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ABSTRACT. This paper concerns the study of the numerical approxima-

tion for the following initial-boundary value problem:

ur(x,t) = uga(z,t) + (1 —u(0,t))"P, (w,t) € (—1,1) x (0,T),
u(=1,t) =0, wu(l,t)=0, te(0,7),
u(z,0) = uo(z) >0, =€ (=11),

where p > 1, 1l = % and € > 0. Under some assumptions, we prove that
the solution of a semidiscrete form of the above problem quenches in a
finite time and estimate its semidiscrete quenching time. We also show
that the semidiscrete quenching time in certain cases converges to the real
one when the mesh size tends to zero. Finally, we give some numerical

experiments to illustrate our analysis.

KEY WORDS AND PHRASES. Semidiscretizations, localized semilinear par-

abolic equation, semidiscrete quenching time, convergence.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 35B40, 35B50, 35K60,
65M06.

(*) Diabate Nabongo, Université d’Abobo-Adjamé, UFR-SFA, Département de
Mathématiques et Informatiques, 16 BP 372 Abidjan 16, (Céte d’Ivoire),
E-mail: nabongo_diabate@yahoo.fr
(**) Théodore K. Boni, Institut National Polytechnique Houphouét-Boigny de Yamous-
soukro, BP 1093 Yamoussoukro, (Céte d’Ivoire).
92



NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED... 93

RESUMEN. En este articulo se estudia la aproximacién numérica para el

siguiente problema de valor de frontera inicial:

ut(z,t) = uzz(x,t) + (1 —u(0,t))"P, (x,t) € (=1,1) x (0,T),
u(=l,t) =0, wu(l,t)=0, te(0,T),
u(z,0) =uo(z) >0, ze€ (=11,

donde p > 1, 1 = % y € > 0. Bajo algunas hipdtesis, probamos que
la solucién de una forma semidiscreta del problema anterior se satisface
en un tiempo finito y estimamos su tiempo semidiscreto de enfriamiento.
También mostramos que el tiempo de enfriamiento converge en ciertos
casos a un real cuando la malla tiende a cero. Finalmente, presentamos

algunos experimentos numeéricos para ilustrar nuestro andlisis.

PALABRAS CLAVES. Semidiscretizaciones, ecuacién parabdlica semilineal

localizada, tiempo semidiscreto de enfriamiento, convergencia.

1. INTRODUCTION

We consider the following initial-boundary value problem:

(1) w(w,t) = uge(z,t) + (1 —u(0,¢))7P, (x,t) € (=I,1) x (0,T),
(2) u(—1,t) =0, u(l,t)=0, te(0,T),

(3) u(x,()) = UO(x) >0, ze (7l’l)a

wherep > 1,1 = %, e > 0, ug(z) is a function which is bounded and symmetric.
In addition, uo(x) is nondecreasing on the interval (—1,0) and ug (z) 4 e(1 —
u(0,t))™P > 0 on (—I,1). Here (0,7) is the maximal time interval on which
lu(z,t)]|lo < 1, where |lu(z,t)||cc = maxo<gz<i|u(z,t)|. The time T may be
finite or infinite. When T is infinite, we say that the solution u exists globally.
When T is finite, then we have

i =1.
Jinm flu(z, 1)

In this case, we say that the solution u quenches in a finite time and the time
T is called the quenching time of the solution wu.

The above problem is related to a popular model arising in the study of polar-
ization phenomenon. It also represents a model which is related via transfor-
mation to a certain class of physical problem of ignition where the reaction is
driven by the temperature at a single site. This kind of phenomena is observed
in biological systems and in chemical reaction diffusion processes in which the
reaction takes place only at some local sites. For more physical motivation see
for instance [4] and [7].
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In this paper, we are interested in the numerical study of the above problem.
Let I be a positive integer, and consider the grid x; = ih, 0 < i < I, where
h = 2l/I. We approximate the solution u of (1)—(3) by the solution Uy (t) =
(Uo(t),Ur(t),...,Ur(t))T of the following semidiscrete equations

(4) %Ui(t) — UL () +e(1 - Up(t) ™, 1<i<I—1, te(0,Th),

(5) Uo(t) =0, Ur(t)=0, te(0,T,),

where k is the integer part of the number I/2,
Uir1(t) — 2U;(t) + Ui—1 (¢)
h? ’

0o=0, =0, p;=pr 0<i<I, dt¢;>0, 0<i<k-—1,

82U (t) = 1<i<I—1,

+ P+l — @i
0" = " .

