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Resumen

Este articulo computa el sesgo de segundo orden para el estimador de variables
instrumentales simétricamente distribuido (SNIV) utilizando expansiones asintoticas de
Edgeworth tanto para el estimador como para el valor propio minimo. El estimador fue
propuesto por Alonson-Borrego y Arellano (1999) como un estimador alternativo para
el estimador de maxima verosimilitud con informacién limitada (LIML). Sin embargo,
sus resultados se basan en simulaciones de Monte Carlo. El articulo rechaza dicha
conclusion mostrando que el sesgo de segundo orden de SNIV es similar al de 2SLS,
mientras que LIML es insesgado.

Abstract

This paper provides the second order bias for the Symmetrically Normalized
Instrumental Variable Estimator (SNIV), using Edgeworth expansions for both the
estimator and the minimum eigenvalue. SNIV was proposed by Alonso-Borrego and
Arellano (1999) as an alternative for the Limited Information Maximum Likelihood
Estimator (LIML), based solely on simulations. The paper shows that second order
biases of SNIV and 2SLS are similar meanwhile LIML is second order unbiased.
Previous results can be obtained in a specific design: small number of strong
instruments, where biases of 2SLS, SNIV, and LIML are zero.

I would like to thank the comments and suggestions of an anonymous referee. E-mail:
ralfaro@bcentral.cl.




1 Introduction

There is an extensive literature in econometrics analyzing the properties of IV estimators in large
samples. These properties include, for example, the higher-order bias (e.g., see Nagar (1959),
Sawa (1969), Fuller (1977), Phillips (1985) and Ullah (2004)), and Mean Squared Error (MSE)
(Donald and Newey (2001) and Hahn, Hausman and Kuersteiner (2004)). The analysis can also
be conducted under different asymptotic approximations (Bekker (1994), Newey (2004), Hansen,
Hausman and Newey (2005) and Chao and Swanson (2005)).

When the endogenous variables are jointly normally distributed, and only one equation is
specified, the efficient estimator is the Limited Information Maximum Likelihood (LIML). LIML
is not affected by the normalization on the coefficients of the endogenous variables. Alonso-
Borrego and Arellano (1999) propose an alternative estimator to LIML, which is also invariant to
this normalization, in the context of dynamic panel data models. They name it as Symmetrically
Normalized Instrumental Variable (SNIV) estimator. Brown (1960) introduces this estimator for
the simultaneous equations problem, and Hillier (1990) studies its properties.

The difference between LIML and SNIV estimators is that LIML uses the variance-covariance
matrix of the error terms as a weight for the endogenous variables, whereas SNIV uses the identity
matrix. This difference in weights is irrelevant in large samples. LIML and SNIV estimators are
both consistent and asymptotically normally distributed.

Using a second order approximation, I find that the SNIV estimator has higher order bias
and therefore it is likely to perform worse than LIML in finite samples. Monte Carlo experiments
agree with this theoretical results. The size of bias for SNIV is similar to the bias obtained by
Nagar (1959) for the 2SLS estimator.



2 Model and Estimators

For simplicity I consider a problem with one explanatory variable which is also endogenous.

Yi = Bx; + e, (1)

i=1,...,n. A K x 1 set of valid instruments (Z) for the endogenous variable x is available. Z
is not correlated with the error term (e), E(Z'z) # 0, and E(ZZ’) has a rank of K.

The parameter J can be estimated by the 2SLS estimator

(> iy Ziﬂ?i)/ (> Zizz{)il (>ieq zivi) .
(> iey Zixi), (>oiey Zizz{)_l (> i zimi)

Basrs =

Following the current literature (see, e.g., Staiger and Stock (1997)) I will say that the instruments
are weak if the correlation between the instruments and the endogenous variables is small. A
measure for weakness is the concentration parameter, that for this particular case has the same
information than the first-stage population R2.

The model (1) can be alternatively written as follows

T =YY + w, (2)
where v =1/, and w; = —e; /. 2SLS in (2) gives

(Ooiy zay) (i zi2) ™ (D zii) _
(i zi) (i zi2l) (0 zivn)

YosLs =

Note that in general BQSLS # 1/425Ls, so 2SLS is not invariant to normalization. If the specifi-
cation is correct, however, the differences between the BQSLS (forward) and the 42515 (reverse)
estimators are due to the sampling error. This fact is exploited by Hahn and Hausman (2002).
They use (ﬁgs s — 1/%2srs) to derive a new specification test.

For comparison, I consider the Least Squares Estimator (LS) of the model

die a:f

Brs =



This estimator is valid only when the degree of endogeneity of the system is zero.
The k-class estimator introduced by Theil (1958) is defined as follows for a fixed value of k.
k(i ziwi) (i Zizz{)_l (oim ziyi) + (1 — k) D00 @iy

e — |
o k(i ziwi) (7 2i2) ™ (i zii) + (1= k) 27 2

Nagar (1959) suggests to use k = 1+ (K — 2)/n, which eliminates the second order bias obtained
from an Edgeworth expansion of this estimator. A problem with this choice is that for & > 1 the
estimator does not have finite-sample moments under normal errors in the reduced form system
(see, e.g., Mariano (1982)).

The lack of moments implies that for finiste samples the estimator can give estimates very far
from the true parameter values. From the point of view of simulations, the results from estimator

without moments must be analyzed in terms of the empirical distribution only.

2.1 Normalization

The estimators BLS, /BQSLS, Yosrs and B(k‘) are computed using only one equation. However, it

is possible to express the model (1) as

yi = 20+ u, (3)

/
T, = z;T+ v,

where 6 = (.

