Conductividad térmica de una barra de cobre. Estudio experimental del transitorio

José A. Ibáñez, Francisco J. Abellán, Ramón P. Valerdi y José A. García Gamuz Departamento de Física. Universidad de Murcia. Campus de Espinardo. 30071 Murcia.

E-mail: jaibanez@um.es

(Recibido el 4 de Julio de 2008, aceptado el 27 de Agosto de 2008)

Resumen

La propagación del calor a lo largo de una barra metálica debe tener en cuenta el proceso de conducción a lo largo de la misma, así como los procesos de pérdidas caloríficas por convección y radiación que tienen lugar a través de su superficie lateral. Se presenta un procedimiento de índole experimental, para determinar la conductividad térmica (k), así como las pérdidas laterales (h), en una barra metálica de sección circular, mediante el seguimiento del transitorio que se desencadena cuando se calienta uno de sus extremos. La aplicación de un método en diferencias finitas permite el manejo sencillo de la información obtenida y conduce a resultados en buen acuerdo con los que aparecen en la literatura.

Palabras clave: Conductividad térmica, diferencias finitas.

Abstract

In the propagation of the heat through a metallic bar, the process of conduction must be considered through itself, as well as the processes of heat loss due to convection and radiation, which take place through its lateral surface. An experimental procedure is shown, to determine the thermal conductivity (k), and the lateral losses coefficient (h) in a circular cross-section metallic bar, by means of the study of the transitory state arising when one of its ends is heated. This study is carried out applying a method of finite differences, that allows us the simple management of the information obtained, leading us to similar results to those cited in the literature.

Keywords: Thermal conductivity, finite differences.

PACS: 01.50.Kw, 01.50.Lc, 01.50.Pa, 01.50.My

ISSN 1870-9095

I. INTRODUCCIÓN

El problema de la conducción del calor en sólidos ha sido ampliamente estudiado, estando disponibles soluciones para el mismo, bajo diversas condiciones de contorno, formas y dimensiones. En éste artículo fijamos nuestra atención sobre un sistema unidimensional (barra de cobre aislada lateralmente) y para él resolvemos numéricamente la ecuación diferencial en derivadas parciales que gobierna el campo térmico en la barra, a lo largo del transitorio que se genera tras poner en contacto uno de sus extremos con un foco de calor. Otros autores, han abordado el problema de forma más elemental [1], mediante el empleo de un procedimiento iterativo que evita el manejo de la ecuación diferencial del campo.

En los laboratorios de prácticas de Termodinámica, es frecuente el estudio de fenómenos de transporte de calor en diferentes sistemas, concretamente en barras metálicas con y sin aislamiento lateral. En el primer caso, se suele suponer el carácter perfecto del aislante prescindiendo por completo de las pérdidas laterales. Nuestro trabajo está orientado a alumnos de un primer curso de Termodinámica en los estudios de la Licenciatura de Física y de las Ingenierías Industrial y Química y en él se presenta un procedimiento experimental que tiene en cuenta tales pérdidas laterales y permite su evaluación junto con la determinación de la conductividad térmica, sobre la base de un modelo sencillo que aproxima el estudio del transitorio que se genera al calentar uno de los extremos de la barra, mediante aproximaciones con diferencias finitas.

En el apartado II desarrollamos un breve modelo teórico que conduce a la ecuación diferencial que gobierna el campo térmico en una barra de sección circular. En el apartado III se muestra el dispositivo experimental empleado, mientras que en el apartado IV se da cuenta del manejo de las medidas realizadas recurriendo a aproximaciones en diferencias finitas para las derivadas involucradas, mostrando también tablas y gráficos para la temperatura que corresponden al estudio del transitorio. Por último, el apartado V recoge los resutados obtenidos para la conductividad y el coeficiente de pérdidas laterales.

II. MODELO TEORICO

En el estudio de la propagación del calor en una barra metálica se debe tener en cuenta el proceso de

Lat. Am. J. Phys. Educ. Vol. 2, No. 3, Sept. 2008

conducción a lo largo de la misma, así como los procesos de pérdidas caloríficas por convección y radiación que tienen lugar a través de su superficie lateral. A tal efecto se considerará un elemento infinitesimal de barra, con volumen dV y espesor dx, siendo su sección constante S, como se muestra en la Figura 1.

La cantidad de calor absorbido por el elemento considerado en un intervalo de tiempo dx, será igual a la diferencia de valores entre el calor que recibe por conducción a través de su sección recta S en x y la que cede a través de su sección recta S en x+dx, que de acuerdo con la fórmula de Fourier [1].

FIGURA 1. Conducción a través de un elemento de barra.

$$\vec{J}_{q}^{*} = \frac{dQ}{dt} = -kS grad\theta, \qquad (1)$$

siendo \vec{J}_q^* la corriente calorífica en la dirección longitudinal de la barra en la posición *x* de la misma, de donde se sigue

$$dQ_{I} = -\pi r^{2} k \left[\left(\frac{\partial \theta}{\partial x} \right)_{x} - \left(\frac{\partial \theta}{\partial x} \right)_{x+dx} \right] dt , \qquad (2)$$

donde k es la conductividad térmica y siendo θ la temperatura en el punto genérico de la barra, de abcisa x (tomando el eje OX a lo largo de la barra y con el origen en el extremo más caliente de la misma) y donde r representa el radio de la misma.