Here (0,T}) is the maximal time interval on which [|[Up(t)sc < 1 with
[Un(#)|oc = maxo<i<s [Ui(t)]. When the time T} is finite, we say that Up(t)
quenches in a finite time and the time Tf is called the quenching time of the
solution Uy, (t).

The theoretical study of quenching solutions for semilinear parabolic equations
has been the subject of investigations of many authors (see [3], [6], [7], [8]
and the references cited therein). In particular in [6] and [7], the author has
proved that under some assumptions, the solution of (1)-(3) quenches in a
finite time and the quenching time is estimated. Here we are interested in the
numerical study using the semidiscrete form defined in (4)—(6). We give some
assumptions under which the solution of (4)-(6) quenches in a finite time and
estimate its semidiscrete quenching time. We also show that the semidiscrete
quenching time converges to the theoretical one when the mesh size goes to
zero. A similar study has been undertaken in [1] and [6] for the phenomenon
of blow-up where the authors have considered the problem (1)—(3) in the case
where the reaction term (1 —u(0,t))? is replaced by (u(z,t))? with ¢ > 1 (we
say that a solution blows up in a finite time if it attains the value infinity in a
finite time). In the same way in [2] the numerical extinction has been studied
using some discrete and semidiscrete schemes (we say that a solution u extincts
in a finite time if it reaches the value zero in a finite time).

Our paper is written in the following manner. In the next section, we prove
some results about the discrete maximum principle. In the third section, un-
der some hypotheses, we show that the solution of the semidiscrete problem
quenches in a finite time and estimate its semidiscrete quenching time. In the
fourth section, we give a result about the convergence of semidiscrete quenching
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times in some cases where the quenching occurs. Finally, in the last section,
we give some numerical results to illustrate our analysis.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME
In this section, we give some lemmas which will be used later. The following

lemma is a semidiscrete version of the maximum principle.

Lemma 2.1. Let ay(t) € C°([0, 7], RI*1) and let Vi, (t) € CL([0, T], RT*Y) such
that

(7) %v,-,(t) — 8Vi(t) +ax(O)Ve(t) >0, 1<i<I—1, te(0,T),
(8) Vo(t) 20, Vi(t) 20, te(0,T),
(9) Vi(0)>0, 0<i<I.

Then we have Vi(t) >0,0<i<1I,te€ (0,T).

Proof. Let Ty < T and let m = minOSiSI’OStSTO V;(t) Since for i € {0, ...,I},
Vi(t) is a continuous function, there exists to € [0,Tp] such that m = V;,(¢)
for a certain ig € {0,...,I}. Assume that m < 0. If ig = 0 or ip = I, we have a
contradiction because of (8). For ig € {1,...,I — 1}, it is not hard to see that

dViy(to) _ .. Vi (to) — Vi, (to — k)
— <
(10) dt ;1136 k =0,
(11) 52‘/;_0 (tO) _ VvioJrl(tO) - 2‘/;0 (tO) + Vvio*l(to) > 0.

2
Define the vector Zj(t) = eV, (t) where ) is large enough that ay.(to) Vi (to) —

Am < 0. Use (10) and (11) to obtain dzigit(t(’) < 0 and §2Z;,(to) > 0, which
implies that

dZ;, (to)

(12) T — 52Zi0 (to) + 6>\t0 (ak(to)vk(t(]) - )\m) < 0.

On the other hand, from (7), we derive the following inequality
dz;, (t

Colt( O) - (52Zi0 (to) + €>\t0 (ak(tQ)Vk(to) — )\m) Z 0.

