
VOTING FOR THE BEST AND AGAINST THE WORST

José Luis Garćıa–Lapresta(a), A.A.J. Marley(b), Miguel Mart́ınez–Panero(a)

(a) Dep. de Economı́a Aplicada, Grupo de Investigación PRESAD, Universidad de Valladolid.
Avda. Valle de Esgueva 6, 47011 Valladolid, Spain. E-mail: {lapresta,panero}@eco.uva.es
(b) Dep. of Psychology, University of Victoria, PO Box 3050 STN CSC, Victoria BC V8W 3P5,
Canada. E-mail: ajmarley@uvic.ca

Abstract

An increasing body of theoretical and empirical work on discrete choice considers a choice
design in which a person is asked to select both the best and the worst alternative in an
available set of alternatives, in contrast to more traditional tasks such as where the person is
asked to: select the best alternative; select the worst alternative; rank the alternatives. Here
we consider voting systems motivated by such “best-worst” choice; relate them to approval
and disapproval voting systems; and characterize a “best-worst” voting system in terms of a
set of axioms in the context of scoring rules.
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1 Introduction

Usually, voters find it difficult to linearly order a reasonable number n of feasible alternatives –

say, n ≥ 10. According to Dummett [16, p. 243],

“If there are, say, twenty possible outcomes, the task of deciding the precise order of

preference in which he ranks them may induce a kind of psychological paralysis in

the voter; and, for the tellers, the labour of reckoning the preference scores becomes

very tedious. We have, therefore, to devise new or modified procedures for use in

this case”1.

However, voters can easily (provided they are not indifferent between all the alternatives) se-

lect reliably the best and the worst alternative, and, perhaps, the p–best and q–worst alternatives

for “small” p and q.

Finn and Louviere [19] proposed, and studied, a discrete choice task in which a person selects

both the best and the worst option in an available (sub)set of alternatives. Since the publication
1Of course, the concern regarding “the labor of reckoning the preference scores” no longer carries much weight.
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of that paper, interest in, and use of, such best-worst choice tasks has been increasing, with

two recent empirical applications receiving “best paper” awards (Cohen [14]; Cohen and Neira

[15]). According to Marley and Louviere [28], best-worst tasks have a number of advantages

over traditional discrete choice tasks: 1) a single pair of best-worst choices contains a great deal

of information about the person’s ranking of options (e.g., if there are 3 items in a set, one

obtains the entire ranking of that set; if there are 4 items in a set, one obtains information on

the implied best option in 9 of the 11 possible non-empty, non-singleton subsets2; and if there

are 5 items in a set, one obtains information on the implied best option in 18 of the 26 possible

non-empty, non-singleton subsets); 2) best-worst tasks take advantage of a person’s propensity

to identify and respond more consistently to extreme options; and 3) best-worst tasks seem to

be easy for people.

No extensive comparison exists of best-worst methods versus more traditional methods, such

as selecting the best option or rating or ranking all of the options. However, the opinion of Flynn,

Louviere, Li, Coast and Peters [22] is that “Best-worst tasks provide a balance between relatively

inefficient traditional ‘pick one’ choice tasks and rating/ranking tasks which, although apparently

providing far more information on preferences [24], frequently induce behaviour which violates

the statistical assumptions inherent in these models [5, 8].”

Despite increasing use of the approach, Marley and Louviere [28] is the first presentation of

the theoretical properties of probabilistic models of best-worst choice. Here we develop theoreti-

cal properties of deterministic best-worst choice, and its generalizations, as a voting system. We

do this in the context of scoring rules, which are of major importance in the voting literature

(see Chebotarev and Shamis [12] for a referenced survey). In fact, Marley and Louviere [28]

present some basic results on the “optimality” of scoring rules in the estimation of parameters in

probabilistic models of best-worst choice. That work can be interpreted, in the voting context,

as assuming a restricted domain for the possible voting profiles. Here we approach the problem

deterministically and without domain restrictions.