La ecuación (2) mediante desarrollo por la fórmula de Taylor se puede expresar como

$$dQ_{I} = \pi r^{2} k \left(\frac{\partial^{2} \theta}{\partial x^{2}} \right)_{x} dx dt .$$
 (3)

El elemento de volumen considerado experimentará unas pérdidas caloríficas a través de su superficie lateral, por convección y radiación, descritas por la ley empírica de Newton, que para una temperatura del ambiente, θ_{α} , a la que se encuentra la barra, establece que la cantidad de calor que fluye hacia el exterior a través de las paredes laterales del elemento de volumen dV considerado en un intervalo de tiempo dt, es

$$dQ_2 = -h(\theta - \theta_a) 2\pi r dx dt , \qquad (4)$$

siendo h un parámetro que solo depende de la geometría del cuerpo y que recibe el nombre de coeficiente de pérdidas laterales.

La suma $dQ_1 + dQ_2$ representa la energía calorífica neta que recibe el elemento de volumen dV, de modo que si el incremento de temperatura que experimenta el mismo durante un tiempo dt es $d\theta$, se puede escribir

$$dQ_1 + dQ_2 = c\rho\pi r^2 dxd\theta , \qquad (5)$$

donde se ha tenido en cuenta que $dV = \pi r^2 dx$, siendo c y ρ el calor específico y la densidad de la barra, respectivamente.

Sustituyendo las ecuaciones (3) y (4) en la ecuación (5) se obtiene [2, 3]

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{c\rho}{k} \frac{\partial \theta}{\partial t} + \frac{2h}{kr} \left(\theta - \theta_a \right), \tag{6}$$

ecuación diferencial en derivadas parciales, cuya resolución conduce al campo térmico $\theta = \theta(x, t)$ en una barra de sección circular, con radio *r*. La ecuación anterior se puede escribir en la forma:

$$Y = KX + H \begin{cases} Y = T''/T, \ con \ T'' = \frac{\partial^2 T}{\partial x^2} \\ X = \dot{T}/T, \ con \ \dot{T} = \frac{\partial T}{\partial t} \end{cases} T = \theta - \theta_a, \quad (7)$$

donde $K = \rho c/k$, y H = 2h/rk, con ρ densidad del material de la barra y *c* calor específico del mismo. El ajuste de los valores de *Y* frente a los de *X*, permitirá el cálculo de *K* y *H*, y por tanto de *k* y *h*.

III. DISPOSITIVO EXPERIMENTAL

En una barra de cobre de 48 cm de longitud, con una sección recta circular de 2 cm de diámetro, se sitúan sensores térmicos tipo semiconductor, cada 6 cm, lo que permite el seguimiento del transitorio que se origina, cuando se calienta uno de los extremos, merced a la acción de una resistencia eléctrica albergada en él, en tanto que el otro extremo penetra en un baño de agua, aislado térmicamente. La lectura de las diferentes temperaturas se visualiza en un dispositivo de medida, con salida digital, que permite la captación y registro de datos, mediante un programa informático, con el que se puede fijar el intervalo de tiempo deseado para el almacenamiento de las medidas (Figura 2). De esta forma, se consigue una recopilación de datos del tipo mostrado en la Tabla I, donde T_{ii} representa la diferencia entre la temperatura en la posición x_i de la barra en el instante t_i , y a la temperatura ambiente θ_a .

FIGURA 2. Montaje experimental en el que puede verse la resistencia calefactora extraída de la barra y colocada sobre el extremo izquierdo de la misma y el vaso Dewar en el que entra el extremo derecho de ésta.

IV. MANEJO DE LAS MEDIDAS

La gráfica de la Figura 3, muestra la evolución espaciotemporal de la temperatura en la barra, cuando ésta se aisla lateralmente con *armaflex* y se hace un seguimiento del transitorio durante 3000 s, con las lecturas registradas cada minuto, recogiéndose en la Tabla I del minuto 15 en adelante.

Para el manejo de la ecuación (7), recurriremos a aproximar las derivadas implicadas, mediante incrementos finitos, y así para cada instante t_i en la posición x_i

FIGURA 3. Evolución espacio-temporal de la temperatura en una barra de cobre, con aislamiento lateral.

$$\begin{cases} T''_{ji} = \frac{T\left(x_{i} + 2\Delta x, t_{j}\right) - 2T\left(x_{i} + \Delta x, t_{j}\right) + T\left(x_{i}, t_{j}\right)}{\left(\Delta x\right)^{2}}; Y_{ji} = \frac{T''_{ji}}{T_{ji}} \\ \dot{T}_{ji} = \frac{T\left(x_{i}, t_{j} + \Delta t\right) - T\left(x_{i}, t_{j}\right)}{\Delta t}; X_{ji} = \frac{\dot{T}_{ji}}{T_{ji}} \end{cases}$$
(8)

lo que permite construir la Tabla II. El carácter relativo respecto de T_{ij} , de Y_{ij} y X_{ij} , hace que para valores pequeños de T_{ij} , los valores de estas magnitudes se dispersen mucho, lo que se evita prescindiendo de los datos correspondientes a los 15 primeros minutos del experimento (en nuestro caso).