Therefore, we have a contradiction because of (12).
Another form of the maximum principle for semidiscrete equations is the com-
parison lemma below.
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Lemma 2.2. Let Vj,(t), Up(t) € C1([0,T],RI*Y) and f € CY(R x R,R) such
that for t € (0,T)

@%%yﬁﬁﬂw+fwﬂﬂ¢nzM§046%M0+fauWJ%léiSI*L
(14) VO(t) > UO(t)v VI(t) > UI(t)7

(15) Vi(0) > U;(0), 0<i<I.
Then we have V;(t) > U;(t), 0<i<1I, t € (0,T).
Proof. Introduce the vector Zp,(t) = Vi (t) — Up(t). A direct calculation yields

A0

= B Z(0) + £y (06,0 Z0(t) 2 0,
Zo(t) >0, Zi(t) >0,

ZZ(O) 2 07

where 0, is an intermediate value between U and V, and f, is the partial de-
rivative of f with respect to the second variable. Since f € C* then f,(0x(t),?)
is bounded on (0,7T). Use Lemma 2.1 to complete the rest of the proof.

The lemma below shows that when ¢ is between 1 and I — 1, then U;(¢) is
positive where Uy, (t) is the solution of the semidiscrete problem.

Lemma 2.3. Let Uy, be the solution of (4)—(6). Then we have
U(t) >0, 1<i<I-—1.

Proof. Let o = minj<;<;—1¢; and introduce the vector V}, defined by V; =

ae~Mtsin(inh), 0 <i < I, where \j, = %;(h”) Tt is not hard to see that
dm—ﬁmzdw—ﬁwza
dt dt

Uo(t) = Vb(t), U](t) = V](t) =0,

Ui(0) > Vi(0), 1<i<I—1.

We deduce from Lemma 2.2 that U;(t) > ae *#tsin(irh), 0 < i < I. This
implies that U;(t) >0, 1 < ¢ < I — 1, and the proof is complete.

The following lemma reveals that the solution Uy (t) of the semidiscrete problem
is symmetric and 6T U;(#) is positive when i is between 1 and k — 1.

Lemma 2.4. Let Uy, be the solution of (4)-(6). Then we have for t € (0,T}")
(16)  Ur_;(t)=Ui(t), 0<i<I, §tU;(t)>0,0<i<k-—1.
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Proof. Introduce the vector V}, defined as follows V;(t) = Ur_;(¢) for 0 < i < I.
It is not hard to see that V4 (t) is a solution of (4)—(6). It follows from Lemma
2.1 that Vj,(t) = Un(t). Now, define the vector Z(¢) such that

Zi(t) = Ui () = Ui(t), 0<i<k-—1,
and let to be the first ¢ > 0 such that Z;(¢t) > 0 for ¢ € [0,¢) but Z;,(to) = 0.
Without loss of the generality, we assume that iy is the smallest integer such
that Z;,(to) = 0. If ip = 0 then we have Ui(tg) = Uy(tg) = 0, which is a
contradiction because from Lemma 2.3. Uy (tg) > 0. It is easy to see that

(17) Migit(to)—ﬁzio(to):o, if 1<ig<k-—1.
On the other hand, we observe that
de;lit(to) _ ,112% Ziy (to) — ?‘0 (to — k) <0,
527 (to) = Zig+1(to) —2Z;y(to) + Ziy—1(to) S0, 1<ig<k-2.

B2
and we know that if 5o = k — 1,
52Zk,1(t0) = §2Uk(t0) — (SQUk,l(to)

_ Upa(to) — 2Uk(to) + Ur—1(to) — Ur(to) + 2Ur_1(to) — Ux—2(to)

= Iz .
Since k is the integer part of the number I/2, using the fact that the discrete
solution is symmetric, we have either Ugy1(t) = Uk_1(t) or Ugy1(t) = Uk(t).
In both cases, we find that

Z—2(to)
72

The above inequalities imply that dzlgit(t“) —8%Z;,(tg) < 0, which is a contra-
diction because of (17) and the proof is complete.