Because x and y are both endogenous variables, it is unclear which variable should be on
the left hand side in (1). However, in the reduced form system (3) all endogenous variables are
explained by a set of exogenous instruments Z.

In order to estimate (3 using this reduced form, each equation of (3) is solved using LS esti-

mators

1t is easy to see that 3(0) = Brs and 3(1) = fasLs.
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then applying a Minimum Distance Estimator, § is estimated as follows

>
I

!/
R 6— o
(B, 7) = arg min wt ,
where constraints § = G7 and e; = u; — Sv; are imposed and W is a symmetric and positive
definite matrix.
Concentrating out w by LS and using W = V& (31, zizg)_l, which was suggested by Alonso-
Borrego and Arellano (1999), the estimator for 5 becomes
-1
5 (>ica ziei)' (i 7)ot zied)

B = argming(f), with q(8) = (1, —B)V (L, —B)’ ’

where e; = y; — fx;. This estimator is the Limited Information Maximum Likelihood (LIML) if
V' is the variance-covariance matrix of the error terms of (3). Solving this problem (see Appendix

6.2), I find

oy zims) (0, Zizz/')il (Do zivi) — qLiML Y req Tili
(Z?:l Zﬂ“z‘), (Z?:1 Zizz{)_l (Z;’L:l 2%;) — QLIML 2?21 %2

Brivr =

Moreover, this estimator becomes the Symmetrically Normalized Instrumental Variables (SNIV)
estimate if V is an identity matrix.?
l -1
i i) iy zizi) — (Xoiiy 2ivi)

Bsniy = ”

(Z?:l Zixi), (Z¢:1 Zizz{)_l (Z?:l 2T;) — qASNIV.

The SNIV estimator was suggested by Alonso-Borrego and Arellano (1999) as an alternative to

2The LS, 2SLS, LIML and SNIV estimator can be defined as solution of a general problem (see Appendix 6.1
for details).



LIML for a Dynamic Panel Data model (DPD).

In the just-identified case (K = 1) we have § = 0, and therefore LIML and SNIV are equivalent
to 2SLS. Moreover, LIML can be written as a k-class estimator, with & = 1/(1 — qzrar). Note
that gr7arr is always less than 1, and therefore, LIML is a k-class estimator with & > 1 so that
the estimator does not have finite-sample moments. A similar argument applies to the SNIV

estimator.?

3 Properties of SNIV

The exact distributions for some IV estimators have been computed under the assumption of
normal errors (see Sawa (1969) for 2SLS, and Phillips (1985) for LIML). The expressions for
these distributions usually include infinite series and the computation of moments based on them
is cumbersome. For that reason the asymptotic distribution is widely used to approximate the
exact finite-sample distribution. In the case of IV estimators, Nagar (1959) and Ullah (2004) have
shown that a better approximation to the finite-sample distribution can be obtained by adding
higher order terms to the standard first-order normal approximation.

I consider in this analysis the approximation called large-n Edgeworth expansion. This ap-
proximation adds terms of higher order to the standard asymptotic distribution. In particular,
the first moment presented in this section considers terms up to order 1/n.

It should be noted that the terms used in this expansion are obtained from the asymptotic
Taylor series approximation to the SNIV estimator, which is available in Appendix 6.4. These
terms can be used to obtain higher order approximations to the finite-sample moments of the
SNIV estimator.* Finally, the Berry-Esseen theorem implies that the distribution obtained by
the Edgeworth expansion has a maximum error proportional to the third moment of the true

distribution (see Serfling (1980), Field and Ronchetti (1990) or Ullah (2004)).

Condition 3.1. Suppose that (u;,v;) are independent and identically distributed (i.i.d.), following

3 Alonso-Borrego and Arellano (1999) report that (in simulations) the SNIV estimator does not have well-defined
sample moments.
4See Ullah (2004) for details of Edgeworth expansion, alternatives procedures and examples.
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2
u O

2, and covariance oy .

a bivariate normal distribution with zero-means, variances o

For the composite error e; = u; — Bv;, Condition 3.1 implies 0ey, = 0yy — Bo2 and 02 = 02 —
280, + F%02. It should be noted that the normality assumption can be replaced without further

changes by existence of moments up to fourth order, homoskedasticity, and conditional symmetry.

Condition 3.2. The set of instruments is non-stochastic and the quadratic variation converge to

a positive define matriz
1<
nZ;zizi = A+o(1).
1=

Under Condition 3.2 the expression 7’ Am represents a measure of the goodness of fit of the model.
In particular, the first-step population R? can be written as 7'Axw/(7’An + 02). Extending the
results for stochastic instruments implies to consider assumptions on the joint distribution of error
terms and instruments.

Under Conditions 3.1 and 3.2, the second order bias of the k-class estimator obtained by Nagar
(1959) can be written as

E[B(k)—ﬁ} o [(K—2)—(k—1)n}+0(1>'

' A n n2

As it was discussed in Section 2, B(O) = (g and B(l) = Basrs. It is clear that 2SLS is less biased
than LS as long as K < n, but the bias of 2SLS converges to the bias of LS as the number of
instruments (K) grows. Nagar (1959) proposes to use k = 1 + (K — 2)/n for which the second
order bias is zero.

LIML does not have a closed form solution, and therefore the procedure proposed by Nagar
(1959) is not directly applicable. However, Rothenberg (1984) proposes to approximate {rrar,
and compute the bias for LIML as a k-class estimator with & = 1 + (K — 1)/n, then the second
order bias for LIML is —o,/(nn’Am). This result suggests that the bias of LIML is not affected

by the number of instruments.”