TABLA I. Tabla tipo para la recogida de datos T_{ij} , donde x_j es la distancia entre el punto de registro *i*-ésimo y el extremo caliente de la barra ($\Delta x = x_{i+1} - x_i = 6 \text{ cm}$).

Tiempo (s) \downarrow	x_{l}	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	← Posición (cm)	Temp baño (°C)
t_i	T_{il}	T_{i2}	T_{i3}	T_{i4}	T_{i5}	<i>T</i> _{<i>i</i>6}	$T_{\theta} = \theta(\mathbf{x}_{j}, \mathbf{t}_{i}) - \theta_{a} (^{\circ}\mathrm{C})$	θ (H ₂ O)
registros para Tabla I (bis)						registros pa	ra Tabla VII	

TABLA I (bis). Valores numéricos de los incrementos térmicos en relación al ambiente en cada uno de los puntos de registro, a partir del minuto 15 desde el inicio. Temperatura ambiente: 21,4 °C y tiempo entre medidas: 60 s.

Tiempo (t_i) (s)	T_{il}	T_{i2}	T_{i3}	T_{i4}	T_{i5}	T_{i6}
887,0000	41,4000	32,6000	25,7000	20,5000	17,0000	13,0000
946,0000	43,1000	34,2000	27,4000	22,0000	18,3000	14,1000
1005,0000	44,8000	35,9000	29,0000	23,4000	19,6000	15,3000
1064,0000	46,4000	37,5000	30,5000	24,8000	20,9000	16,4000
1123,0000	48,0000	39,0000	32,0000	26,2000	22,1000	17,5000
1182,0000	49,4000	40,3000	33,2000	27,5000	23,3000	18,5000
1241,0000	50,9000	41,7000	34,6000	28,8000	24,5000	19,4000
1300,0000	52,2000	43,1000	35,8000	29,9000	25,6000	20,4000
1359,0000	53,6000	44,4000	37,0000	31,1000	26,6000	21,4000
1418,0000	54,9000	45,6000	38,2000	32,1000	27,6000	22,1000
1477,0000	56,1000	46,8000	39,4000	33,2000	28,6000	23,0000
1536,0000	57,3000	47,8000	40,2000	34,2000	29,5000	23,8000

José A. Ibáñez, Francisco J. Abellán, Ramón P. Valerdi y José A. García Gamuz

1595,000058,300048,800041,200035,100030,200024,50001654,000059,300049,900042,200035,900031,100025,50001713,000060,400050,900043,000036,700032,000026,20001772,000061,400051,800044,300037,900032,900026,90001832,000062,600053,000044,900038,900033,800027,60001891,000063,400054,000045,900039,600034,600028,40001950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1713,000060,400050,900043,000036,700032,000026,20001772,000061,400051,800044,300037,900032,900026,90001832,000062,600053,000044,900038,900033,800027,60001891,000063,400054,000045,900039,600034,600028,40001950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
1772,000061,400051,800044,300037,900032,900026,90001832,000062,600053,000044,900038,900033,800027,60001891,000063,400054,000045,900039,600034,600028,40001950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,100029,70002068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
1832,000062,600053,000044,900038,900033,800027,60001891,000063,400054,000045,900039,600034,600028,40001950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,100029,70002068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
1891,000063,400054,000045,900039,600034,600028,40001950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,100029,70002068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
1950,000064,300054,800046,800040,400035,400029,10002009,000065,100055,600047,500041,300036,100029,70002068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
2009,000065,100055,600047,500041,300036,100029,70002068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
2068,000065,900056,300048,400042,000036,700030,30002127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
2127,000066,700057,200049,100042,700037,400030,90002186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
2186,000067,400057,800049,700043,400037,700031,40002245,000068,200058,300050,400043,900038,400032,00002304,000068,900059,100050,900044,400039,100032,6000
2245,0000 68,2000 58,3000 50,4000 43,9000 38,4000 32,0000 2304,0000 68,9000 59,1000 50,9000 44,4000 39,1000 32,6000
2304,0000 68,9000 59,1000 50,9000 44,4000 39,1000 32,6000
2363,0000 69,8000 60,0000 51,7000 45,2000 39,8000 33,3000
2422,0000 70,5000 60,6000 52,2000 45,7000 40,2000 33,5000
2481,0000 70,8000 60,9000 52,7000 46,4000 40,7000 33,8000
2540,0000 71,5000 61,5000 53,8000 47,2000 41,3000 34,3000
2600,0000 72,1000 62,1000 54,4000 47,7000 41,9000 34,8000
2659,0000 72,5000 62,6000 54,8000 48,1000 42,3000 35,2000
2718,0000 72,7000 63,1000 55,2000 48,5000 42,7000 35,6000
2777,0000 73,2000 63,3000 55,9000 49,0000 43,1000 36,1000
2836,0000 73,6000 63,8000 56,3000 49,5000 43,4000 36,4000
2895,0000 74,2000 64,2000 56,5000 49,7000 43,7000 36,8000
2954,0000 74,6000 64,7000 56,6000 50,1000 44,1000 37,3000