As the title of the paper suggests, we focus our attention in characterizing a class of voting

systems within a tradition which came from the very beginning of modern Social Choice Theory.

2Let {a, b, c, d} be the set of options and suppose that we know that a is selected as best and d as worst. If we
now check each (sub)set of size 2, 3, 4 of {a, b, c, d} in turn, then we see that the subsets {b, c} and {b, c, d} are the
only ones where the best element is not determined either by the information that a is best or by the information
that d is worst.
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Indeed, as pointed out by Merlin [30], Arrow’s theorem can be understood as an axiomatization

of dictatorship. Given that Arrow’s theorem [1] is usually considered a negative result, May’s

theorem [29] (which characterizes simple majority) is commonly considered as the first charac-

terization theorem of voting theory. After May, a relevant issue in Social Choice Theory is to

find axiomatic characterizations of voting systems. For references, see Merlin [30] and Marchant

[27], among others. In this paper we present two axiomatic characterizations of 1–approval

1–disapproval voting (1–best 1–worst voting, in our scoring context).

The remainder of the paper is organized as follows. Section 2 defines various voting systems,

the most general of which we call ranked p–approval q–disapproval voting. As the name suggests,

when there are n available alternatives, in this voting system the voter is required to rank

order p approved alternatives from most approved (“best”) to least approved (“worst”) and q

disapproved alternatives from most disapproved (“worst”) to least disapproved (“best”), with

the constraints that the set of approved alternatives is disjoint from the set of disapproved

alternatives and 1 ≤ p + q ≤ n. Then Marley and Louviere’s best-worst choice corresponds

to 1–approval 1–disapproval voting. Section 3 introduces the standard scoring rules, i.e., those

for which the scores are all nonnegative, and Subsection 3.1 extends that concept to ranked

approval-disapproval scoring rules, which can be viewed as extended scoring rules in which

negative scores are allowed. Section 4 contains the characterization results. Finally, the paper

concludes with a Discussion in Section 5.

2 General Voting Systems

In this section we define various voting systems, the most general of which we call ranked

p–approval q–disapproval voting.

Suppose that each of m voters has to indicate an opinion concerning (each of) the n alter-

natives in a set X = {x1, . . . , xn}.

1. Approval voting allows each voter to approve of any number of alternatives k (1 ≤ k ≤
n − 1), where k is up to the voter. The natural social welfare rule assumes that the

alternative(s) with the largest number of approval votes is (are) the winner(s)3. Note that

3 For all the voting procedures and scoring rules that we consider, tie scores can occur. If this causes difficulty in

3



we could assume also that the alternative(s) with the smallest number of approval votes

is (are) the loser(s).

2. Disapproval voting allows each voter to disapprove of any number of alternatives k (1 ≤
k ≤ n − 1), where k is up to the voter. The natural social welfare rule assumes that the

alternative(s) with the smallest number of disapproval votes is (are) the winner(s). Note

that we could also assume that the alternative(s) with the largest number of disapproval

votes is (are) the loser(s).

Obviously, disapproval voting is equivalent formally – though not necessarily behaviorally

– to approval voting.

3. Approval-disapproval voting 4 allows each voter to approve of any number of alternatives

k (0 ≤ k ≤ n) and to disapprove of any number of alternatives l (0 ≤ l ≤ n) , where k

and l are selected by the voter, with the constraints that the set of approved alternatives

is disjoint from the set of disapproved alternatives, and 1 ≤ k + l ≤ n. The natural

social welfare rule assumes that the alternative(s) with the highest difference score – its

total approval votes minus its total disapproval votes – is (are) the winner(s). This voting

system is related to Yılmaz’s [34] trichotomous procedure in which each voter classifies

each alternative as “favorite” or “acceptable” or “disapproved”.

4. p–approval voting requires each voter to approve of the same fixed number, p, of alterna-

tives (1 ≤ p ≤ n− 1). The natural social welfare rule assumes that the alternative(s) with

the highest score is (are) the winner(s).

