
TRANS · núm. 11 · 2007

ARTÍCuLoS · 259-276

A New Multilingual
Authoring Tool of
Semistructured Legal
Documents

Current approaches to multilingual document management employ human
translation, machine translation (MT) or computer-assisted translation (CAT)
systems to produce versions of a single document in several languages.
However, recent advances in natural language generation (nLG) technology
suggest that it is possible to implement language-independent systems
to produce source language-unbiased multilingual documents in a more
efficient and cost-reducing way.
 in this paper we introduce GenTur –an authoring tool for producing
multilingual tourism contracts. Special attention will be paid to two basic
elements of its implementation: on the one hand, the xGtLing interlingua
for the discursive representation of contracts, and, on the other hand, the
development of a system architecture that enables the aforementioned
interlingua to generate tourism contracts by means of the GT–Mth
generation algorythm.
  keywords: Authoring tool, natural language generation, GenTur, xGtLing

Los	enfoques	actuales	de	gestión	de	la	documentación	multilingüe	hacen	
uso	de	la	traducción	humana,	la	traducción	automática	(TA)	y	la	traducción	
asistida	por	ordenador	(TAO)	para	producir	versiones	de	un	solo	documento	
en	varios	idiomas.	Sin	embargo,	los	recientes	avances	en	generación	
de	lenguaje	natural	(GLN)	indican	que	es	posible	implementar	sistemas	
independientes	del	lenguaje	a	fin	de	producir	documentos	en	varios	idiomas,	
independientes	de	una	lengua	origen,	de	forma	más	eficiente	y	rentable.
	 En	este	artículo	presentamos	GenTur	—una	herramienta	de	ayuda	a	la	
redacción	para	producir	contratos	turísticos	en	varios	idiomas.	Se	prestará	
especial	atención	a	dos	elementos	básicos	de	su	implementación:	por	un	
lado,	la	interlengua	xgtling	usada	para	la	representación	discursiva	de	los	
contratos,	y	por	otro	lado,	el	desarrollo	de	una	arquitectura	que	permita	a	la	
citada	interlengua	generar	contratos	turísticos	por	medio	del	algoritmo	de	
generación	GT-Mth.
  palabras clave:  Herramienta	de	ayuda	a	la	redacción,	generación	de	
lenguaje	natural,	GenTur,	xgtling

José Luis Caro Herrero,
Gloria Corpas Pastor,
Antonio Jesús Trujillo
Pérez, M.ª Rosario Bautista
zambrana, A. Guevara Plaza,
A. Aguayo Maldonado
Universidad de Málaga

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

260

1. introduction
Nowadays there is no doubt about the role that
multilingual text generation plays in an ever-
changing world where international relation-
ships keep growing at a fast pace. In an era of
globalisation, the world of business does not
remain foreign to the current situation, as there
is a pressing need to translate and/or produce
documents in several languages simultaneously.

In the tourism industry, international agree-
ments are daily signed between tourism com-
panies (eg. hotel chains, transport companies,
etc.) or between individual parties and tourism
companies. This requires enormous translation
efforts to ensure the appropriate comprehen-
sion of contracts, so that (1) the parties involved
fully understand the contractual relationship
they enter into, and (2) that all translated legal
documents are fully comprehendible and con-
formant to the different national regulations
involved.

Machine translation (mt) systems capable
of performing the aforementioned tasks have
existed from the very beginning of computer
science. Nowadays Machine Translation can be
considered a conglomerate of several research
fields, where computing and linguistics play a
leading role, among other auxiliary disciplines.