"Donald and Newey (2001) refine the second order bias presented in Nagar (1959) and propose a slightly different
correction.



As it was shown in section 2.1, the SNIV estimator cannot be computed as a closed form

solution, but gsyry can be approximated using a similar procedure as for LIML.

3.1 Edgeworth Expansion for SNIV estimator
From Condition 3.2, we have

n

1 ¢ 1 1
n2zixi: n;,zi(zgﬂ—i—vi) :Aw+nz;zivi+o(1),
1= 1= 1=

which is useful to compute the 2SLS asymptotic approximation:

G za) B z2) (R )
(A ) (A =) (L0 i)

(AW + % > i Zivi)/ A (% dic1 Ziei) +0p (%)
(Ar+ 530 zivs) AL (Ar + 2370 zivs) + 0, (2)

Bosrs — B =

The standard first order asymptotic approximation ignores the covariance between the error terms

e and v, because the order of this covariance is 1/n, then we have
(Am) AL (2370 zies) 4+ 0p (1)

Basrs =B = (Ar) Ail (A7) +0p (1)

R
7r’A7r7T (nZZZ€’> +o0p,(1).

i=1

I use the same argument to approximate the numerator (N) and denominator (D) of gsyrv/n
(minimized objective function of SNIV). Note that the numerator (N) can be decomposed into 3

terms, as follows

e z) Py — 3 x 1
N - (y — Bsnrva) Py 5SNIV):T1+T2+T3+OP( >’

n n

with the following definitions
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Taking expectation, I have

For the denominator the expected value is

2 1
E(D) =1+ * + —¢ 2.
(D) +h +7’L7T/A7T+O<n>

Lemma 3.1. Under Conditions 3.1 and 3.2

e 20 0f2) (7))
n nK n loF: nm!' Am

Proof. See Appendix 6.3. O

Using this result the Edgeworth expansion for SNIV estimator can be obtained. The following

theorem states the second order bias for SNIV and it is the main contribution of this paper.

Theorem 3.1. Under Conditions 3.1 and 3.2 the second order bias for SNIV estimator is

E(Bsniv — B) = (K~ 2)e, + P —1) +0 <1> ;

nm' Am nemw A n2

where k is defined as in Lemma 3.1.

Proof. See Appendix 6.4. O

We can see here that the first component in the second order bias of SNIV is the same as for

8



the bias of 2SLS. Indeed, under 8 = 0 the biases coincide. When the number of instruments is
small, relative to the sample size, the bias of SNIV will be as low as for 2SLS. But under many
instruments the bias can be large. Moreover, under the Bekker (1994) Alternative Asymptotic
(BAA), which consider sequences where the number of instruments grows at the same rate as the

sample size with a fixed ratio (K/n — « > 0), SNIV is inconsistent

. 2
D }}Iiloo(ﬁsmv -B) =« <Wz> #0,

n, ' Arm

unless a = 0 or oy + Bo2 = 0.

4 Monte Carlo Experiment

In this section I conduct a Monte Carlo experiment to check the accuracy of the asymptotic
approximation of the previous section. There are three issues to discuss in the case of IV estimators
that are relevant for the design of the experiment: (1) the level of endogeneity, which is measured as
the correlation between the error terms of the reduced form (p), (2) the quality of the instrument,
which is captured by the correlation between the instrumented variables and the instruments, this
can be summarized in the concentration parameter (62), and (3) the number of instruments (K).
I analyze these issues using the same design as in Newey and Windmeijer (2007).

Consider u; ~ N(0,1), v; ~ N(0,1), z; ~ N(0,Ix), 1x a K vector of ones and the following

data generating process

yi = zif+e
T, = z£7r + v;
ei = pui+V1-puy
52
= 1pr/ —
T KV Kn

Note that the behavior of the structural parameter 7 is defined as local to zero as long as the



concentration parameter is low and/or the number of instruments is large.5

I consider a sample size of 200 and set 62 = {5,10,20,200,450,800}, K = {3,10}, p =
{0.1,0.3,0.5,0.7,0.9}7, and § = 0. The latter implies that bias of 2SLS should be the same
as the bias for SNIV. Also, note that the population R? for the first step can be computed as
' /(7'm + 1) = 62/(6% +n) = R%(6?).

The estimators considered are LS, 2SLS, bias-corrected 2SLS (B2SLS), LIML, a finite sample
correction of LIML (LIMLF) and SNIV.

The results for strong instruments (large concentration parameters) are presented in Tables 1
and 2. Note that R%(200) = 0.5, R?(450) ~ 0.69, and R?(800) = 0.8. Here LS is biased and the
bias increases with the degree of endogeneity and decreases with the concentration parameter.

For 62 = 200 and K = 3 the biases of 2SLS, B2SLS, LIML, LIMLF and SNIV are very small,
with the figures for SNIV close to the 2SLS estimator, whereas the biases for B2SLS, LIML and
LIMLEF are similar. When the concentration parameter increases to 450 o above, the bias is not
a problem for any of these estimators. Increasing the number of instruments to 10, the bias for
SNIV is the same order than the 2SLS, and B2SLS, LIML and LIMLF remain almost unbiased.

It is interesting to note that under the design analyzed § = 0, Theorem 3.1 predicts that the
bias for SNIV (TSOB) should be the same as 2SLS, which was found in the simulations. The
possible differences can be attributed to a higher dispersion of SNIV relative to 2SLS, as it is
noted from the higher Inter-Quartile Range (IQR) of SNIV estimator. In terms of IQR 2SLS is
preferred over SNIV.

