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DEPENDENCE BETWEEN VOLATILITY PERSISTENCE, 
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ABSTRACT
In this paper the dependence between volatility persistence, kurtosis and degrees of freedom from Student’s t-distribution will be 
presented in estimation alternative risk measures on simulated returns.
As the most used measure of market risk is standard deviation of returns, i.e. volatility. However, based on volatility alternative 
risk measures can be estimated, for example Value-at-Risk (VaR). There are many methodologies for calculating VaR, but for 
simplicity they can be classified into parametric and nonparametric models. In category of parametric models the GARCH(p,q) 
model is used for modeling time-varying variance of returns.
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RESUMEN
En este trabajo la dependencia de la  persistencia de la volatilidad, kurtosis y grados de liberad de una Distribución T-Student será 
presentada como una alternativa para la estimación de medidas de riesgo en la simulación de los retornos.
La medida más usada de riesgo de mercado es la desviación  estándar de los retornos, i.e. volatilidad. Sin embargo, medidas 
alternativas  de  la  volatilidad pueden  ser   estimadas,  por  ejemplo el  Valor-al-Riesgo  (Value-at-Risk,  VaR).  Existen  muchas 
metodologías para calcular VaR, pero por simplicidad estas pueden ser clasificadas en modelos paramétricos y no paramétricos . 
En la categoría de modelos paramétricos el modelo GARCH(p,q) es usado para modelar la varianza de retornos que varían en el 
tiempo.

1. INTRODUCTION

It isn’t easy to estimate VaR when stochastic  process which generates distribution of returns  is not known. 
Unfortunately the assumption that the returns are independently and identically normally distributed is often 
unrealistic. Furthermore, empirical research about financial markets reveals following facts about financial time 
series:

 financial return distributions are leptokurtic, i.e. they have heavy and fat tails,
 equity returns are typically negatively skewed and
 squared return series shows significant autocorrelation, i.e. volatilities tend to cluster

According to first two facts it is important to examine which probability density function capture heavy tails and 
asymmetry  the  best.  According  to  the  third  fact  it  is  important  to  correctly  specify  conditional  mean and 
conditional variance equations from GARCH family models.  Therefore,  high kurtosis exists within financial 
time series of high frequencies (observed on daily or weekly basis). This confirms the fact that distribution of 
returns generated by GARCH(p,q) model is always leptokurtic, even when normality assumption is introduced.
It is important to note that kurtosis is both a measure of peakdness and fat tails of the distribution.

Hence,  in  this  paper  distributional  properties  of  returns  generated  using  GARCHH(1,1)  model  with  high 
volatility persistence will be compared to distributional properties of returns generated by the same model but 
with low volatility persistence.  The effect  between differences  in distributional properties on alternative risk 
measures will be also examined.

2. KURTOSIS OF GARCH(1,1) PROCESS
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If it is assumed GARCH(1,1) process:3
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the second moment of innovation process { }tε  equals:
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while the fourth moment is given as:
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From covariance stationary condition of GARCH(1,1) process, and strictly positively conditional variance:

0

01

0

11

>
>−−

α
βα

, (4)

follows that the second moment of { }tε  process exist. To assure the existence of the fourth moment, apart from 

conditions in (4), it is necessary in relation (3) to satisfy this restriction:
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Since kurtosis is defined as:
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then expression (6) becomes:
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After some rearrangement in (7) we can write:
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From relation (8) follows that distribution of returns generated from GARCH(1,1) process always results in 
excess kurtosis, i.e. Fisher's kurtosis ( 3k > ) even normality assumption is introduced, if and only if conditions 

in  (4)  are  satisfied.4 These  conditions  also  could  be  satisfied  when  parameter  01 =α .  Only  in  that  case 

3 Engle assumes multiplicative structure of innovation process.
4 Normality  assumption  is  often  introduced,  because  the  parameters  are  estimated  using  maximum likelihood  method  (MLE).  When 
normality assumption is not satisfied estimates are called quasi-maximum likelihood estimates, and robust standard errors should be used.
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innovations distribution would be normally shaped ( 3k = ). Therefore, the kurtosis is very sensitive on value of 

parameter 1α .

Empirical research also shows that kurtosis increases much intensively with larger parameter 1α  in comparison 

to parameter 1β .

3. DEGREES OF FREEDOM ESTIMATION

Generally, there are three parameters that define a probability density function: (a) location parameter, (b) scale 
parameter and (c) shape parameter. The most common measure of location parameter is the mean. The scale 
parameter measure variability of probability density function (pdf), and the most commonly used is variance or 
standard  deviation.  The  shape  parameter  (kurtosis  and/or  skewness)  determines  how  the  variations  are 
distributed about the location parameter.