There are many r&d projects and joint
research efforts within this multidisciplinary
field. Many of these research activities are car-
ried out under the auspices of official institu-
tions, such as the European Union, where loads
of documents have to be translated or produced
into the several official languages everyday.
Turicor (bff2003-04616) is an information
and communication technologies (ict) r&d
project applied to Translation, along the lines of
the eu pluriannual programmes Human Lan-
guage Technologies (1998-2002), e-Content

(2001-2004) or e-Contentplus (2005-2008)1.
The Turicor project aims at developing a
prototype authoring tool for producing tourism
contracts in four languages (Spanish, Italian,
English and German) (Aguayo et al., 2004).
This text generator is based on a language-in-
dependent content representation (interlingua)
and an automatic generation module developed
within the framework of a former r&d project
on sales contracts within the domain of resi-
dential tourism (Ref. no. PB98-1399, Spanish
Ministry of Education and Science).

The present paper2 sets out to describe Gen-
Tur, a prototype authoring tool for tourism con-
tracts, and it is divided into several parts. Sec-
tion 2 offers a brief overview of nlg technology
and multilingual generation. Sections 3, 4, and
5 contain the core of the paper and describe the
GenTur system and xgtLing, the interlingua
used for formal content re presentation of con-
tracts. Section 6 offers the conclusion.

2. natural language generation

Many authoring tools are based on the
techno logy of Natural Language Generation
(nlg). nlg is a relatively young discipline,
although it is somehow one of the most rep-
resentative sub-fields of Natural Language

1 For further information, refer to the project official
website (http://www.turicor.net).

2 The research reported in this paper has been carried
out in the framework of two projects: Turicor: A multilingual
corpus of tourism contracts (German, Spanish, English, Italian)
for automatic text generation and legal translation [Fund-
ing source: Spanish Ministry of Science and Technology
(National R&D Program) and European Union (European
Regional Development Fund-ERDF). Ref. no. BBF2003-
04616] and R&D Project for Excelence La contratación
turística electrónica multilingüe como mediación intercultural:
aspectos legales, traductológicos y terminológicos [Funding
source: Andalusian Ministry of Education, Science and
Technology. Ref. no. HUM-892 (2006-2009)].

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

261

Processing (nlp). Most work carried out in
the 60’s revolved around machine transla-
tion, whereas the 70’s marked the beginning
of research on nlg. As Vander Linden (2000)
has clearly stated, «the goal of nlg process can
be viewed as the inverse of that of natural lan-
guage understanding (nlu) in that nlg maps
from meaning to text, while nlu maps from
text to meaning». In the following sections
we will give a short account of nlg systems,
which will allow us to place it in reference to
current research lines.

2. 1. Basics of nlg

Many authors have proposed definitions of
Natural Language Generation. Some of the
most relevant are the ones formulated by
Hovy (1996) and Reiter and Dale (2000: 1).
The former states the following: «The area of
study called natural language generation (nlg)
investigates how computer programs can be
made to produce high-quality natural language
text from computer-internal representations
of information». For Reiter and Dale (2000:
1), nlg systems are computer software systems
that start from some type of non-linguistic
re pre sentation of information as input and rely
on knowledge about language and the applica-
tion domain to automatically produce reports,
documents, explanations and other kind of
texts.

In short, nlg consists in the production of
natural language texts from an abstract seman-
tic knowledge representation, called interlingua.
In this way, a nlg system takes into account
abstract information (generally non-linguistic,
unequivocal and well-structured information),
as well as data about the communicative situa-
tion, in order to produce a text with a coherent
structure and appropriate linguistic expressions.
In the case of multilingual generation, the

system is able to produce texts in several lan-
guages from the same abstract source, either in
a simultaneous or sequential way.

As pointed out above, the input provided to
a nlg system is generally of a non-linguistic
nature (Dale, Di Eugenio and Scott, 1998: 347):
thus, it can be symbolic (e. g., taken from an
expert system knowledge base) or numeric (e.
g., taken from a database containing stock mar-
ket prices). However, there are some systems,
such as CourseViewGenerator (Barrutieta,
2001), which do rely on the use of linguistic
input.