It should be noted that IQRs for B2LS, LIML and LIMLF are higher than 2SLS and increase
with the number of instruments. This fact is also reported in Hahn, Hausman and Kuersteiner
(2004) and Newey and Windmeijer (2007). Finally, the Median Absolute Error (MAE) is similar

for all IV estimators, and it decreases with the concentration parameter (Table 3).

5Staiger and Stock (1997) compute the asymptotic distribution of the estimator § under near local to zero
identification. Chao and Swanson (2005) modify the distribution allowing for the possibility that the number of
instruments grows as the sample size does, following Bekker (1994).

"Other combinations were computed, 62 = {20, 35, 50,800} and K = {2, 5}, getting mostly the same conclusions.
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Table 1: Median and IQR (in parentheses) for K = 3

52 p LS 2SLS B2SLS LIML LIMLF SNIV TSOB

200 0.1 0.048 0.003 0.03 0002 0.003 0.004 0.001
(0.067) (0.092) (0.093) (0.094) (0.093) (0.095)

0.3 0.150 0.003 0.002 0.000 0.001 0.003 0.002
(0.065) (0.091) (0.091) (0.092) (0.091) (0.093)

0.5 0250 0.008 0.005 0.001  0.004 0.008 0.003
(0.063) (0.090) (0.092) (0.092) (0.091) (0.092)

0.7 0.350 0.004 0.000 -0.004 0.000 0.004 0.004
(0.061) (0.099) (0.099) (0.102) (0.101) (0.101)

0.9 0450 0.010 0.006  0.003  0.007 0.010  0.005
(0.047) (0.094) (0.095) (0.094) (0.093) (0.095)

450 0.1 0.030  0.000  0.000 0.000  0.000  0.000  0.000
(0.053) (0.061) (0.061) (0.062) (0.062) (0.062)

0.3 0.094 0.003 0002 0.001 0002 0003 0.001
(0.053) (0.062) (0.062) (0.062) (0.061) (0.063)

05 0.53 0.001 0.000 0.000 0.001 0.0l 0.001
(0.051) (0.061) (0.061) (0.062) (0.062) (0.062)

0.7 0213 0.003 0001 -0.00l 0.001 0.003 0.002
(0.049) (0.060) (0.060) (0.061) (0.061) (0.061)

0.9 0278 0.007 0005 0.003 0.005 0.007 0.002
(0.048) (0.063) (0.063) (0.064) (0.064) (0.064)

800 0.1 0.018 -0.001 -0.001 -0.001 -0.001 -0.001  0.000
(0.044) (0.052) (0.052) (0.052) (0.052) (0.053)

0.3 0.060 0001 0001 0.000 0.001 0.001 0.000
(0.043)  (0.047) (0.047) (0.047) (0.047) (0.048)

0.5 0.098 0.000 0000 -0.00l 0.00 0.000 0.001
(0.043) (0.047) (0.047) (0.048) (0.048) (0.048)

0.7 0.141 0.0l 0001 -0.001 0.000 0.0l 0.001
(0.042) (0.050) (0.050) (0.051) (0.051) (0.051)

0.9 0.180 0.002 0001 0.000 0001 0002 0.001
(0.040) (0.052) (0.052) (0.052) (0.052) (0.052)

Based on 5000 replications. TSOB is the theoretical bias (Theorem 3.1).
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Table 2: Median and IQR (in parentheses) for K = 10

52 p LS 2SLS B2SLS LIML LIMLF SNIV TSOB

200 0.1 0.048 0.006 0.003 0.003 0.003 0.007 0.004
(0.066) (0.089) (0.092) (0.093) (0.092) (0.098)

0.3 0.152 0.019 0008 0.004 0.006 0021 0.012
(0.066) (0.095) (0.099) (0.099) (0.098) (0.103)

0.5 0248 0.018 0.000 -0.00l  0.002 0.020 0.020
(0.059) (0.091) (0.095) (0.096) (0.096) (0.098)

0.7 0.347  0.032 0.005 -0.002 0.002 0.034 0.028
(0.057) (0.094) (0.101) (0.103) (0.102) (0.100)

0.9 0450 0.040 0.007 0.002  0.006 0.044  0.036
(0.052) (0.087) (0.096) (0.098) (0.096) (0.095)

450 0.1 0.031 -0.001 -0.002 -0.003 -0.002 -0.001  0.002
(0.053) (0.062) (0.062) (0.062) (0.062) (0.066)

0.3 0.095 0.008 0.003 0.002 0.003 0.009 0.005
(0.050) (0.062) (0.063) (0.062) (0.062) (0.066)

0.5 0.153 0.008 0.000 -0.00l  0.000 0.008  0.009
(0.054) (0.063) (0.066) (0.065) (0.065) (0.069)

0.7 0215 0012 -0.001 -0.003 -0.002 0.012 0.012
(0.052) (0.065) (0.066) (0.068) (0.068) (0.068)

0.9 0277 0020 0004 0.002 0004 0021 0.016
(0.047)  (0.066) (0.069) (0.065) (0.065) (0.070)

800 0.1 0.020 0.000 0.000 -0.001 -0.00l 0.000 0.001
(0.043)  (0.052) (0.052) (0.052) (0.052) (0.054)

0.3 0.061 0005 0003 0.001 0.002 0.006 0.003
(0.044)  (0.048) (0.049) (0.049) (0.049) (0.051)

0.5 0.100 0.006 0.002 0.001 0.001 0.007 0.005
(0.042) (0.045) (0.046) (0.046) (0.046) (0.048)

