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ABSTRACT 

This paper surveys lot-sizing and scheduling models emphasizing single and 
multiple stage production processes. It includes capacity – constrained and 
uncapacitated applications at different manufacturing stages. Instances of the single 
and multi-item lot-sizing problems with setup times often appear in practice, 
either in standard form or with additional constraints, but they have generally 
been difficult to solve to optimality. A system has been developed for the 
manufacturing environment, dealing with multiple products and having multiple 
assembly and sub-assembly lines capable of assembling more than one model and a 
manufacturing facility that produces the required parts is a multi-stage, multi-machine 
assembly line such as parallel machines or even parallel multistage machines. In this 
paper, formulations and solution procedures for different stages of manufacturing 
processes have been discussed and evaluated. Assumptions and variables are varied 
with respect to their algorithms.  

 
I. BACKGROUND AND METHODOLOGIES 

Capacity has several definitions such as design capacity, effective capacity, 
excess capacity, short-term capacity, long-term capacity, and constrained capacity.  
Most researchers  (Krajewski & Ritzman, 2001); (Meredith & Shafer, 2001); (Heizer & 
Render, 2003) agree that capacity is the ability to produce products or services, and 
effective capacity results, after considering the available factors of production and 
limitations imposed by product design and the process design. Process constraints limit 
the actual effective capacity of a production process.  Included in these process 
constraints are raw material availability, plant location, plant layout, design and method 
of processing machinery, skill levels and training of the process operators relative to the 
learning curve or manufacturing progress function (Meredith & Shafer, 2001), system 
or preventive maintenance strategy (Nicholas, 1998) and replacement plans for obsolete 
and inefficient processes.  Constrained capacity is effective capacity which is less than 
or equal to demand, and which limits the production output of the system. The limits on 
constrained capacity are caused by disruptions in product or service design including 
the product design itself, product quality requirements, required volume, location, price, 
or any possible combination of these.  Models and applications of the Continuous Time 
Lot-sizing and Scheduling Problem (CTLSP), including the Batching and Scheduling 
problem (BSP), it can be found in (Belvaux & Wolsey, 2000), (Drexl & Kimms, 1997). 
The proportional lot-sizing and scheduling problem occurs when the CSLP model does not 
use the full capacity of a period. In order to produce a certain item in a certain period of 
time, it is necessary to have the machine already configured either at the beginning or at 
the end of that period. Since the work of Trigiero, Thomas, and McClain, many other 
researchers have tried to find near-optimal solutions for MCL using heuristic methods. 
A multi-stage lot sizing problem involving multiple capacitated resources which are 
shared by different products is presented. The complexity of the problem is increased by 
various soft and hard constraints which model real-life planning situations. 
 
Multiple Products with Multiple Capacitated Batches 



Among the first to try to solve MCL were (Trigiero, Thomas, and McClain, 
1989), who used a heuristic that employs Lagrangean relaxation to obtain near optimal 
solutions to MCL. Since the Lagrangean solutions they obtained were not always 
feasible, they used a production smoothing heuristic that sought to shift production from 
the Lagrangean solution in order to obtain a feasible production plan. They were able to 
solve many of their test problems this way; however, with problems that had a tight 
capacity restriction, they were not always able to find a feasible solution. (Pochet & 
Wolsey,1991) and (Belvaux & Wolsey, 2000) have solved instances of MCL and 
related problems to optimality by strengthening the LP formulation with valid 
inequalities and then invoking a branch-and-bound algorithm. There are two obvious 
advantages of using such an approach. The first is that the algorithm, if it has time to 
terminate, finds a provably optimal solution. The second is that a feasible solution is 
found if one exists; this characteristic is not shared by the many heuristic methods (such 
as that proposed by Trigiero, Thomas, and McClain, 1989). A disadvantage of such an 
optimization approach is that it can require much time and memory, possibly an 
indefinite amount of both; however, this disadvantage has been mitigated somewhat in 
recent years by advances in computer technology and mathematical programming 
theory.  
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-  represent respectively the inventory and the backlog of product i at the end 
of period t and Xit represents the quantity of product i produced in period t. The data Dit 
are the demand of product i at the end of period t and hit the unit invent any holding cost 
of product i at the end of period t. Constraint (3) represents the capacity version 
of the problem ui is the capacity need for one unit of product i and CAPt   is the total 
capacity of machine at period t. ∑ui. Xit≤ CAPt                                 (3) 
 