TABLA II. Valores relevantes de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo $\Delta x=6$ cm.

	x_{l}	<i>x</i> ₂	x_3	x_4	x_5	x_6
t_i	Y_{il}	Y_{i2}	Y_{i3}	Y_{i4}		
	X _{il}	X_{i2}	X _{i3}	X_{i4}	X_{i5}	X _{i6}

TABLA II (bis). Valores numéricos de los parámetros Y_{ji} y X_{ji} correspondientes a cinco minutos de calentamiento, a partir del minuto 15.

	cm ⁻²				s ⁻¹			
<i>t</i> (s)	$\left(T_{I}^{''}/T_{I}\right) \times 10^{3}$	$\left(T_2''/T_2\right) \times 10^3$	$\left(T_{3}^{''}/T_{3}\right) \times 10^{3}$	$\left(T_4''/T_4\right) \times 10^3$	$\left(\dot{T}_{_{I}}/T_{_{I}}\right) \times 10^{3}$	$\left(\dot{T}_2/T_2\right) \times 10^3$	$\left(\dot{T}_{_3}/T_{_3}\right) \times 10^3$	$\left(\dot{T}_{4}/T_{4}\right) \times 10^{3}$
887,0	1,2748e-3	1,4485e-3	1,8374e-3	-1,5244e-3	6,9598e-4	8,3186e-4	1,1212e-3	1,2402e-3
946,0	1,3534e-3	1,1371e-3	1,7234e-3	-1,4205e-3	6,6853e-4	8,4250e-4	9,8973e-4	1,0786e-3
1005,0	1,2401e-3	1,0059e-3	1,7241e-3	-1,3355e-3	6,0533e-4	7,5539e-4	8,7668e-4	1,0141e-3
1064,0	1,1375e-3	9,6296e-4	1,6393e-3	-1,5121e-3	5,8445e-4	6,7797e-4	8,3356e-4	9,5681e-4
1123,0	1,1574e-3	8,5470e-4	1,4757e-3	-1,1927e-3	4,9435e-4	5,6497e-4	6,3559e-4	8,4099e-4
1182,0	1,1246e-3	9,6498e-4	1,2550e-3	-1,3636e-3	5,1465e-4	5,8880e-4	7,1472e-4	8,0123e-4

La evolución temporal de las temperaturas en puntos equidistantes de la barra de cobre se refleja en la Figura 4 que corresponde a los cortes paralelos a la superficie dada en la Figura 3 en planos paralelos al plano coordenado (T_j , t_i) para las diferentes posiciones x_i (*i*=1,....,6) y para el vaso Dewar. La Figura 5 recoge la evolución temporal de

la temperatura a lo largo de la barra, a intervalos de 10 minutos entre 0 y 50 minutos y corresponde a los cortes de la superficie de la Figura 2 con planos paralelos al plano coordenado (T_j , x_j), para los instantes indicados, cuyos valores aparecen recogidos en la Tabla III.

TABLA III. Evolución temporal de los incrementos de temperatura a lo largo de una barra de cobre.

		Incrementos de temp. T (°C), (tiempo (min))						
Posiciones x_i (cm)	<i>T</i> (0)	<i>T</i> (10)	T(20)	T(30)	T(40)	T(50)		
6,0	-0,9	30,6	49,4	61,4	70,5	74,6		
12,0	-0,8	22,5	40,3	51,8	60,6	64,7		
18,0	-0,8	16,4	33,2	44,3	52,2	56,6		
24,0	-0,6	11,9	27,5	37,9	45,7	50,1		
30,0	-0,8	9,1	23,3	32,9	40,2	44,1		
36.0	-0.6	6.2	18.5	26.9	33.5	37.3		

FIGURA 4. Evolución temporal de las temperaturas en puntos equidistantes de una barra de cobre, con aislamiento lateral.

FIGURA 5. Evolución temporal de los incrementos de temperatura a lo largo de una barra de cobre, con aislamiento lateral.

Por otra parte, como los errores de \dot{T}_{ij} y T''_{ij} son inversamente proporcionales, respectivamente, a Δt y a $(\Delta x)^2$, interesa fijar adecuadamente el valor de estos parámetros. Por este motivo resulta conveniente fijar un intervalo temporal de registro no demasiado pequeño y que en nuestro caso ha sido de 1 min. En cuanto a Δx , el intervalo de 6 cm fijado "*a priori*" introduce demasiado error, por lo que se optó por duplicarlo, de modo que los datos a manejar, son los recogidos en las Tablas IV, IV (bis), V y V (bis).

TABLA IV. Valores relevantes de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo $\Delta x=12$ cm (posiciones impares).