A discrete version of the Green’s formula is the following

82 Z;,(to) = > 0.

Lemma 2.5. Let Up(t) and V3 (t) two vectors such that Uy(t) =0, Ur(t) =0,
Vo(t) =0, Vi(t) = 0. Then we have

I-1 I-1
(18) SO hUSV; = 37 RV
i=1 i=1
Proof. A routine calculation yields
Ii:th.(;?V_ — Ii:lhv_ézU_ + ViUr—1 —UiVi_1 + VoUy — UgVy
3 1 7 7 h
i=1 i=1

and the result follows using the assumptions of the lemma.
Now, let us state a result on the operator 62.
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Lemma 2.6. Let Uy € C°([0,T], RI™Y) such that Uy > 0. Then we have
(1 —U)? > p(1 — U)P~15%Ui(t)  for 1<i<TI—1.

Proof. Using Taylor’s expansion, we get

1
(1 —U)P = p(1 — U)P 182U (t) + (Ui — Ui)QLZ; )9§"2
+(Ui-1 — Ui)ﬂ%ﬂf%ﬁ 1<i<TI—1,

where 6; is an intermediate value between U; and U;;1 and 7; the one between
U; and U;_1. The result follows taking into account the fact that U is non-
negative.

To end this section, let us give another property of the operator §2.

Lemma 2.7. Let V), and Uy, € C*([0,T],RI*1). If
(19) ST(U)ST (Vi) >0, and & (U;))6~ (Vi) >0,
then
(U V) > U; 6% (V;) + V;62(Uy),

where 6T (U;) = % and 6~ (U;) = %
Proof. A straightforward computation yields
R252(UV;) = U1 Vigr — 22UV + U1 Vi 4

= (Uip1 = U)(Vigr = Vi) + Vi(Uigr — Uy) + Us(Vigr — V) + UV = 2U,V;

+ (Uic1 = U))(Vier = Vi) + (Uizr = Ug) Vi + Ui (Vier = Vi) + Ui Vi,
which implies that

82U Vi) = 6T (U:)0F (Vi) + 6 (U3)6~ (Vi) + Uid* (Vi) + Vo (Uy).

Using (19), we obtain the desired result.

3. QUENCHING SOLUTIONS

In this section, under some assumptions, we show that the solution of the
semidiscrete problem quenches in a finite time and estimate its semidiscrete
quenching time.

The statement of our first result on quenching is the following

Theorem 3.1. Suppose that there exists a constant A > 0 and such that the
initial data at (4) satisfies

(20) §2p; +e(1 — ;)P > Asin(ihm)(1 — ;)" P, 0<i<I,
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and

_ 2m?
Alp+1)

Then the solution Uy (t) of (4)-(6) quenches in a finite time T} which estimated

as follows

(21) (1= llenllsc)** > 0.

272

1
Th < ——in(l—- ——
9= g2 I Al(p+1)

(1= llenlloc)*H).
Proof. Since (0,7}") is the maximal time interval on which [|Up(t)[|e < 1, our

aim is to show that T,;L is finite and satisfies the above inequality. Introduce
the function J,(t) defined as follows

d
Ji(t) = an(t) -G =-U;(t)7P, 0<i<I,
where C;(t) = Ae *ntsin(ihr), with A, = %{j(wh) A straightforward com-
putation reveals that
dJl 2 d dUl 2 _ dCl —p—1 dUl
_825 = = _ 52U — (1 — U P po(1 — ;)P 2E
di 0°J; dt( dt d Uz) ( Uz) dt pOz( Uz) dt

+ (Ci(1-U;)7P).
From Lemma 2.6 and 2.7, the last term on the right hand side of the equality
§2(Ci(1-U;)~P) is bounded from below by (1-U;)"?§2C;+p(1-U;)"P~1C;62U;
due to the fact 67 (C;)d0*T (1 — U;)™? and 6~ (C;)d (1 — U;)~P are nonnegative
because the results of Lemma 2.4 hold for U (t) and Cp,(t). We deduce that

dJi(t) d dU;(t) dC;(t)