0.7 0.141  0.007 0.000 -0.00l 0.00 0.007 0.007
(0.040) (0.048) (0.050) (0.048) (0.048) (0.051)

0.9 0.181 0.009 0.000 -0.00l 0.000  0.009  0.009
(0.038) (0.049) (0.050) (0.050) (0.049) (0.052)

Based on 5000 replications. TSOB is the theoretical bias (Theorem 3.1).
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Table 3: Median Absolute Error

K & p LS 2SLS B2SLS LIML LIMLF SNIV
3 200 0.1 0.061 0.046 0.046 0.047 0.047 0.048
0.3 0.150 0.045 0.045 0.045 0.045 0.046

0.5 0.250 0.048 0.047 0.045 0.046 0.048

0.7 0.350 0.049 0.050 0.051  0.050  0.050

0.9 0450 0.048 0.048 0.047 0.047  0.049
450 0.1 0.036 0.031 0.031 0.031 0.031 0.031
0.3 0.094 0.030 0.030 0.030 0.030 0.030

0.5 0.153 0.030 0.031 0.031 0.031  0.031

0.7 0.213 0.030 0.031 0.030 0.030 0.031

0.9 0.278 0.033 0.032 0.032 0.033 0.033

800 0.1 0.026 0.026 0.026 0.026 0.026  0.027
0.3 0.060 0.024 0.024 0.024 0.024 0.024

0.5 0.098 0.024 0.023 0.023 0.024 0.024

0.7 0.141 0.026 0.025 0.026 0.026  0.026

0.9 0.180 0.026 0.026 0.026 0.026  0.026

10 200 0.1 0.052 0.045 0.046 0.046 0.046  0.050
0.3 0.152 0.047 0.048 0.050 0.049 0.052

0.5 0.248 0.049 0.048 0.047 0.047  0.053

0.7 0.347 0.053 0.051 0.051  0.0561  0.058

0.9 0450 0.055 0.050 0.048 0.049 0.060
450 0.1 0.035 0.031 0.031 0.031 0.031 0.033
0.3 0.095 0.032 0.031 0.031 0.031 0.034

0.5 0.153 0.032 0.033 0.033 0.032 0.034

0.7 0.215 0.033 0.034 0.034 0.033 0.035

0.9 0277 0.034 0.034 0.033 0.033 0.037

800 0.1 0.026 0.026 0.026 0.026 0.026  0.027
0.3 0.061 0.024 0.025 0.025 0.025 0.026

0.5 0.100 0.023 0.023 0.023 0.023 0.024

0.7 0.141 0.024 0.025 0.024 0.024 0.025

0.9 0.181 0.025 0.025 0.024 0.025 0.026

Based on 5000 replications.
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When instruments are weak the concentration parameter is small and the Edgeworth expansion
becomes imprecise. Note that R?(5) = 0.024 and R?(10) = 0.05. It is clear from Tables 4 that
SNIV behaves like 2SLS having even more bias. Even thought the design of the experiment
includes § = 0, it is not possible to validate the result proposed in Theorem 3.1 because the
model is weakly identified.® However, the results presented here show: (1) the bias of SNIV is the
same order as that of 2SLS, but the IQR is higher, (2) B2SLS improves 2SLS in terms of bias,
but not in terms of IQR, and (3) LIML is almost unbiased, but it has the highest IQR.

Increasing the number of instruments (Table 5), the results show: (1) bias and IQR for SNIV
are bigger than 2SLS estimator, (2) under low degree of endogeneity (p = 0.1) LS seems to be
reasonable competitor for 2SLS, (3) LIML is still unbiased under high degree of endogeneity, small
concentration parameter and many number of instruments, (4) B2SLS is a reasonable competitor
for LIML under small degree of endogeneity, and (5) LIMLF improves B2SLS in terms of bias
and IQR under high degree of endogeneity.

These results confirm the suggestions proposed by Hahn, Hausman and Kuersteiner (2004),
that in terms of Mean Squared Error (MSE), LIMF has the minimum MSE, offering the optimal
trade-off between bias and dispersion.

Finally, the MAE under weak instruments shows that SNIV is inferior relative to other IV

estimators (Table 6).

8 A more accurate approach can be done computing the weak-instrument asymptotic proposed by Staiger and
Stock (1997).
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Table 4: Median and IQR (in parentheses) for K = 3

2 p LS 2SLS  B2SLS LIML LIMLF SNIV TSOB

5 01 0094 0033 0014 0008 0023 0045 0.020
(0.094) (0.518) (0.567) (0.741) (0.551) (0.750)

0.3 0295 0.08 0052 0014 0066 0.122  0.060
(0.094) (0.487) (0.571) (0.697) (0.532) (0.666)

05 0487 0164 0095 0.008 0.111  0.209  0.100
(0.086) (0.494) (0.548) (0.693) (0.508) (0.673)

0.7 0682 0225 0134 0043 0172 0306 0.140
(0.065) (0.409) (0.508) (0.660) (0.441) (0.530)

09 0.880 0302 0200 0031 0200 0368 0.180
(0.041) (0.366) (0.467) (0.628) (0.331) (0.449)

10 0.1 0100 0051 0043 0.044 0051 0062 0.010
(0.095) (0.381) (0.416) (0.480) (0.427) (0.479)

0.3 028 0043 0.020 0.000 0.028  0.060 0.030
(0.086) (0.380) (0.417) (0.463) (0.406) (0.463)

05 0477 0.099 0048 -0.012 0.049  0.125  0.050
(0.084) (0.369) (0.427) (0.490) (0.401) (0.470)