Capacitated Format of Multiple Products 

The Multiple-Family ELSP with Safety Stocks: The ELSP with normally 
distributed, time-stationary demand is considered in a manufacturing setting where the 
relevant costs include family setup costs, item setup costs, and inventory holding costs 
for both cycle and safety stocks.  A family is a subset of the items that share a common 
family setup with its associated setup cost and setup time.  Each item within the family 
may have its own setup time and setup cost.  The families form a partition of the set of 
items manufactured on a single facility.  The Multiple-Family ELSP with safety stocks 
differs from multi-level inventory models with family setups in that the former assumes 
non-instantaneous inventory replenishment and considers the cost of holding safety 
stocks; the latter assumes instantaneous replenishment and does not directly assess the 
impact of safety stock levels on the total cost. The solution to the mathematical model is 
comprised of the basic period length, the family multipliers, and the item multipliers 
that give the lowest total cost of setups and carrying inventory.  The family multipliers 
and items multipliers are restricted to integer powers of two.  An efficient solution 
procedure is developed for this model.  Properties of the non-convex feasible space are 
identified and used in the solution approach. For a truly optimal solution, the product 
volume and product mix decisions must be coordinated with the economic run decisions 
to ensure that profit is maximized overall. To minimize the total of set-up and holding 



costs, the model in (Drexl & Kimms, 1997) is: 
 P   T 

Minimize  ∑  ∑ si.Yit+ hi. Iit       i =1,...,P;t =1,...,T (4) 
t=1 t=I 

Subject to 
Iit = Ii, t-1 + Xit  - Dit     i =1,...,P;t =1,...,T (5) 
 
ui. Xit≤ CAPt Yit;       i =1,...,P;t =1,...,T
 (6) 
 

      ∑ ui. Xit ≤ CAPt             i =1,...,P;t =1,...,T  (7) 
      

Yit €(0, 1)           i =1,...,P;t =1,...,T    (8) 
 
Iit  , Xit  ≥0                i =1,...,P;t =1,..., T  (9) 

CAPt / ui  is used as an upper bound on Xit in expression (6). A unit production cost ci 
can be also be inserted in the objective function, as follows:  

 P   T 
Minimize  ∑ ∑ si.Yit+ hi. Iit + ci Xit       i =1,...,P;t =1,...,T (10) 

                    t=1 t=1 
 

Modeling of Time Periods: Time and Other Capacity Dimensions 
Capacity is a time-related resource, if a unit of capacity for the immediate hour 

is not used this hour, it becomes a forgone, non-retrievable resource, and much of the 
attendant costs are incurred whether or not the capacity to produce is used.  If this 
process causes a bottleneck, or capacity constrained resource (CCR) (Chase et al. 2003), 
then the idle time of the processes before and after the bottleneck is also forgone.  The 
only savings attributable to this unused capacity are the deferred wages of process 
operators and possible ‘wear and tear’ on equipment. Two terms very much used in 
Lot-sizing Problems, are small and big (or large) bucket,as defined in (Belvaux & 
Wolsey,  2000). The CLSP is called a large bucket (or big bucket) problem because 
several items may be produced per period. The case where the (macro-periods) are 
subdivided in several micro-periods leads to the Discrete Lot-sizing and Scheduling 
Problem (DLSP), called a small bucket problem, in (Drexl & Kimms, 1997; Belvaux & 
Wolsey, 2000), because at most one item can be produced per period. The DLSP has 
the same objective function as the CLSP, but constraints (7) and (8) need to be 
replaced by: 

ui. Xit =CAPt sit      i = 1,...,P;t = 1,...,T (11) 
and following the constraints: 
    

