501 7.09097
0.2101 4.2301 6.99536
0.2201 3.9901 6.88204
0.2301 3.7101 6.72404
0.2401 3.3101 6.48676
0.2501 2.8501 6.18171
0.2601 2.4301 5.85104
0.2701 1.9001 5.34797
0.2801 1.3001 4.64585
0.2901 0.7201 3.68484
0.3001 0.3701 2.80972

Source: Simulation with the conditions described above.
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