0.7 0.664 0125 0075 0012 0078 0.146  0.070
(0.069) (0.373) (0.432) (0.514) (0.389) (0.454)

09 0856 0175 0.110  0.027  0.106  0.204  0.090
(0.045) (0.305) (0.379) (0.418) (0.308) (0.353)

20 0.1 0.088 0008 0.001 -0.002 0.003 0.009 0.005
(0.089) (0.292) (0.313) (0.337) (0.318) (0.338)

0.3 0271 0017 0006 -0.012 0007 0021 0015
(0.091) (0.276) (0.298) (0.302) (0.288) (0.315)

05 0456  0.055 0.032  0.003 0029 0060 0.025
(0.083) (0.292) (0.313) (0.316) (0.292) (0.328)

0.7 0.635 0062 0032 -0.011 0025 0069 0.035
(0.069) (0.261) (0.287) (0.305) (0.269) (0.294)

09 0817 0.087 0045 0.004 0051  0.093 0.045
(0.046) (0.280) (0.310) (0.329) (0.282) (0.308)

Based on 5000 replications. TSOB is the theoretical bias (Theorem 3.1).
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Table 5: Median and IQR (in parentheses) for K = 10

2 p LS 2SLS  B2SLS LIML LIMLF SNIV TSOB

5 01 0095 0066 0000 0039 0048 0.166 0.160
(0.093) (0.336) (0.577) (0.901) (0.749) (0.904)

03 0295 0197 0016 0.056 0.089  0.414  0.480
(0.093) (0.345) (0.633) (0.854) (0.694) (0.729)

05 0488 0333 0068 0.052 0.135  0.607  0.800
(0.084) (0.333) (0.621) (0.897) (0.674) (0.644)

07 0683 0461 0.165 0.113 0213  0.681  1.120
(0.064) (0.265) (0.546) (0.762) (0.526) (0.421)

09 0879 0579 0233 0042 0212 0742  1.440
(0.042) (0.205) (0.491) (0.736) (0.399) (0.285)

10 0.1 0.098 0060 0.004 0005 0012 0124 0.080
(0.093) (0.316) (0.529) (0.646) (0.555) (0.631)

0.3 0283 0148 0.037 0021 0048 0254 0.240
(0.088) (0.281) (0.486) (0.578) (0.500) (0.523)

05 0476 0252 0072 0.004 0.064 0428  0.400
(0.082) (0.296) (0.517) (0.629) (0.523) (0.495)

0.7 0.662 0341 0092 0018 0.08 0502 0.560
(0.070) (0.245) (0.516) (0.540) (0.421) (0.362)

09 0855 0437 0.135 0012 0.099 0566 0.720
(0.046) (0.201) (0.503) (0.497) (0.355) (0.274)

20 0.1 0.087 0021 -0.004 -0.017 -0.013 0.033  0.040
(0.089) (0.274) (0.372) (0.415) (0.387) (0.430)

0.3 0274 0.08 0016 -0.007 0.009 0.132 0.120
(0.091) (0.240) (0.349) (0.374) (0.345) (0.363)

05 0457 0155 0.030 0.004 0.027 0229 0.200
(0.081) (0.225) (0.342) (0.379) (0.351) (0.332)

0.7 0.634 0226 0065 0.008 0041 0313  0.280
(0.073) (0.218) (0.340) (0.348) (0.311) (0.277)

09 0819 0289 0063 -0.018 0.030 0.381  0.360
(0.047) (0.189) (0.366) (0.334) (0.287) (0.222)

Based on 5000 replications. TSOB is the theoretical bias (Theorem 3.1).
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Table 6: Median Absolute Error

K & p LS 2SLS B2SLS LIML LIMLF SNIV
3 5 0.1 0.095 0258 028 0368 0279 0371
0.3 0.295 0.256 0.289 0.349 0.280  0.355
0.5 0487 0.283 0.299 0.354 0.268  0.395
0.7 0.682 0.286 0.292 0.328 0.246  0.407
0.9 0880 0.339 0324 0.292 0.242  0.428
10 0.1 0.100 0.192 0.208 0.245 0.218 0.252
0.3 0.283 0.199 0.209 0.230 0.205 0.242
0.5 0477 0.209 0.225 0.239 0.203  0.258
0.7 0.664 0.224 0.230 0.242 0.212 0.278
0.9 0856 0.220 0.210 0.201 0.185  0.265
20 0.1 0.089 0.146 0.156 0.168 0.159  0.169
0.3 0.271 0.140 0.147 0.148 0.143 0.155
0.5 0456 0.153 0.158 0.155 0.149 0.171
0.7 0.635 0.147 0.151 0.146 0.139  0.169
0.9 0.817 0.158 0.160 0.156  0.151  0.173
10 5 0.1 0.095 0179 0290 0456 0367 0.473
0.3 0.295 0.226 0.324 0.433 0.350  0.522
0.5 0488 0.341 0.355 0.458  0.350 0.637
0.7 0.683 0.462 0357 0.405 0.304 0.686
0.9 0879 0579 0.390 0.348 0.257  0.742
10 0.1 0.098 0.163 0.265 0.330 0.282  0.343
0.3 0.283 0.182 0.246 0.286 0.254  0.360
0.5 0476 0.260 0.280 0.310 0.274  0.468
0.7 0.662 0.341 0.272 0.259 0.228  0.505
0.9 0855 0437 0.297 0.232 0.201  0.566
20 0.1 0.087 0.134 0.18 0.206 0.194 0.219
0.3 0.2v4 0.140 0.172 0.177  0.167 0.217
0.5 0457 0.181 0.179 0.182 0.181  0.266
0.7 0.634 0.231 0.187 0.172 0.161 0.324
0.9 0819 0.290 0.196 0.165  0.152  0.385

Based on 5000 replications.
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5 Conclusion

In this paper I study the finite sample properties of the SNIV estimator proposed by Alonso-
Borrego and Arellano (1999) as an alternative to LIML. I developed a second order approximation
for the bias of SNIV using an Edgeworth expansion. The result, presented in Theorem 3.1 is new
in the literature and it is the main contribution of this paper.