∑ sit ≤1      i = 1,...,P;t = 1,...,T  (12) 
  
si is the set-up cost for item i and hi is a holding costs of product i.  
 Yit ≥ sit - si,t-1          (13) 
where sit € {0,1} indicates whether the machine is configured for item i in period t (sit 
=1) or not  (  sit = 0) and  sit € {0,1}, Yit € {0,1} now indicates the start-up of a lot of 
item i in period t. The 'all-or-nothing' assumption of the DLSP comes in via equation 
(11), where, in contrast to CLSP, the left- and right-hand sides must be equal. 
Constraint (12) makes sure that at most one item can be produced per period and that 
with (11), capacity limits are taken into account. The start-up of a new lot is spotted by 



the inequality (13). In the Continuous Set-up Lot-sizing Problem (CSLP) constraint 
(11) of the DLSP is replaced by 

 
ui. Xit ≤CAPt sit     i = 1,...,P;t = 1,...,T              (14)  

Constraint (11) of the DLSP forces the production system to produce to its full 
capacity, whereas constraint (14) of the CLSP allows the system to produce under its 
full capacity. The Proportional Lot-sizing and Scheduling Problem (PLSP) occurs when 
the CSLP model does not use the full capacity of a period. The basic idea of PLSP is 
to use remaining capacity for scheduling a second item in the particular period, the 
PLSP can be observed by: 

ui. Xit ≤CAPt (si,t-1 + sit )     i =1,...,P ;  t  = 1,...,T             (15) 
it replaces (11) and also includes 
  

∑ uit Xit ≤CAPt     i=1, ….. P,  t = 1,...,T              (16) 
 In equation (24) we see that in order to produce a certain item in a certain period 
of time, it is necessary to have the machine already configured either at the beginning or 
at the end of that period. Once it has been configured the total capacity requirement per 
period has its limit in equation (16). In (Drexl & Haase, 1995) the PLSP with set-up 
times (PLSPST) is presented where the objective function is expression (13). The 
capacity constraint now include is set-up time wit  
  
 ∑( uit Xit  + wit  )≤CAPt ,                    i=1, ….. P,  t = 1,...,T          (17) 

 
The General Lot-Sizing and Scheduling Problem (GLSP), proposed by (Drexl & 

Kimms, 1997; features multiple products, single-machine sequence-dependent set-up 
costs, small bucket time, but with no set-up times nor backlogging. The macro-periods 
t are each divided into a fixed number of non-overlapping micro-periods with variable 
length, where S, denotes the set of micro-periods s belonging to the macro-period t 
and all micro-periods are ordered in the sequence s=1,..., S. Two models are provided 
in, the first being GLSP-CS (Conservation of Set-up State) and the second GLSP-LS 
(Loss of Set-up State). The mathematical model for GLSP-CS is as follows: 

Minimize ∑ sij.zijs+∑ hi. Iit       i =1,...,P;t =1,...,T            (18) 
Ijs i,t 

Subject to 
Iit = Ii, t-1 + ∑Xit  - Dit    i =1,...,P;t =1,...,T, s€St (19) 
 
∑ ai Xis≤ Kt         i, s€St  (20) 
 
ai Xis≤ Kt Yis  (21) 
 
Xis  ≥mi(Yis - Yi,s-1)  (22) 
 
∑yin  =1  (23) 
 

      zijs ≥ Yi,s-1 + Yj,s-1 -1   (24)  
The variables are: Iit ≥0 is the inventory of product i at the end of macro-period t, 