_ 527 — 52UJ; —(1—-U)""P —_52C.
7 6 Ji(t) = dt( 7 6°Ui(t)) — (1 = Us)77( 7 6°Ci(t))
e G I G Uy A )
Using (4) and the fact that 4 C;(t) — 62C;(t) = 0, we find that
dJ; o1 d e e
d;i _ 2> ep(1— U R (1 — )Lyt — )P
> ep(l=Up) P (Jr + Cr(1 = Up)™P) —ep(1 = Uy) P71Ci(1 — Uy) 77!
> ep(l=Up) P e +ep(l = Up) P(Ch(1 = U) P = Ci(1 = U;) 771,

From Lemma 2.4, U, > U;. We also observe that Cj, > C;. We deduce that
ar;
dt

It is not hard to see that Jy(t) = 0, J;(t) = 0 and the relation (20) implies that
Jr(0) > 0. It follows from Lemma 2.1 that Jp,(¢) is nonnegative, which implies

— 02T > ep(1 —Up) P71y, 1<i<TI—1.
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that
dU; )
> 0(1-U)™P, 0<i<I.
dt
Using Taylor’s expansion, we find that cos(hm) > 1 — 72
An < 2. Obviously sin(khr) > % We deduce that
Uy, _ A _ 2, _ _
k> STt - Po0<i<lI.
7 2 5¢ (1-Up)™?, 0<i<
This inequality may be rewritten as follows

h2

%, which implies that

A _ >
(22) (1 — Up)PdU,, > 5@*“ tdt.
Integrating this inequality over (0,7 qh), we arrive at

Al — e ™ Td) _ (1= (o)
272 - p+1

Y

which implies that

_x2Th 27‘(2 +1
e @ >1— ———(1—Ui(0))P"".
)
Since ||Up(0)|loc = Ug(0), the restriction on the initial data in (21) implies that
the term on the right hand side of the above inequality is positive. Therefore
we find that
272

m(l - ||90h||oo)p+1)~

1
h

Remark 3.1. Integrating the inequality in (22) over (tO,T;L), we get

272
Alp+1)

The proof of the above theorem allows us to establish the estimation in Remark
3.1 which is crucial to prove the convergence of the semidiscrete quenching time.
When the initial data is null, the hypotheses of Theorem 3.1 are satisfied if the
parameter ¢ is large enough. The theorem below also shows that e is large
enough, then the semidiscrete solution quenches in a finite time. In addition,
in this case the restriction on € is better than the one of Theorem 3.1.

1
T —ty < ——5ln(1 - ™0 (1 — [|Un(to) | oo)”+Y).

2

Theorem 3.2. Let v(0) = Zf;ll tan(Gh)sin(imh)p; and A\, = #@;(ﬂh) .
Assume that € > /\h#. Then the solution Uy (t) of (4)-(6) quenches in a
finite time T;” which is estimated as follows

i~ 1P — w(0))p
TS D
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Proof. Since (0,7}") is the maximal time interval on which [|Ux(t)||oc < 1, our
aim is to show that T;L is finite and satisfies the above inequality. Introduce
the function v(t) defined as follows

o(t) = Ztan(gh) sin(irh)Ui(t).
Take the derivative of v with respect to ¢ and use (4) to obtain
Ztan Ysin(inh)(62U;(t) + e(1 — Uy (t))™?

We observe that 62sin(imh) = —\sin(iwh). From the above equality and
Lemma 2.5, we arrive at

v (1) = =Apo(t) + (1 — Ug(t)) P Ztan ) sin(imh).

By a routine calculation, we find that Zi;l tan(
to the fact that Uy is bigger than v(t), we get

V)2 et - vy - 2 o),

It is not hard to see that v(t)(1—wv(t))? is bounded from above by supg<;<; s(1—
s)P = We deduce that

Sh)sin(imh) equals one. Due

- W
: AnpP _
v (t) =e(1- W)(l —v(t)7",
which implies that
Anp?