The expression of the bias can be decomposed into 2 elements: the first is the same as the
second order bias of 2SLS, and the second is an additional term of the same order that depends
on the true parameter of the model (3). The bias of SNIV should vanish in the cases where the
number of instrument is small relative to the sample size as in 2SLS.

The theoretical result is confirmed with Monte Carlo experiments. In particular, I show
that for strong instruments (when the instruments are highly correlated with the instrumented
variable), the second order approximation is valid, and the bias of SNIV is close to the bias
of 2SLS. For small concentration parameter the expansion is less accurate and numerical results
show that alternative estimators, such as B2SLS, LIML or LIMLF should be preferred over SNIV.
Indeed, LIML is almost unbiased in all the scenarios, whereas LIMLF has an optimal trade-off
between lower bias and lower IQR.

In conclusion, I would not recommend SNIV as alternative estimator to LIML. Moreover,

robust estimators that use SNIV estimator as initial estimator could be biased.
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6 Appendix

6.1 Generalization of IV estimators

Consider the matrix of the endogenous variables W = (y,z) and v = (1, —3)’, then for given

matrices A and B the estimator that minimizes the ratio argument is:

'A
4 = argmin <’y/ 7) = argminq(vy|A4, B).
v \Y'By ¥

In addition consider P = Z(Z'Z)~'Z" and
N = : (4)

e LS is obtained by setting A = W'W and B = N. Note that 7/ By = 1 and the numerator

becomes

/ /
yy o'y 1
v Ay = (1 —ﬁ)
'y 2’z -0
1
= (y’y—ﬁx’y x’y—ﬁy’y)

= (Yy—B2'y) — By — By'y) =D _(yi — Bri)*.

=1

e 2SS by A =W'PW and B = N. Again, v'By = 1 and
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/ /
Yy Py a'Py
YAy = (1 —ﬂ)
2’Py 2'Px -3

= ( y' Py — Ba'Py 2Py — ﬂy’Py

= (y'Py — p2'Py) — B(z' Py — By Py)

= (y'Py—282'Py+ By Py) = (y — Bz)' Py — Bz)

= (Z zi(y;s — ,31}0) (Z ziz> (Z zi(yi — By ) .

e R2SLS by A = W/PW and B = I — N. Similar to 2SLS.

e LIML by A =W'PW and B = W/W. Using the previous results we have

YAy = (y—px)P(y— pz)

- (Srooa) (Bos) (Srn-a)

YBy = (y—pz)(y— Oz

n

= Z(yi — Ba;).

i=1

e SNIV by A=Y'PY and B = I. In this case By = 1 + % and

YAy = (y—pBz) Py — pr)
n / n -1 n
= (Z zi(yi — ﬁ%)) <Z Zﬂé) (Z zi(yi — ﬁ%)) -
i1 i—1 i—1

6.2 LIML: Maximum Likelihood and Least Variance Ratio

Let w; = (u;,v;)" ~ N(0, B) then the joint density of w; is
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1 1
Flw) = o= B exp (—ngB-lw,») |

The loglikelihood associated with a sample size of n is | = —nlog(2m)—(n/2) log(|B|)—(1/2) >, wi B w;.

The concentrated loglikelihood function can be computed using

ol

n I - 1N
G5 = 5B~ 5 2 wiB  wi then B = 3w
i=1 =1

Also w/B 'w; = tr(w}B~lw;) = tr(B lww}) then Y0 w.B lw, = S tr(B lww]) =

7

tr(B=1 3" wyw!) = 2n. Finally the concentrated loglikelihood is

[ = —nllog(2m) + 1] — glog(|B\).

The maximization of the concentrated loglikelihood is similar to the minimization of the deter-

minant of B, which for the case of IV estimators can be expressed as follows

B| — 1 > (i — wif)? S (yi — wif) (i — 2im)
" > iy (Yi — @) (i — 2{m) S (z — 2im)?
1 Y W'W~ YW (x — zm)
" (x — 2m)Wry (x — zm)(x — 2m)

Following Davidson and MacKinnon (1993), I define v = W and My = I — A(A’A)"1 A’ then

1 v'v v'(x — zm)
B = 1
(x —zm)v (x—zm)(x — 2m)
1
= ﬁv’v (& — zm)' My(x — zm)]|.

The last step also involves the computation of the determinant for partitioned matrices. Finally,

7 can be estimated by LS, then®”

?See Davidson and MacKinnon (1993) for details.
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1
|B] = —k|W' MzW]|,
n

where k = v'W'W~/y'W'MzW+~. Minimizing «, the concentrated loglikelihood is maximized.

Note that x = 1/(1 — q) where ¢ is the objective function presented in 6.1.

6.3 Eigenvalue Approximation

Standard arguments can be used to solve 17 as follows
n

1 & 3 1 B
E(T) = E(nQngA lziei> :EZE(QZ%A Lzie)
=1

i=1
1 2 K
= —B(tr(eizlA 1 ze:)) = &E(tr(zizZ{A_l)) =
n n n

For 75, I can use the first order asymptotics of this estimator to replace the argument BS NIiv — 3.