Xis  is the production of quantity of item i in micro period s; yis = 1,  if the machine is 
set-up for product i in the micro-period s and 0 otherwise;  zijs. = 1 if the changeover 
of the product i to product j take a place in the beginning of micro-period s and 0 
otherwise. The parameters are: kt is the capacity (time) available in macro-period t, ai 



is a capacity consumption (time) needed to produce one unit of product mi is the 
minimum lot size of product i , sij  is the cost of a changeover from product i to 
product j, Ii0 is the initial inventory of product i at the beginning of the planning 
horizon. Yi0= 1 if the machine is already set-up for product i at the beginning of 
period 1 and 0 otherwise. Constraint (22) enforces minimum lot sizes in order to avoid 
set-up changes without product changes, avoiding an incorrect calculation of set-up 
costs/times in an optimal solution if set-up costs/times do not satisfy the triangle 
inequality (sik  + skj  ≥ sij) as can occur in the chemical industry, constraint (20) is 
modified to include set-up times: 

∑ ai Xis + ∑ stij zijs ≤ Kt  (25) 
 
Algorithms for the Two-Stage System 

Any optimal policy for the two-stage system is such that the set is bounded. 
If this property holds true then we need to search the optimal policy among a finite 
number of distinct fixed policies. The most naive way for searching for the optimal 
policy over the set is by evaluating the expected cost of all fixed policies within the 
set.  Grosfeld-Nir (2005) considered set policies for the two-stage problem with 
binomial yields: For any demand level D, a control-limit CD is associated, so that 
production takes place only if Work in Process≥ CD. Two terms very much used in 
Lot-sizing Problems, are small and big (or large) bucket, which makes a distinction: 
"between "Big Bucket" models having long time periods in which several items can be 
set up and produced and "Small Bucket" models have short time periods in order to be 
able to model start-ups, switch-offs and/or changeovers. The "Small Bucket" models 
are then split further into those in which only one item can be set up per period and 
those with possibly two set-ups per period". The CLSP is called a large bucket (or big 
bucket) problem because several items may be produced per period. The case where the 
macro-periods are subdivided in several micro-periods leads to the discrete lot-sizing 
and scheduling problem, called a small bucket problem.  

 
Single-Bottleneck System with Binomial Yields (SBNS) 

A stage with non-zero setup cost as a bottleneck (BN) and to a system with 
only one BN as a single-bottleneck system (SBNS). Similarly, a system with no 
BNs (all setups are zero) is referred to as a “zero-bottleneck system” (0-BNS). 
Typically, a SBNS consists of two 0-BNS and the BN. When a binomial 0-BNS 
faces a rigid demand D, it is optimal to process units one at a time until the demand 
is satisfied. The resulting expected cost is mD, where m, the minimal expected cost 
to satisfy a demand of one unit. When a binomial SBNS faces a rigid demand D, it 
is optimal to process units one at a time on the first 0-BNS until a certain batch size 
is ready to be processed on the BN. These units are then processed in one batch on 
the BN, and, finally, the usable units exiting the BN are processed, one at a time, on 
the second 0-BNS until the demand is satisfied or all units are exhausted. Therefore, 
the problem of optimally controlling a SBNS is completely characterized by the 
optimal lot to be processed by the BN (Chase et al. 2003).  
 
II. SUMMARY 

The lot-sizing problem is formulated as a mixed integer liner program and 
uses the concept of variable redefinition to solve it. Using this technique one can 
solve large MIP problems to optimality or near optimality. In the job shop 
scheduling, each job has its own unique route and also, a given job can visit the 
same machine type, for subsequent operations. A stage functions as a bank of 



parallel machines; at each stage a job requires only one machine and usually any 
machine can process any job. This job oriented scheduling procedure constitutes 
generation on of an initial schedule by backward scheduling, determination of core 
operation based on initial schedule and adjustment of other operations of the job by 
rescheduling them close to the core operation. Logically, the backward scheduling is 
considered first, followed by an adjustment procedure and then does the forward 
schedule for non-critical operations. This has the effect of achieving the due date 
and at the same time finishing the job with minimum in process time. 
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