5. q–disapproval voting requires each voter to disapprove of the same fixed number, q, of

alternatives (1 ≤ q ≤ n−1). The natural social welfare rule assumes that the alternative(s)

with the lowest score is (are) the winner(s).

If we assume no indifference – i.e., no alternatives that a voter neither approves or dis-

approves – then we can interpret p–approval voting as equivalent to (n − q)–disapproval

selecting the appropriate number of alternatives (winning, losing, etc.), then some additional (normally random)
procedure is required to reach the final social decision.

4Approval-disapproval voting is called negative voting by Brams and Fishburn [11] and is related to yes-no
voting proposed by the same authors in [10]. These authors point out that it was first proposed by Boehm [7] and
then analyzed by Brams (see, for example, [9]) and Felsenthal [18]. It has also recently advocated by Hillinger
[25].A natural probabilistic model for approval-disapproval voting is a variant of the size-independent model of
approval voting (Falmagne and Regenwetter [17]). Basically, one extends that model by allowing approval of some
options and disapproval of others.
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voting; and q–disapproval voting as equivalent to (n− q)–approval voting.

6. p–approval q–disapproval voting, which we later call p–best q–worst voting, requires each

voter to approve of the same fixed number, p, of alternatives and to disapprove of the same

fixed number, q, of alternatives, with the constraints that the set of approved alternatives

is disjoint from the set of disapproved alternatives and 1 ≤ p + q ≤ n. The natural social

welfare rule assumes that the alternative(s) with the highest difference score – i.e., its total

approval votes minus its total disapproval votes – is (are) the winner(s).

7. Ranked p–approval q–disapproval voting5 is the extension of p–approval q−disapproval

voting where the voter is required to rank order the p approved alternatives from most

approved (“best”) to least approved (“worst”) and the q disapproved alternatives from

most disapproved (“worst”) to least disapproved (“best”), with the constraints that the

set of approved alternatives is disjoint from the set of disapproved alternatives and 1 ≤
p + q ≤ n.

8. Plurality6 requires each voter to indicate the most preferred (“best”) alternative. The

alternative(s) with the most votes is (are) the winner(s). Obviously, assuming no indif-

ference, plurality is equivalent formally – though not necessarily behaviorally – to each of

1–approval voting and (n− 1)–disapproval voting.

9. Antiplurality7 requires each voter to indicate the worst alternative. The alternative(s)

with the least number of negative votes is (are) the winner(s). Obviously, assuming no

indifference, antiplurality is equivalent formally – though not necessarily behaviorally – to

each of (n− 1)–approval voting and 1–disapproval voting.

10. Classic Borda rule8 requires each voter to rank order the alternatives from best to worst.

Then, for each voter, each alternative is assigned a score equal to the number of alternatives

worse than it, and the alternative(s) with the largest total score is (are) the winner(s).

5As for approval-disapproval voting, a natural probabilistic model for ranked p–approval q–disapproval voting
is a variant of the size-independent model of approval voting (Falmagne and Regenwetter [17]). Basically, one
extends that model by retaining the ranked information that underpins that model, plus allowing for the (ranked)
approval of some options and (ranked) disapproval of others.

6Sometimes called first past the post, the best of the best and most votes count.
7Sometimes called negative voting, inverse plurality rule, avoid the worst of the worst, blackball and blacklist.
8There are several ways to adjust the Borda rule when each voter is allowed to state a weak order (or complete

preorder) over the alternatives, i.e., indifferences are allowed but transitivity is retained (see Black [6]). We call
classic the case when such indifferences are not allowed.
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3 Scoring Rules

Assuming that each voter rank orders the alternatives, a scoring rule is a vector of scores

(s1, . . . , sn) ∈ IRn with s1 ≥ · · · ≥ sn and s1 > sn where, for each voter, s1 points are

assigned to the top-ranked alternative, s2 points to the second-ranked alternative, and so on.