<i>t</i> (s)	$(T_I'' / T_I) \times 10^3 (\text{cm}^{-2})$	$\left(\dot{T}_{I}/T_{I}\right) \times 10^{3} \text{ (s}^{-1})$	$(\dot{T}_3 / T_3) \times 10^3 (\text{s}^{-1})$	$(\dot{T}_5 / T_5) \times 10^3 (s^{-1})$
887,0000	1,1742e-3	6,8438e-4	1,1025e-3	1,2745e-3
946,0000	1,0634e-3	6,5739e-4	9,7324e-4	1,1840e-3
1005,0000	9,9206e-4	5,9524e-4	8,6207e-4	1,1054e-3
1064,0000	9,4289e-4	5,7471e-4	8,1967e-4	9,5694e-4
1123,0000	8,8252e-4	4,8611e-4	6,2500e-4	9,0498e-4
1182,0000	8,8563e-4	5,0607e-4	7,0281e-4	8,5837e-4
1241,0000	8,4589e-4	4,2567e-4	5,7803e-4	7,4830e-4
1300,0000	8,2482e-4	4,4700e-4	5,5866e-4	6,5104e-4
1359,0000	8,0328e-4	4,0423e-4	5,4054e-4	6,2657e-4
1418,0000	7,7160e-4	3,6430e-4	5,2356e-4	6,0386e-4
1477,0000	7,3034e-4	3,5651e-4	3,3841e-4	5,2448e-4
1536,0000	7,7564e-4	2,9087e-4	4,1459e-4	3,9548e-4
1595,0000	7,2661e-4	2,8588e-4	4,0453e-4	4,9669e-4
1654,0000	7,0264e-4	3,0916e-4	3,1596e-4	4,8232e-4
1713,0000	7,3584e-4	2,7594e-4	5,0388e-4	4,6875e-4
1772,0000	6,4468e-4	3,2573e-4	2,2573e-4	4,5593e-4
1832,0000	7,3216e-4	2,1299e-4	3,7120e-4	3,9448e-4
1891,0000	6,7911e-4	2,3659e-4	3,2680e-4	3,8536e-4
1950,0000	6,5880e-4	2,0736e-4	2,4929e-4	3,2957e-4
2009,0000	6,6138e-4	2,0481e-4	3,1579e-4	2,7701e-4
2068,0000	6,1120e-4	2,0233e-4	2,4105e-4	3,1789e-4
2127,0000	6,1428e-4	1,7491e-4	2,0367e-4	1,3369e-4
2186,0000	5,8729e-4	1,9782e-4	2,3474e-4	3,0946e-4
2245,0000	5,9058e-4	1,7107e-4	1,6534e-4	3,0382e-4
2304,0000	6,2490e-4	2,1771e-4	2,6195e-4	2,9838e-4
2363,0000	6,1684e-4	1,6714e-4	1,6119e-4	1,6750e-4
2422,0000	6,2057e-4	7,0922e-5	1,5964e-4	2,0730e-4
2481,0000	5,9832e-4	1,6478e-4	3,4788e-4	2,4570e-4
2540,0000	5,0505e-4	1,3986e-4	1,8587e-4	2,4213e-4
2600,0000	5,0085e-4	9,2464e-5	1,2255e-4	1,5911e-4
2659,0000	4,9808e-4	4,5977e-5	1,2165e-4	1,5760e-4
2718,0000	4,7761e-4	1,1463e-4	2,1135e-4	1,5613e-4
2777,0000	4,2691e-4	9,1075e-5	1,1926e-4	1,1601e-4
2836,0000	4,1516e-4	1,3587e-4	5,9207e-5	1,1521e-4
2895,0000	4,5860e-4	8,9847e-5	2,9499e-5	1,5256e-4
2954,0000	5,1199e-4			

TABLA IV (bis). Valores numéricos de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo Δx =12 cm, a partir del minuto 15 (posiciones impares).

TABLA V. Valores relevantes de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo $\Delta x=12$ cm (posiciones pares).

	λ	2	х	4	х	6
t_i	Y_{i2}	X_{i2}		X_{i4}		X_{i6}

TABLA V (bis). Valores numéricos de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo Δx =12 cm, a partir del minuto 15 (posiciones pares).

<i>t</i> (s)	$(T_2''/T_2) \times 10^3 (\mathrm{cm}^{-2})$	$(\dot{T}_2/T_2) \times 10^3 (\text{s}^{-1})$	$(\dot{T}_4 / T_4) \times 10^3 (\text{s}^{-1})$	$(\dot{T}_6 / T_6) \times 10^3 (s^{-1})$
887,0000	9,7989e-4	8,1800e-4	1,2195e-3	1,4103e-3
946,0000	8,7313e-4	8,2846e-4	1,0606e-3	1,4184e-3
1005,0000	8,5113e-4	7,4280e-4	9,9715e-4	1,1983e-3
1064,0000	7,9630e-4	6,6667e-4	9,4086e-4	1,1179e-3
1123,0000	7,3006e-4	5,5556e-4	8,2697e-4	9,5238e-4
1182,0000	6,5481e-4	5,7899e-4	7,8788e-4	8,1081e-4
1241,0000	5,8287e-4	5,5955e-4	6,3657e-4	8,5911e-4
1300,0000	5,9616e-4	5,0271e-4	6,6890e-4	8,1699e-4
1359,0000	5,6306e-4	4,5045e-4	5,3591e-4	5,4517e-4
1418,0000	5,3302e-4	4,3860e-4	5,7113e-4	6,7873e-4

Conductividad térmica de una barra de cobre. Estudio experimental del transitorio