Integrating this inequality over (0,7}"), we find T} < (p ';(Qit)lé}rl Ug\021)02+1. We

conclude that th is finite and the proof is complete.

Remark 3.2. Since Uy(t) = ||Un(t)||co, it is easy to see that

Uy 1(t) — QUk(t) + Uk—l(t)
52U (t) = =2 5 <0.
Therefore, using (4), we get dU’“ > e(1 — Ug)™P which implies that (1 —

Up)PdUy > edt. Integrating thzs inequality over (0,T7), we arrive at T)" >

(A=)1UR(0)][oe) P
(p+1) ’

Thus we have a lower bound of the semidiscrete quenching

time.
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Remark 3.3. Consider the following semidiscrete scheme

d

%Vi(t):52m(t)+e(1—m(t))*p, 1<i<I—1, te(0,Ty),

‘/E)(t) =0, V[(t) =0, te (O,Th),

where (0,T},) is the mazimal time interval on which ||V (t)]|co < 1. We observe

that the above scheme is a semidiscretization of the continuous problem below

ut($,t) = uzm(xat) +5(1 - u(xvt))_pv (‘T7t) € (_lvl) X (OaT)
u(=l,t) =0, u(l,t)=0, te(0,T),

u(z,0) = uo(x) >0, ze(=11).

Let Uy(t) be the solution of (4)-(6), we know from Lemma 2.4 that Uy > U;
for1 <i<I—1. We deduce that

CU1) > PUM) +<(1-U(e)#, 1<i<T—1, te.T))

Uo(t) =0, Ur(t)=0, te(0,T)),

Ui(0) =i, 0<i<I

Setting Zn(t) = Up(t) — Vi(t), it is not hard to see that
d

£Zi — 6% Z; —ep(1 =€) P71Z; >0, 1<i<I-—1, te(0,T}),

Zo(t) =0, Zl(t) =0, te (OaT}t)a

Z;(0)=0, 0<i<I,

where Ty = min{T}, T}, & is an intermediate value between U;(t) and Vi(t).
Modifying slightly the proof of Lemma 2.1, we find that Z,(t) > 0 for t €
(0,TF). In other words, we have Up(t) > Vi, (t) fort € (0,T}) and we conclude
that T < T,
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4. CONVERGENCE OF SEMIDISCRETE QUENCHING TIMES

In this section, under some assumptions, we show that the semidiscrete quench-
ing time for the solution of the semidiscrete problem converges to the real one
when the mesh size goes to zero. In order to prove this result, firstly, we prove
the convergence of the semidiscrete scheme by the following theorem on the
convergence of the semidiscrete scheme which is crucial for the proof on the
convergence of the semidiscrete quenching time.

We denote by up (t) = (u(zg,t), ..., u(zy, ).

Theorem 4.1. Assume that (1)-(3) has a solution u € C*1([0,1] x [0,T]) such
that ||u(x,t)|int = @ > 0. Suppose that the initial data at (6) satisfies

(23) len = un(0)]|oo = o(1) as h— 0.

Then, for h sufficiently small, the problem (4)-(6) has a unique solution Uy €
CH([0, T],RI*Y) such that

— — — 2
max [Un(6) = un(t) o = Olign — un(0)ow + %) a5 h—0.

Proof. Since u € C*!, there exist two positive constants K and M such that

e

(24) Wttzrrzlloo <K, |ulle <K, ep 2>—P—1 < M.

12
The problem (4)—(6) has for each h, a unique solution Uj, € C([0, T(f),R”l).
Let t(h) the greatest value of ¢ > 0 such that

(25) 1UR(t) = un(#)]loo < % for € (0,t(h)).