The alternative(s) with the largest total score is (are) the winner(s).

Given a scoring rule with vector of scores (s1, . . . , sn), a, b ∈ IR such that a > 0, the

new scoring rule with vector of scores (s′1, . . . , s
′
n), where s′i = asi + b for all i = 1, . . . , n, is

equivalent to the previous one, in the sense they provide the same social outcomes.

A scoring rule (s1, . . . , sn) is standard9 if sn ≥ 0, otherwise, it is extended. Clearly, every

extended scoring rule (s1, . . . , sn) is equivalent (in the sense that they always provide the same

outcome) to the standard one (s′1, . . . , s
′
n), where s′i = si − sn. Even more, every scoring rule

(s1, . . . , sn) (standard or extended) is equivalent to a standard one (s′1, . . . , s
′
n) where s′1 = 1

and s′n = 0 – simply take s′i = (si − sn)/(s1 − sn).

The following examples give the scoring rules associated with various voting systems:

• p–approval voting: (1, . . . , 1, 0, . . . , 0), with p 1’s.

• q–disapproval voting10: (1, . . . , 1, 0, . . . , 0), with (n− q) 1’s.

• p–approval q–disapproval voting11: (2, . . . , 2, 1, . . . , 1, 0, . . . , 0), with p 2’s, (n− p− q) 1’s

and q 0’s.

• Plurality: (1, 0, . . . , 0).

• Antiplurality: (1, . . . , 1, 0).

• Classic Borda rule: (n− 1, n− 2, . . . , 1, 0).

For n = 2, 1–approval 1–disapproval voting coincides with both plurality and antiplurality.
9Notice that this definition differs from that of Woeginger [33].

10We introduced this voting system in a negative way, corresponding to the scoring rule (0, . . . , 0,−1, . . . ,−1)
with q scores of (−1). But as we note above, q–disapproval voting is formally equivalent to (n − q)–approval
voting.

11Initially this voting system is defined as an extended scoring rule (allowing negative scores) with associated
vector of scores (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1). Adding 1 to each score gives the equivalent standard scoring rule
that we present here.
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Notice that approval voting, disapproval voting and approval-disapproval voting are not

scoring rules. However, they can be understood as flexible scoring rules following Baharad and

Nitzan [2].

3.1 Ranked Approval-Disapproval Voting and Scoring Rules

As discussed in Section 1, usually voters find it difficult to linearly order a reasonable number n

of feasible alternatives. However, they can usually (provided they are not indifferent between all

the alternatives) select reliably the best and the worst alternative, and, perhaps, the (ranked)

p–best q–worst alternatives for “small” p and q. We therefore now discuss scoring rules for such

voting systems.

Let (α1, . . . , αp), (δ1, . . . , δq) be a pair of nonnegative score vectors12 such that α1 ≥ · · · ≥
αp ≥ 0 and δ1 ≥ · · · ≥ δq ≥ 0, where p ≥ 1, q ≥ 1 and p + q ≤ n. The (ranked) p–best

q–worst voting procedure associated with [α1, . . . , αp ; δ1, . . . , δq] is the voting system where, for

each voter, α1 points is assigned to that voter’s first-ranked alternative, α2 points to the second

ranked alternative, and so on; δ1 points is assigned to that voter’s last-ranked alternative, δ2

points to the next-to-last-ranked alternative, and so on. The alternative(s) with the highest

total score difference – i.e., the difference between the total α score and the total δ score for the

alternative – is (are) the winner(s).

In principle, assuming voters rank order all the alternatives, there exists a clear difference be-

tween the aforementioned system and standard scoring rules. However, [α1, . . . , αp ; δ1, . . . , δq]

can be viewed as an extended13 scoring rule

(α1, . . . , αp, 0, . . . , 0,−δq, . . . ,−δ1).

If we add δ1 to each term, we obtain the standard scoring rule

(α1 + δ1, . . . , αp + δ1, δ1, . . . , δ1, δ1 − δq, . . . , δ1 − δ2, 0).