Note that first order asymptotics of SNIV and 2SLS coincide, then

_27T/Zze Zze A7r—|—l§n:z'v'
ﬂ'/Aﬂ' — 1“1 1> nZ:l 1Y bl

under the normality assumption the third moments are zero, then

/
_on! n 1 n
<n7r’£7r ;Ziei> (nZZlel> ﬂ-]

=1

E(T) = E

E() =

As for the last term, I use the same 2SLS asymptotic than before and the definition for (1/n) > 7 | zix;,

then
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S 1 ' 1 1
T3 = ( A Z Zi€i> ( Z Zz.%'z> AL < Z zzxz) + op <>
AN (R n n n
7_‘_/ n 7I_/ n !
- (nﬂ"Aﬂ' Z Ziei) (’I”LT('/AW Z Ziei)
i=1 i=1

/
1 « 1 « 1
X (AW + - ZZ:; zivi> AL (Aﬂ + o ; zivi> +op (n)

1
= T31 (W/ATF + T32 + T33) + Op <n> s

where

n

/
1 1 T
i=

1 /
T32 = 2 < sz) T

nia

1 n / 1 n

T33 = (n Z Zﬂh’) A_l <7’L Z Zi“i) .

i=1 =1

7.(_/

Toy —
31 ' A

3

Under the normality assumption E(751732) = 0 because the third moments are zero. Also T51 xT33

is of smaller order than 1/n, therefore I discard it. As for Ty, it is clear that

E(T3) = E(Tgl)ﬂ'/Aﬂ'—Tﬂ_ (nQZe ziz )

2
UC
- TL’/T/A’/T < Z%) =

Finally, collecting terms
E(N) = (K —1)o?/n.

Using the results for 2SLS, the denominator (D =1+ B?q ~N1v) can be expressed as follow
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n 2
R 1 1
L+ By = 1+ (5 + 7r’A7r7T/ (n > Ziez’>> +0p (1)

R 1 2 1 <& o2
E(l+ B5ny) = 1+8+0o! (MW) m <m22i24>”=1+52+m/2w'

6.4 Estimator Approximation

Consider the following decomposition of the SNIV estimator

Bsniv — B = (3 X Zimi), (x Xits zizz{)_l (£ 370 zii) 5
— i :
(> Zi«Ti)/ (I zizl) (20 zim) — d/n
Bafn+ (5 iy ziwe) (5 Tica zi71) " (5 Tia i)

(A3ory zim) (A0 2e2l) T (A zw) — G/n

Define the numerator of the last expression as R, and the denominator as .S, then the following

approximation applies for the numerator

R

M

VR

S|
NgE
—

&

&
~__
VR

S|
WM:
o

N

sN\
~___~

AN

and the following for the denominator
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I
>
<
_|_
//
]
n
S
~__
+
R
S
W'M:
n
g
~_
//
]
n
IS

¢ 1
> " + op (n) .
By assumption 7'Am = O(1), the second term in S is O, (1/4/n), and the third and fourth are

O, (1/n). Following the footnote 8 in Nagar (1959), it is possible to compute the inverse of S as

SRR R
( /m> gizn;“f) AT (:lzz;zv>
( /ZW) +0, (711)

Finally the SNIV estimator can be approximated as 3SN1V —pB= Z;il H; + 0O, (%), with

follows

3\’*
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Hy

Hy

Hio

Bq
nm! Am
7TI (% Zﬂzl ziei)
' Am
1 7-1: 2iV; ! A1 1 7.1: Zi€;
(n =1 n i=1
' A
—208qr’ (£ Yoy zivi)
n(n' Am)?
2’ (L300, i) (R 300, zies)
- (! Amr)?
2 (5 2o 2ivi) (5 i zivi) A7 (£ D00 ziei)
(' Ar)?
B (5 3ty zvi) A (5 00 2ivi)
n(n’ Am)?
X ) AT (AT ) 7 (R ze)
(! Am)?
B (% Z?:l Zivi)’ AL (% Z:‘L:l Zivi) (% Z?:l ZiUz‘)/ A-1 (% Z:‘L:1 Ziei)
(! Amr)?

P
(nm’! Am)?
qr’' (% > i Ziei)
 n(r'An)?
Q (5 Xi zve) A (30 iei)
B n(m' Am)? '

It is clear that E(Hy) = E(Hs) = E(H11) = 0 because the errors have zero mean. Also by

normality Hg and Hg have zero expectation because skewness is zero. Note that H7, Hg, Hig

and Hjy are higher order, then I discard them. For the others terms (H;, Hs and Hs), I have

to compute their expected value. Note that H; is the only new term relative to 2SLS estimator,

therefore the second order bias is expected to be similar to bias for 2SLS estimator.
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B ~1)

nw!' Am
1 7-1, 2V /A_l lZ[ Zi€;
E(H3) = F (”21*1 )W/Aﬂ-(n i=1 )
/
1 1 & 1 n
= A (n;%vz> A <ni2;2i€i>]
1 1 S I A—1
_ BuiziA'zie)  0wK
- nm! Am T onr'Ar
27! (% Z?:l Zivi) (% 2?21 Ziei)/ﬂ'
B = ¢ (! Arr)?

/
271" 1 n 1 n
= _mE [(n;%vz> (n;Zi€i> ] T
2’ 1 ¢ 20
= —— bl i€z =-——°
e | (2 et )| = 2o

Collecting the terms the second order bias can be computed as follow

E(Bsniv —B) = (K = 2)oey + K —1) +0 <2> .

nm' Am nkmw A
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