Since the value of the term on the left hand side of the inequality is null
when ¢ is equal zero, we deduce that t(h) > 0 for h sufficiently small. Let
t*(h) = min{t(h), T}. By the triangle inequality, we obtain

1Un()l[oo = [, D)oo = [[Un(t) = un(t)lloc  for te(0,¢%(h)),

which implies that
a o« .
(26) UL ()]0 > o — 5535 for te(0,t"(h)).
Let en(t) = Up(t) — un(x,t) be the error of discretization. Using Taylor’s
expansion, we have for ¢ € (0,t*(h)),
d h?

%ez(t) 5ez(t)—12umm(xz,t)+€p(1 &) P ei(t),

where ; is an intermediate value between U;(t) and u(x;,t). Using (24) and
(26), we arrive at

(27) d (1) — 6%e;(t) < Mle;(t)| + Kh?, 1<i<I—1.

dt"
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Let zj the vector defined by
zi = MVl — up(0)||oo + KR?), 0<i<I.

A direct calculation yields

d
azi—52zi>M|zi(t)|+Kh27 1<i<I-—1, te(0,t*(h)),

Zo > €g, 21 >e€j,

Zl(O) > 61'(0), 0<i< 1.

It follows from Lemma 2.2 that z; > e;(t) for t € (0,t*(h)), 0<¢<I. By
the same way, we also prove that z; > —e;(t) for ¢t € (0,t*(h)), 0 <4 < I, which
implies that

1UA(8) = un(D) oo < €MV lon = un(0) oo + KR?), t € (0,¢%(h)).

Let us show that ¢*(h) = T. Suppose that T' > t(h). From (25), we obtain
o)
(28) 5 = U (t(h) = un(t(h) oo < €MV (llon — un(0)loo + K?).

Since the term in the right hand side of (28) goes to zero as h tends to zero,
we deduce that § < 0, which is impossible. Consequently ¢*(h) = T', and we
obtain the desired result.

Now, we are in a position to prove our main theorem of this section.

Theorem 4.2. Suppose that the problem (1)-(3) has a solution u which quenches
in a finite time T, such that uw € C*1([0,1] x [0,T,)). Under the assumption
of Theorem 4.1, the problem (4)-(6) has a solution Uy(t) which quenches in a

finite time T;‘ and limy,_,o th =1T,.

Proof. Letting € > 0, there exists a positive constant p such that

7T2
(29)— ——In(1 — ﬁ

272
Since lim; 7, ||u(z,t)||oc = 1, there exist T1 < T, and |T, — T1| < § such that
1> |lu(z,t)||lc > 1—4§ fort € [T1,T,). From Theorem 4.1, the problem (4)—(6)

has a solution Uy, (t) such that ||Up(t) — un(t)||ec < § for t € [0, T>] where Ty =
T1+Tq

62”2T‘Z(1 — )Pt < for ze[l—p,1).

. Using triangular inequality, we get |[Up(t)||cc > |un(t)|loo — |Un(t) —
up(t)]|oo > 1—=5—5>1—p, fort € (0,72). From Theorem 3.1, Uy (t) quenches
at time T'. Using (29), we arrive at [T —T,| < [T} —To|+|To—T,| < 5+5 =,
which leads us to the desired result.
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5. NUMERICAL RESULTS
In this section, we consider the following explicit scheme.
n+1 n n n n
gt _gm g ey ™ 4 )

'3 7 _ i+1 (n)_ .
At = 5 +e(1-U0,")"?, 1<i<I-1,

UM =0, UM =0,
Ul=0, 0<i<I,

and the following implicit scheme

n+1 n n+1 n+1 n+1
Ui( D Ui( : _ Ui(+1 ) — 2Ui( )+ Ui(fl )

N h2 +e(1-UM)yP, 1<i<I—1,

Ut =0, Ut =0

Ul=0, 0<i<I,

where n > 0, k = £, At, = B2(1 — U]l o0)P ™, Atg = min{Z At,}, T =
>iso Aty

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256. The numerical quenching time
™ = Z?;& At; is computed at the first time when |T"+! —T"| < 10716, The
order(s) of the method is computed from

o — log((Tun — Ton)/(Ton — Th))
log(2) '

First case: ¢ = 9.