In order to shed light on this dual aspect, we show some particular ranked best-worst voting

procedures and their translation into the scoring context.

• Plurality, defined by [1; 0], corresponds to the scoring rule (1, 0, . . . , 0) .
12We use α (resp., δ) as a reminder that the scores are for ranked approval (resp., disapproval) votes.
13Note that no negative score is allowed in standard scoring rules.
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• Antiplurality, defined by [0; 1], corresponds to the scoring rule

(0, . . . , 0,−1).

• Classic Borda rule, defined by [n− 1, n− 2, . . . , 1; 0], corresponds to the scoring rule (n−
1, n− 2, . . . , 1, 0).

• 1–best 1–worst, defined by [α; δ], corresponds to the scoring rule

(α, 0, . . . , 0,−δ). Notice that the case [α; α], α 6= 1, coincides with [1; 1] because their

respective scoring versions (α, 0, . . . , 0,−α) and (1, . . . ,−1) are both equivalent to the

same standard scoring rule (1, 1/2, . . . , 1/2, 0) . We will call the latter the basic 1–best 1–

worst voting system. Taking into account again their scoring versions, it is easy to see that

two 1–best 1–worst voting systems [α; δ] and [α′; δ′] are equivalent if and only if α′δ = αδ′.

In this way, if α 6= δ, then [α; δ] is essentially different to [1; 1].

Thus, mathematically, every (ranked) approval-disapproval voting system is equivalent to

an extended (alternatively, a standard) scoring rule. This fact will be crucial in the analysis of

properties and axiomatic characterization of some approval-disapproval scoring rules.

It is worth emphasizing that the above identification is within the mathematical framework

but not from a behavioral perspective. In particular, the use of ranked approval-disapproval

scoring rules in the mathematics does not entail that voters rank the alternatives. The same

happens, for instance, with plurality, where voters only indicate their best alternative (they do

not need to provide a ranking), but scoring rules are used in its axiomatic characterization (see

Richelson [32]).

4 Characterization of 1–Best 1–Worst Voting

In this section we analyze some properties of the 1–best 1–worst voting and give two characteri-

zations: one for the general case [α; δ] , and another one for the basic case [1 ; 1]. Our approach

follows that used in the fundamental paper of Young [36], where he proved that a scoring rule

is a social choice function characterized by the following axioms:

A Anonymity : There is an egalitarian consideration for the agents.

N Neutrality : There is a symmetric status for each alternative.
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R Reinforcement : If two disjoint subsets of voters have at least one common alternative among

their winners, then all such common alternatives keep on being winners for the joined set

of voters14.

C Continuity : If two disjoint sets of voters U and V select x and y as winners, respectively,

then x is a winner for the superset (nU) ∪ V for n sufficiently large15.

The Borda count was characterized by Young [35], who then characterized it also in the

scoring context (Young [36]) – namely, the Borda count is the only scoring rule with the cancel-

lation property: in any situation16 where every preference for alternative x over y for one voter

is balanced by another preference for alternative y over x for another voter, all the alternatives

win. Also see Merlin [30, Theorem 7] for a characterizations of the Borda rule by adding the

Condorcet loser property to those of Young [36].

Other researchers have used Young’s approach to characterize other scoring rules (or it is

possible to translate their results to this framework.) For example, Richelson [32] character-

ized plurality rule as the only scoring rule (i.e., verifying A, N, R and C) that also satisfies

independence of Pareto-dominated alternatives (or reduction, as appearing in Fishburn [20, p.