				-
1477,0000	5,0451e-4	3,5613e-4	5,0201e-4	5,7971e-4
1536,0000	4,6490e-4	3,4868e-4	4,3860e-4	4,9020e-4
1595,0000	4,4114e-4	3,7568e-4	3,7987e-4	6,8027e-4
1654,0000	5,0100e-4	3,3400e-4	3,7140e-4	4,5752e-4
1713,0000	5,0480e-4	2,9470e-4	5,4496e-4	4,4529e-4
1772,0000	3,8878e-4	3,8610e-4	4,3975e-4	4,3371e-4
1832,0000	3,6688e-4	3,1447e-4	2,9991e-4	4,8309e-4
1891,0000	4,1152e-4	2,4691e-4	3,3670e-4	4,1080e-4
1950,0000	3,9284e-4	2,4331e-4	3,7129e-4	3,4364e-4
2009,0000	3,3723e-4	2,0983e-4	2,8249e-4	3,3670e-4
2068,0000	3,2070e-4	2,6643e-4	2,7778e-4	3,3003e-4
2127,0000	3,2780e-4	1,7483e-4	2,7322e-4	2,6969e-4
2186,0000	2,8835e-4	1,4418e-4	1,9201e-4	3,1847e-4
2245,0000	2,9779e-4	2,2870e-4	1,8983e-4	3,1250e-4
2304,0000	3,4076e-4	2,5381e-4	3,0030e-4	3,5787e-4
2363,0000	3,3565e-4	1,6667e-4	1,8437e-4	1,0010e-4
2422,0000	3,0941e-4	8,2508e-5	2,5529e-4	1,4925e-4
2481,0000	2,1666e-4	1,6420e-4	2,8736e-4	2,4655e-4
2540,0000	1,5808e-4	1,6260e-4	1,7655e-4	2,4295e-4
2600,0000	1,6774e-4	1,3419e-4	1,3976e-4	1,9157e-4
2659,0000	1,7749e-4	1,3312e-4	1,3860e-4	1,8939e-4
2718,0000	1,8709e-4	5,2826e-5	1,7182e-4	2,3408e-4
2777,0000	1,5359e-4	1,3165e-4	1,7007e-4	1,3850e-4
2836,0000	1,3062e-4	1,0449e-4	6,7340e-5	1,8315e-4
2895,0000	1,7307e-4	1,2980e-4	1,3414e-4	2,2645e-4
2954,0000	1,9320e-4			

Los valores recogidos en la Tabla VI corresponden a las siguientes magnitudes, cuyas cuantías se obtienen de los valores registrados en las Tablas IV (bis) y V (bis)

columna 2: derivada segunda espacial	Promedio de los valores de esta
relativa de T	magnitud en Tablas IV(bis) y V(bis)
columna 3: derivada primera temporal	Promedio por filas de los valores de
relativa de T	esta magnitud en Tabla IV(bis)
columna 4: derivada primera temporal	Promedio por filas de los valores de
relativa de T	esta magnitud en Tabla V(bis)
columna 5: valor medio de la derivada	Promedio por filas de las columnas 3
primera temporal relativa de T	y 4 anteriores (Tabla VII)

TABLA VI. Valores numéricos de los promedios de los parámetros Y_{ji} y X_{ji} para el cálculo de los valores de H y K con intervalo $\Delta x=12$ cm, a partir del minuto 15.

t(s)	$Y = (T' / T) \times 10^3 (\text{cm}^{-2})$	$\left(\dot{T} / T\right)_{(media1)} \times 10^3$	$\left(\dot{T} / T\right)_{(media2)} \times 10^3$	$X = (\dot{T} / T) \times 10^3 (s^{-1})$
887,0000	1,0770e-3	1,0205e-3	1,1493e-3	1,0849e-3
946,0000	9,6828e-4	9,3820e-4	1,1025e-3	1,0203e-3
1005,0000	9,2160e-4	8,5425e-4	9,7940e-4	9,1683e-4
1064,0000	8,6959e-4	7,8377e-4	9,0847e-4	8,4612e-4
1123,0000	8,0629e-4	6,7203e-4	7,7830e-4	7,2517e-4
1182,0000	7,7022e-4	6,8908e-4	7,2589e-4	7,0749e-4
1241,0000	7,1438e-4	5,8400e-4	6,8508e-4	6,3454e-4
1300,0000	7,1049e-4	5,5223e-4	6,6287e-4	6,0755e-4
1359,0000	6,8317e-4	5,2378e-4	5,1051e-4	5,1714e-4
1418,0000	6,5231e-4	4,9724e-4	5,6282e-4	5,3003e-4
1477,0000	6,1743e-4	4,0646e-4	4,7928e-4	4,4287e-4
1536,0000	6,2027e-4	3,6698e-4	4,2582e-4	3,9640e-4
1595,0000	5,8387e-4	3,9570e-4	4,7861e-4	4,3715e-4
1654,0000	6,0182e-4	3,6914e-4	3,8764e-4	3,7839e-4
1713,0000	6,2032e-4	4,1619e-4	4,2832e-4	4,2225e-4
1772,0000	5,1673e-4	3,3580e-4	4,1985e-4	3,7783e-4
1832,0000	5,4952e-4	3,2622e-4	3,6582e-4	3,4602e-4
1891,0000	5,4532e-4	3,1625e-4	3,3147e-4	3,2386e-4