If the data are heavy tailed, the VaR calculated using normal assumption differs significantly from Students t-
distribution. Therefore,  we find that  kurtosis and degrees of freedom from Student's  distribution are closely 
related.

Probability density function of noncentral Student t-distribution is given as:
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where µ  is location parameter, β  scale parameter and df  shape parameter, i.e. degrees of freedom, and ( )⋅Γ  

is  gamma  function.  Standard  Student's  t-distribution  assumes  that  1,0 == βµ ,  with  integer  degrees  of 
freedom. However, degrees of freedom can be estimated as non-integer, relating to kurtosis:
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From relation  (10)  it's  obvious  that  standard  t-distribution  has  heavier  tails  than  normal  distribution  when 
30df4 ≤< .  Hence,  if  empirical  distribution is  more  leptokurtic  estimated  degrees  of  freedom would be 

smaller.

The second and fourth central moment of function (9) are defined as:
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with Fisher's kurtosis:
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Therefore, we may apply method of moments and get consistent estimators:
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where the sample variance is biased estimator of β .

To get unbiased estimator of standard deviation we use correction factor:
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which is equivalent to:

f̂d
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In practice, the kurtosis is often larger than six, leading to estimation of non-integer degrees of freedom between 
four and five. However, kurtosis will depend on volatility persistence. Volatility persistence is defined as the 

sum of parameters 11 βα +  in GARCH(1,1) model.

If we rearrange condition variance equation of GARCH(1,1) model as follows:
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then the sum of parameters 11 βα +   shows the time which is needed for shocks in volatility to die out. If this 

sum is close to 1 long time is needed for shocks to die out. However, if the sum is equal to unity the covariance 
stationary condition is not satisfied and GARCH(1,1) model follows integrated GARCH process of order one, 
i.e. IGARCH(1,1).

If  we  substitute  t
2
t

2
t v−= εσ  than  stationary  condition  occurs  from  ARMA(1,1)  representation  of 

GARCH(1,1) model:
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4. EFFECT OF VOLATILITY PERSISTENCE ON RISK MEASURES ESTIMATION

In this paper two GARCH(1,1) process are simulated. One with volatility persistence of 90% ( 0001.00 =α , 

1.01 =α ,  8.01 =β ),  and  the  other  with  volatility  persistence  of  70%  ( 0001.00 =α ,  2.01 =α , 

5.01 =β ).  Based on generated returns  from GARCH(1,1) models,  excess kurtosis,  degrees  of  freedom of 

Student's t-distribution and standard deviation correction factors are presented in table 1.

From table 1. it's obvious when volatility persistence is high (long time is needed for shocks in volatility to 
disappear) the excess kurtosis is also high, indicating that distribution of returns is heavy tailed. Therefore, the 
assumption of Student's t-distribution with 9.5 degrees of freedom would be much appropriate in comparison to 
normal distribution assumption.
When  volatility  persistence  is  low  (70%)  the  Student's  t-distribution  can  be  approximated  with  normal 
distribution as degrees of freedom becomes larger, and no correction of standard deviation is needed (correction 
factor converges to unity).
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Table 1: Volatility persistence, excess kurtosis, degrees of freedom with correction factors based on 
simulated returns of generated GARCH(1,1) models

volatility 

persistence

excess 

kurtosis

degrees of 

freedom

correction factor of 

standard deviation

70%

90%

0.141

1.082

46.5

9.5

0.978

0.889

Simulation results of generated GARCH(1,1) processes are presented on figure 1.
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Figure 1: Generated GARCH(1,1) processes with conditional standard deviations

From figure 1. it can be shown the difference of generated GARCH(1,1) processes. Therefore, when volatility 
persistence is 90% reaction of volatility on past market movements are low, and shocks in volatility disappears 
slowly. When volatility persistence is 70% reaction of volatility on past market movements are much intensively, 
and shocks in volatility disappears quickly.

In table 2. sample quantiles, sample moments and "Jarque-Bera" normality tests are presented for two generated 
GARCH(1,1) processes.

Testing results in table 2. shows that normally distributed assumption can not be accepted at empirical p-value 
less than 1% within volatility persistence of 90%. Hence, we conclude that in case of high volatility persistence 
Student's t- distribution would be more adequate with non-integer degrees of freedom estimated in table 1.