148]). Even more, Ching [13] demonstrated that continuity is redundant in the previous charac-

terization. On the other hand, Lepelley [26] provided an alternative axiomatization of plurality

by adding the strong Condorcet winner property to those of Young, and Merlin and Naeve

[31] achieve another characterization of plurality by introducing bottom-invariance as additional

property: “a voter cannot exclude a winner from the choice set by reshuffling her preferences

above this winner”. Taking into account the symmetry between plurality and antiplurality,

Merlin [30] points out that antiplurality can be characterized by introducing top-invariance as

additional property (see also Barberà and Dutta [4]). More recently, in a similar way, Baharad

and Nitzan [3] have developed necessary and sufficient conditions for antiplurality, and in this

case the additional property has been formulated as a minimal veto condition. In addition,

these authors have also proposed an alternative characterization of plurality rule with another

14This property is also considered by Fishburn [21] in his characterization of approval voting, and by Young
and Levenglick [37] in their characterization of Kemeny’s rule. For other names for this condition (consistency,
separability, etc.), see Merlin [30, page 95].

15In this axiom, for U a set of voters and their votes, (nU) means n copies of those voters and votes. In Young
[36] this axiom is introduced as a extension of a domain condition for social choice functions.

16A situation is a set consisting of one preference order for each voter (Gärdenfors [23]).
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veto-type condition.

Given the earlier successes of this approach, our goal is to develop properties of best-worst

voting that allow us to say that its associated scoring rule is determined by the fulfillment of

these conditions in addition of those proposed by Young. As pointed out before, we succeed in

this goal for general 1–best 1–worst voting [α; δ] and for the basic case [1; 1] ; the first requires

three conditions, the second a single condition, in addition to Young’s.

Now we develop three properties that, together with Young’s, are necessary and sufficient to

characterize 1–best 1–worst voting.

TSM Top Strict Monotonicity : If x is a non-unique winner in a situation where at least one

voter considers x to be the best alternative, then x would not be a winner in the situation

obtained where just this voter changes his opinion only about x (preserving his pairwise

preferences about the other alternatives).

BSM Bottom Strict Monotonicity : If x is a non-unique winner in a situation where at least

one voter does not consider x to be the worst alternative, then x would not be a winner

in the situation obtained where just this voter changes his opinion about x, and decides

that x is the worst alternative in the second situation (preserving his pairwise preferences

about the other alternatives).

IMA Independence of Middle Alternatives: The winner(s) in a situation are preserved if one or

more voters change their opinions about alternatives other than those they have selected

as their personal best and worst (i.e., if pairwise preferences containing the best or the

worst alternative do not change in a new situation, then the winner(s) are the same).

Theorem 1. An extended scoring rule satisfies TSM, BSM and IMA if and only if it is a

1–best 1–worst voting system.

Proof. Obviously, every 1–best 1–worst voting system satisfies the required properties.

For sufficiency, we consider the cases n = 2, 3 in detail so that the reader will more easily

understand the general case n ≥ 4.

Notice that if n = 2, just the definition of scoring rule entails s1 > s2. Thus, in this particular

case plurality and antiplurality rules, as well as 1–best 1–worst voting system coincide.
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If n = 3, IMA trivially holds, and it will be proven that TSM and BSM entail s1 > s2 > s3.

Consider the situation:

Voter 1 Voter 2 Voter 3
x1 x2 x3

x2 x3 x1

x3 x1 x2

It is clear that all the alternatives obtain the same total score: s1 + s2 + s3, so all of them

are winners.

Now we modify the previous situation in two cases:

1. The first voter interchanges the first and the second alternatives, and the opinions of the

other voters do not change:

Voter 1 Voter 2 Voter 3
x2 x2 x3

x1 x3 x1

x3 x1 x2

According to TSM, now x1 is not a winner. Thus, the total score of x1, 2s2 + s3, is

smaller than the total score of at least other alternative. Taking into account that the

total score of x2 is 2s1 + s3, and the total score of x3 is s1 + s2 + s3, then we have that

either 2s2 + s3 < 2s1 + s3 or 2s2 + s3 < s1 + s2 + s3 . In either case, s1 > s2.