José A. Ibáñez, Francisco J. Abellán, Ramón P. Valerdi y José A. García Gamuz

· · · · · · · · · · · · · · · · · · ·				
1950,0000	5,2582e-4	2,6207e-4	3,1941e-4	2,9074e-4
2009,0000	4,9930e-4	2,6587e-4	2,7634e-4	2,7110e-4
2068,0000	4,6595e-4	2,5376e-4	2,9141e-4	2,7258e-4
2127,0000	4,7104e-4	1,7076e-4	2,3925e-4	2,0500e-4
2186,0000	4,3782e-4	2,4734e-4	2,1822e-4	2,3278e-4
2245,0000	4,4419e-4	2,1341e-4	2,4368e-4	2,2854e-4
2304,0000	4,8283e-4	2,5935e-4	3,0399e-4	2,8167e-4
2363,0000	4,7624e-4	1,6528e-4	1,5038e-4	1,5783e-4
2422,0000	4,6499e-4	1,4595e-4	1,6235e-4	1,5415e-4
2481,0000	4,0749e-4	2,5279e-4	2,3270e-4	2,4275e-4
2540,0000	3,3157e-4	1,8929e-4	1,9404e-4	1,9166e-4
2600,0000	3,3429e-4	1,2471e-4	1,5518e-4	1,3994e-4
2659,0000	3,3779e-4	1,0841e-4	1,5370e-4	1,3106e-4
2718,0000	3,3235e-4	1,6070e-4	1,5291e-4	1,5681e-4
2777,0000	2,9025e-4	1,0878e-4	1,4674e-4	1,2776e-4
2836,0000	2,7289e-4	1,0343e-4	1,1833e-4	1,1088e-4
2895,0000	3,1583e-4	9,0634e-5	1,6346e-4	1,2705e-4
2954,0000	3,5259e-4			

FIGURA 6. Ajuste de los datos correspondientes a la Tabla VII

V. RESULTADOS Y DISCUSION

La representación gráfica de los datos de Y frente a X recogidos en la Tabla VI (Figura 6) y el subsiguiente ajuste por mínimos cuadrados conduce a los siguientes resultados

$$K = \frac{\rho c}{k} = 0,7308 \frac{cm^{-2}}{s},$$
$$H = \frac{2h}{rk} = 2,7032 \times 10^{-4} \, cm^{-2},$$

con un coeficiente de correlación r=0.98. Con estos resultados y habida cuenta de que para una temperatura ambiente media de 22,3 °C (295,45 K), el valor de la densidad del cobre es $\rho=8.96 \ g/cm^3$ y su calor específico sigue la fórmula [4] $c_p=22.6+10^{-2}T$ ($J \ mol^{-1}K^{-1}$), considerando que el peso atómico del cobre es $63.55 \ g/mol$, se obtiene los siguientes resultados

$k=1,08\pm0,04 \ cal \ s^{-1}cm^{-1}K^{-1},$ $h=1,6\times10^{-4} \ cal \ s^{-1}cm^{-2}K^{-1}.$

El primer valor muestra un acuerdo que podemos considerar aceptable, con una discrepancia frente al valor tabulado [5] (0,97 cal s⁻¹cm⁻¹K⁻¹) de un 10%, mientras que el segundo muestra unas pérdidas laterales prácticamente despreciables.

El valor de k también se puede deducir de la evolución térmica del agua del baño en contacto con la barra, habida cuenta que, el correspondiente balance calorífico en ausencia de pérdidas laterales, puede escribirse de forma aproximada como

$$Sk \frac{\Delta \theta}{L} = (mc + k^*) \frac{\Delta \theta_{(H_2 O)}}{\Delta t}, \qquad (9)$$

donde $\Delta \theta = T(1) \cdot T(6)$ que corresponde a la diferencia de temperatura entre los puntos 1 y 6 de la barra en cierto instante t_i , L la longitud de la misma y S su sección recta, siendo m la masa del agua del baño (700 g), c su calor específico, con k^* el equivalente del conjunto calorimétrico (15 g), e $\Delta \theta (H_2 O)$ el cambio térmico del baño en el intervalo de tiempo Δt_i .

Conocido éste, siempre es posible para cada uno de los instantes considerados, determinar el cociente incremental en la forma

$$\frac{\Delta \theta_{(H_2O)}}{\Delta t} = \frac{\theta_{(H_2O)} \left(t + \Delta t \right) - \Delta \theta_{(H_2O)} \left(t \right)}{\Delta t} \,. \tag{10}$$

De ésta manera, para cada instante se puede obtener un valor de k, y proceder luego al promediado de los valores obtenidos. Los resultados correspondientes se recogen en la Tabla VII. El valor medio encontrado para k es 1,05 cal s⁻¹cm⁻¹K⁻¹ en buen acuerdo con el resultado antes obtenido.