Correctly specified conditional distribution is very important, not only in estimation parameters in GARCH(1,1) 
model, but also in risk management. Based on returns distribution assumption different risk measures can be 
defined.
Standard deviation of returns, i.e. volatility, is the most used risk measure based on alternative risk measure can 
be calculated, such as VaR, CVaR. Even so, VaR is proposed, by Basel Committee on Banking Supervision in 
1996, as the basis for calculation of capital requirements, within establishing banks internal risk models.
VaR is defined as the maximum potential loss of financial instrument with a given probability (usually 1% or 
5%) over a certain time period.
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Table 2: Sample quantiles, sample moments and JB-normality test of two generated GARCH(1,1) 
processes

Volatility persistence of 90% Volatility perzistence of 70%
Sample Quantiles: 
   min       1Q   median      3Q     max 
-0.0729 -0.0100  0.00147  0.0131  0.08234

Sample Moments: 
     mean     std skewness kurtosis 
 0.001443 0.01871 -0.02773    4.082

Sample Quantiles: 
  min       1Q     median     3Q     max 
-0.105 -0.0195  -0.000696  0.0204 0.09091

Sample Moments: 
       mean     std skewness kurtosis 
 -0.0000607 0.03121 -0.08823    3.141

Null Hypothesis: data is normally distributed
             
Test Stat 48.906
  p.value  0.000

Dist. under Null: chi-square with 2 df.
   Total Observ.: 1000

Null Hypothesis: data is normally distributed
                 
Test Stat 2.1238
  p.value 0.3458

Dist. under Null: chi-square with 2 df.
   Total Observ.: 1000

When normality assumption is introduced VaR can be estimated as:

( ) ttt zVaR σµα += . (18)

In relation (18) α  is given probability, z  is standardized value, tµ  is conditional mean and tσ  is conditional 

standard deviation. As the conditional mean and conditional standard deviation are time varying, they can be 
described using GARCH(1,1) model. In this paper it is assumed that conditional mean equals zero.

When assumption of Student's t-distribution is introduced VaR can be calculated as:

( )
df

2df
tVaR t

df
tt

−⋅+= σµα α . (19) 

In relation (19) dftα  is critical value of t-distribution depending on given probability and estimated degrees of 

freedom, while ( ) df/2df −  is correction factor for unbiased standard deviation estimation from sample.

Based on Value-at-Risk another risk measure can be defined - Conditional  Value-at-Risk (CVaR).  CVaR is 
expected loss (negative return) under Value-at-Risk region:

( ) ( )[ ]αα tttt VaRrrECVaR ≤= . (20)

According to definition (20) it is evident this relation:

( ) ( )αα tt VaRCVaR ≤ . (21)

Therefore, CVaR is conditional expectation under interval ( ) ]αtVaR,∞− :

( )∫
∞−

z

dxxxf , (22)

where z  is left percentile of distribution, when normality assumption is introduced.

Conditional distributions of returns generated from GARCH(1,1) processes, with corresponding risk measures 
are presented on figure 2.
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Figure 2 Conditional distributions of returns with corresponding risk measures at probability level of 5%

Risk measures of two conditional distributions of returns at 5% probability level are also given in table 3. From 
table 3. it can be concluded that risk measures under distribution with heavier tails (distribution generated using 
GARCH(1,1) process with volatility persistence of 90%) are much higher in comparison to distribution which is 
generated using GARCH model with volatility persistence of 70%. This confirms that Student's t-distribution is 
more adequate in risk estimation when fat tails are present. These risk measures can reach more extremely values 
at lower probability level, i.e. 1%.

Table 3: Corresponding risk measures of two generated conditional distributions of returns

Risk 

measures

Distribution of returns generated 

using GARCH(1,1) model with 90% 

volatility persistence

Distribution of returns generated 

using GARCH(1,1)  model with 70% 

volatility persistence
VaR

CVaR

max Loss

-0.0490300

-0.0633653

-0.1129725

-0.02948700

-0.03480367

-0.05038104

5. CONCLUSION REMARKS

If the data (returns) are heavy tailed, the VaR calculated using Normal assumption differs significantly from 
Student's t-distribution. The fact that kurtosis and degrees of freedom from Student's distribution are closely 
related is used in estimation procedure of GARCH(1,1) model.  The comparison procedure of Value at Risk 
estimation is established with assumption that returns follows extreme value distribution, precisely Student's t-
distribution with non-integer degrees of freedom.

By forecasting Value at Risk investor can protect himself "a priori" from estimated market risk, using financial 
derivatives, i.e. options, forwards, futures and other instruments. In that sense we find financial econometrics as 
the most useful tool for modeling conditional mean and conditional variance of nonstationary financial time 
series, i.e. time series with high frequencies.
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