2. The third voter interchanges the second and the third alternatives, and the opinions of

the other voters do not change:

Voter 1 Voter 2 Voter 3
x1 x2 x3

x2 x3 x2

x3 x1 x1

According to BSM, now x1 is not a winner. Thus, the total score of x1, s1 + 2s3, is

smaller than the total score of at least other alternative. Taking into account that the

total score of x2 is s1 + 2s2, and the total score of x3 is s1 + s2 + s3, then we have that

either s1 + 2s3 < s1 + 2s2 or s1 + 2s3 < s1 + s2 + s3 . In either case s2 > s3.
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Note that the obtained extended scoring rule, (s1, s2, s3), where

s1 > s2 > s3 , is equivalent to (s1 − s2, 0, s3 − s2) which defines the

1–best 1–worst voting system [α ; δ], where α = s1 − s2 and δ = s2 − s3.

Finally, suppose that n ≥ 4 and consider an extended scoring rule with associated vector of

scores (s1, . . . , sn) such that s1 ≥ · · · ≥ sn and s1 > sn.

In order to prove s1 > s2 = · · · = sn−1 > sn , consider the following situation where, for

k = 1, .., n − 1, the elements in row k + 1 are obtained from row k by moving the element in

column 1 in row k to column n in row k + 1, and moving the element in column j, j 6= 1, in

row k to column j − 1 in row k + 1.

Voter 1 Voter 2 · · · Voter n− 1 Voter n

x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xk xk+1 · · · xk−2 xk−1

xk+1 xk+2 · · · xk−1 xk

· · · · · · · · · · · · · · ·
xn−1 xn · · · xn−3 xn−2

xn x1 · · · xn−2 xn−1

It is clear that all the alternatives obtain the same total score:

s1 + · · ·+ sn, so all of them are winners17.

Now we modify the previous situation in the following cases:

1. The first voter interchanges the first and the second alternatives, and the opinions of the

other voters do not change:

Voter 1 Voter 2 · · · Voter n− 1 Voter n

x2 x2 · · · xn−1 xn

x1 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xn−1 xn · · · xn−3 xn−2

xn x1 · · · xn−2 xn−1

According to TSM, now x1 is not a winner. Thus, the total score of x1, 2s2 +s3 + · · ·+sn,

is smaller than the total score of at least one other alternative. Taking into account that the
17Note that it is also true for any social choice function satisfying anonymity and neutrality.
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total score of x2 is

2s1 + s3 + · · · + sn, and that of each of x3, . . . , xn is s1 + · · · + sn, then we have that

either 2s2 + s3 + · · ·+ sn < 2s1 + s3 + · · ·+ sn or 2s2 + s3 + · · ·+ sn < s1 + · · ·+ sn. In

either case, s1 > s2.

2. The second voter interchanges x1 and xn, and the opinions of the other voters do not

change:

Voter 1 Voter 2 · · · Voter n− 1 Voter n

x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xn−1 x1 · · · xn−3 xn−2

xn xn · · · xn−2 xn−1

According to BSM, now xn is not a winner. Thus, the total score of xn, which is s1 +

· · · + sn−2 + 2sn, is smaller than the total score of at least one other alternative. Taking

into account that the total score of x1 is s1 + · · · + sn−2 + 2sn−1, and that of each of

x2, . . . , xn−1 is s1 + · · ·+ sn, then either s1 + · · ·+ sn−2 + 2sn < s1 + · · ·+ sn−2 + 2sn−1

or s1 + · · ·+ sn−2 + 2sn < s1 + · · ·+ sn. In either case sn−1 > sn.

3. The first voter interchanges xk and xk+1, successively for k = 2, . . . , n−2, and the opinions

of the other voters do not change:

Voter 1 Voter 2 · · · Voter n− 1 Voter n

x1 x2 · · · xn−1 xn

· · · · · · · · · · · · · · ·
xk+1 xk+1 · · · xk−2 xk−1

xk xk+2 · · · xk−1 xk

· · · · · · · · · · · · · · ·
xn x1 · · · xn−2 xn−1

According to IMA, all the alternatives remain winners. In particular, xk and xk+1 should

have the same score. Then,

(s1 + · · ·+ sn)− sk + sk+1 = (s1 + · · ·+ sn) + sk − sk+1.