Table 1: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method

I " n CPU time | s
16 | 0.059321 | 448 - -
32 | 0.058758 | 1736 | - -
64 | 0.058617 | 6649 | - 2.00

128 | 0.058582 | 25353 | 1 2.02
256 | 0.058573 | 96383 | 4 1.97

Table 2: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method
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I T n CPU time | s
16 | 0.060274 | 444 - -
32 | 0.058988 | 1719 | - -
64 | 0.058674 | 6579 | - 2.04
128 | 0.058596 | 25072 | 2 2.02
256 | 0.058577 | 95259 | 12 2.04

Second case: £ = 10.

Table 3: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method

I T n CPU time | s
16 | 0.052837 | 402 - -
32 | 0.052267 | 1557 | - -
64 | 0.052125 | 5966 | - 2.01
128 | 0.052089 | 22746 | 1 1.99
256 | 0.052080 | 86459 | 4 2.01

Table 4: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I Tm n CPU time | s
16 | 0.053675 | 398 - -
32 | 0.052468 | 1542 | - -
64 | 0.052174 | 5903 | - 2.04
128 | 0.052102 | 22494 | 2 2.04
256 | 0.052083 | 85450 | 10 1.93

Third case: ¢ = 11.

Table 5: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method

I T n CPU time | s
16 | 0.047688 | 364 - -
32 [0.047112 | 1412 | - -
64 | 0.046969 | 5411 | - 2.02
128 | 0.046933 | 20629 | - 2.00
256 | 0.046924 | 78404 | 4 2.01

Table 6: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit




Euler method
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I ™ n CPU time | s
16 | 0.048435 | 360 - -
32 | 0.047291 | 1398 | - -
64 | 0.047013 | 5353 | - 2.05
128 | 0.046944 | 20400 | 2 2.02
256 | 0.046927 | 77487 | 10 2.03

From Remark 3.3, we have seen that the quenching time of the solution of our
problem is smaller than the one of the problem where the reaction term is not
local. In order to verify this assertion, we do the same experiments when the
reaction term is not local and is replaced by (1 — Ui(n))*p .

First case: ¢ =9.

Table 7: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method

I Tm n CPU time | s
16 | 0.061242 | 462 - -
32 | 0.060855 | 1802 - -
64 | 0.060760 | 6952 - 2.03
128 | 0.060737 | 26709 | - 2.05
256 | 0.060731 | 102312 | 4 1.95

Table 8: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I T n CPU time | s
16 | 0.062410 | 458 - -
32 |0.061141 | 1785 1 -
64 | 0.060832 | 6883 1 2.05
128 | 0.060755 | 26428 | 2 2.01
256 | 0.060736 | 101187 | 13 2.03

Second case: ¢ = 10.

Table 9: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method
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I T n CPU time | s
16 | 0.054197 | 412 - -
32 | 0.053779 | 1608 | - -
64 | 0.053677 | 6199 | - 2.04
128 | 0.053651 | 23796 | 1 1.98
256 | 0.053645 | 91070 | 4 2.12

Table 10: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I T n CPU time | s
16 | 0.055242 | 408 - -
32 |0.054034 | 1592 | - -
64 | 0.053740 | 6137 | - 2.05
128 | 0.053667 | 23544 | 2 2.02
256 | 0.053649 | 90060 | 11 2.03

Third case: ¢ = 11.

Table 11: Numerical quenching times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the explicit
Euler method

I " n CPU time | s
16 | 0.048673 | 372 - -
32 | 0.048228 | 1451 | - -
64 | 0.048119 | 5594 | - 2.04
128 | 0.048092 | 21456 | 1 2.02
256 | 0.048086 | 82050 | 3 2.17

Table 12: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I ™ n CPU time | s
16 | 0.049615 | 368 - -
32 | 0.048458 | 1437 | - -
64 | 0.048176 | 5537 | - 2.04
128 | 0.048107 | 21227 | 2 2.04
256 | 0.048089 | 81133 | 10 1.95
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