Conductividad térmica de una barra de cobre. Estudio experimental del transitorio

TABLA VII. Valores obtenidos para los parámetros de la ecuación (10) correspondientes al calentamiento a partir del minuto 15, mostrando los valores de *k* para cada instante de tiempo.

<i>t</i> (s)	T_{I} (°C)	<i>T</i> ₆ (°C)	$(\Delta Q/L)$ *S (°C cm)	$\theta(H_2O)$ (°C)	$\Delta\theta(H_2O)/\Delta t$ (°C/s)	<i>kfila</i> (cal s ⁻¹ cm ⁻¹ K ⁻¹)
887,0000	41,4000	13,0000	2,9740	22,1000	3,3333e-3	0,8014
946,0000	43,1000	14,1000	3,0369	22,3000	3,3333e-3	0,7848
1005,0000	44,8000	15,3000	3,0892	22,5000	3,3333e-3	0,7715
1064,0000	46,4000	16,4000	3,1416	22,7000	3,3333e-3	0,7586
1123,0000	48,0000	17,5000	3,1939	22,9000	5,0000e-3	1,1193
1182,0000	49,4000	18,5000	3,2358	23,2000	1,6667e-3	0,3683
1241,0000	50,9000	19,4000	3,2987	23,3000	6,6667e-3	1,4450
1300,0000	52,2000	20,4000	3,3301	23,7000	3,3333e-3	0,7157
1359,0000	53,6000	21,4000	3,3720	23,9000	5,0000e-3	1,0602
1418,0000	54,9000	22,1000	3,4348	24,2000	3,3333e-3	0,6939
1477,0000	56,1000	23,0000	3,4662	24,4000	6,6667e-3	1,3752
1536,0000	57,3000	23,8000	3,5081	24,8000	5,0000e-3	1,0191
1595,0000	58,3000	24,5000	3,5395	25,1000	5,0000e-3	1,0100
1654,0000	59,3000	25,5000	3,5395	25,4000	5,0000e-3	1,0100
1713,0000	60,4000	26,2000	3,5814	25,7000	5,0000e-3	0,9982
1772,0000	61,4000	26,9000	3,6128	26,0000	5,0000e-3	0,9895
1832,0000	62,6000	27,6000	3,6652	26,3000	6,6667e-3	1,3005
1891,0000	63,4000	28,4000	3,6652	26,7000	5,0000e-3	0,9754
1950,0000	64,3000	29,1000	3,6861	27,0000	5,0000e-3	0,9699
2009,0000	65,1000	29,7000	3,7071	27,3000	6,6667e-3	1,2858
2068,0000	65,9000	30,3000	3,7280	27,7000	5,0000e-3	0,9590
2127,0000	66,7000	30,9000	3,7490	28,0000	6,6667e-3	1,2715
2186,0000	67,4000	31,4000	3,7699	28,4000	5,0000e-3	0,9483
2245,0000	68,2000	32,0000	3,7909	28,7000	6,6667e-3	1,2574
2304,0000	68,9000	32,6000	3,8013	29,1000	5,0000e-3	0,9405
2363,0000	69,8000	33,3000	3,8223	29,4000	6,6667e-3	1,2471
2422,0000	70,5000	33,5000	3,8746	29,8000	6,6667e-3	1,2302
2481,0000	70,8000	33,8000	3,8746	30,2000	6,6667e-3	1,2302
2540,0000	71,5000	34,3000	3,8956	30,6000	6,6667e-3	1,2236
2600,0000	72,1000	34,8000	3,9060	31,0000	6,6667e-3	1,2203
2659,0000	72,5000	35,2000	3,9060	31,4000	6,6667e-3	1,2203
2718,0000	72,7000	35,6000	3,8851	31,8000	5,0000e-3	0,9202
2777,0000	73,2000	36,1000	3,8851	32,1000	8,3333e-3	1,5336
2836,0000	73,6000	36,4000	3,8956	32,6000	5,0000e-3	0,9177
2895,0000	74,2000	36,8000	3,9165	32,9000	6,6667e-3	1,2171
2954,0000	74,6000	37,3000	3,9060	33,3000		

VI. CONCLUSIONES

El procedimiento expuesto para el estudio del transitorio en una barra metálica, calentada por uno de sus extremos, ha permitido la determinación simultánea del coeficiente de pérdidas laterales y de la conductividad térmica de la misma y se ha basado en la elaboración de una Tabla de temperaturas en puntos adecuadamente espaciados de la misma, para intervalos de tiempo suficientemente amplios. El manejo de los datos, mediante expresiones en incrementos finitos, permite reducir el problema a un simple ajuste lineal por mínimos cuadrados, de cuya pendiente y ordenada en el origen, se deduce la información deseada.

REFERENCIAS

 Kinsler, M., Kinzel, E., *The Physics Teacher* 45, 382-385 (2007).
Ortega, M. R., Ibáñez, J. A., *Lecciones de Física. Termología 1* (DM, Murcia, 2003).
Díaz-Gilera, A., Am. J. Phys. 58, 779-780 (1990).
DeHoff, R. T., *Thermoddynamics in Materials Science*, (McGraw Hill, New York, 1993).
Benenson, W. *et al.*, *Handbook of Physics*, (Springer, New York, 2002).