Consequently, sk = sk+1 for k = 2, . . . , n− 2, i.e., s2 = s3 = · · · = sn−1.
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Thus, we have s1 > s2 = s3 = · · · = sn−1 > sn. This extended18 scoring rule, (s1, s2, . . . , sn),

is equivalent to the standard (s1− s2, 0, . . . , 0, sn− s2) which defines the 1–best 1–worst voting

system [α ; δ], where α = s1 − s2 and δ = s2 − sn.

Proposition 1. TSM, BSM and IMA are independent.

Proof.

1. Plurality satisfies TSM and IMA, but not BSM.

2. Antiplurality satisfies BSM and IMA, but not TSM.

3. The classic Borda rule satisfies TSM and BSM, but not IMA.

Now we present a characterization of the basic 1–best 1–worst voting system [1 ; 1] by means

of one additional property, in addition to Young’s. This additional condition is related to Young’s

[35] cancellation condition.

TBC Top Bottom Cancellation: In any situation where each alternative considered the best by

one voter is cancelled by the same alternative considered the worst by another voter, all

the alternatives win.

Theorem 2. An extended scoring rule satisfies TBC if and only if it is the basic 1–best 1–worst

voting system [1 ; 1].

Proof. Obviously, [1 ; 1] satisfies TBC.

For sufficiency, notice that if n = 2, just the definition of scoring rule entails s1 > s2, and

again in this case, plurality, antiplurality and basic 1–best 1–worst voting system coincide.

Now, if n ≥ 3 , consider the following situation:

Voter 1 Voter 2
x1 xn

x2 x2

· · · · · ·
xn−1 xn−1

xn x1

18Notice that no sign conditions on the scores are obtained from the imposed properties.
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The total score of each of x1 and xn is s1 + sn, and that of xi,

i = 2, . . . , n− 1, is 2si. By TBC all the alternatives win, and so all of them have the same total

score: s1 + sn = 2s2 = · · · = 2sn−1.

This extended scoring rule, (s1,
s1+sn

2 , . . . , s1+sn
2 , sn), is equivalent to

(s1− sn, s1−sn
2 , . . . , s1−sn

2 , 0), and to (2, 1, . . . , 1, 0) , and to (1, 0, . . . , 0,−1), which is just [1 ; 1].

5 Discussion

The general characterization that we have given for the 1–best 1–worst voting system is related to

that of plurality (respectively, antiplurality) by bottom invariance (respectively, top invariance)

plus the standard conditions (see Barbera and Dutta [4] and Merlin [30]). However, in Merlin

[30] “top” means above the winner, whereas our “top” (i.e., “best”) always means a winner

in the first position of the voters’ preference (the same applies, in a symmetric manner, for

“bottom”). In fact, our top and bottom conditions are somehow connected to May’s [29] positive

responsiveness, and our IMA should be more properly understood as an invariance condition

in the sense of Merlin [30].

We have assumed that voters can easily select both their “best” and their “worst” option

in a consistent fashion. However, one might ask whether this is the case. This is a legitimate

question, which is partially answered, in a positive manner, by the success of the best-worst

method in discrete choice experiments (see Section 1). Also, to the extent that voters can

respond reliably in elections that decide the winner by the number of best votes (plurality) and

those that decide by the number of worst votes (antiplurality), one might expect that they can

vote reliably in elections that use 1–best and 1–worst voting. Nonetheless, if each voter may

have a partial order, rather than a rank order, over the options, then it may be preferable not

to ask a voter to select the best, worst, or best and worst candidate(s), as several candidates

may be tied – either as best or as worst – in the voter’s partial order. In such a case, approval-

disapproval voting seems appropriate, and an interesting open problem (as far as we know) is

to characterize that voting method.
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