The applications of nlg are varied: siggen3,
the Special Interest Group in Natural Lan-
guage Generation, mentions report genera-
tion, machine translation, and explanations for
knowledge-based systems; Bateman and Zock
(2003: 286) add text summarization and multi-
lingual and multimodal presentation of infor-
mation. Likewise, Langkilde (2002: 1) states
that nlg is a subtask of many applications:

Such applications include machine transla-
tion, human-computer dialogue, summari-
zation, report creation, automatic technical
documentation, proof/decision explanation,
customized instructions, item and event
descriptions, question answering, tutorials,
stories, and more.

nlg methods or processes can be classified
according to their sophistication and expres-
sive power. Eduard Hovy (1996) distinguishes
four generation methods: canned text systems,
template systems, phrase-based systems, and
feature-based systems.

1.— Canned text systems are used in the

3 We can find more information at the URL http://
www.siggen.org/. siggen is the most important interest
group devoted to the study of nlg. [Last visited: 1-7-2007]

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

262

majority of software applications and con-
sist in the presentation of strings of words
without any change (error messages, warn-
ings, letters, etc.). The approach can be used
equally easily for single-sentence and for
multi-sentence text generation, but it proves
insufficient when we need to adapt the text
to different situations.

2.— Template systems represent the next
level of sophistication and are used to produce
similar messages, in which a few open fields are
filled in specified constrained ways. The tem-
plate approach is used mainly for multisentence
generation, particularly in applications whose
texts are fairly regular in structure such as form
letters and some business reports.

3.— Phrase-based systems employ gener-
alized templates, whether at the sentence level
or at the discourse level. Hovy explains that in
such systems, a phrasal pattern is first selected
to match the top level of the input (say, [sub-
ject verb object]), and then each part of the
pattern is expanded into a more specific phrasal
pattern that matches some subportion of the
input (say, [determiner adjectives head-
noun modifiers]), and so on; the cascading
process stops when every phrasal pattern has
been replaced by one or more words. Phrase-
based systems can be powerful and robust, but
are very hard to build beyond a certain size; that
is why this method is used mainly for single-
sentence generation.

4.— Feature-based systems are among
the most sophisticated generators. Accord-
ing to Hovy, in feature-based systems, each
possible minimal alternative of expression is
represented by a single feature; for example,
a sentence is either positive or negative, it is
a question or an imperative or a statement, its
tense is present or past and so on. In this way,
each sentence is specified by a unique set of

features. The researcher continues to explain
that generation proceeds by the incremental
collection of features appropriate for each por-
tion of the input (either by the traversal of a
feature selection network or by unification),
until the sentence is fully determined. This
type of system has strengths and weaknesses:
«Their strength lies in the simplicity of their
conception: any distinction in language can
be added to the system as a feature. Their
weakness lies in the difficulty of maintaining
feature interrelationships and in the control of
feature selection (the more features available,
the more complex the input must be)» (Hovy,
1996).

The process performed by a nlg system
generally comprises three phases —document
planning, microplanning and surface realisa-
tion, which correspond to three modules:

1.— Document planner, which determines
the content and the structure of the document.

2.— Microplanner, which decides which
words and syntactic structures will be used
in order to communicate the content and the
structure chosen by the document planner.

3.— Surface realiser, which maps the
abstract representations of the microplanner
into real text.

nlg systems are designed around an archi-
tecture based on the implementation of the
former generation phases. Although efforts
have been made to determine a standard con-
ceptual architecture (Cahill et al., 2000), in this
paper we present a classification based in the
way generation phases are carried out4:

4 For more information on nlg architectures, see Rei-
ter and Dale (2000), Vander Linden (2000), Cahill et al.
(2000) and Nirenburg, Lesser and Nyberg (1989).

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

263

1.— Pipelined architecture. This kind of
architecture is based in two distinct serial phas-
es, i.e. the discourse planning is designed first
and then the surface realisation is carried out.
These are the simplest kinds of architectures.
They do not allow backtracking nor feedback.
Some examples are mumble, text, Naos, Wis-
ber, ipg, parry, erma and proteus.

2.— Interleaved architecture5. It was
designed to fill the lack of refeeding in pipelined
architectures. Thus, it provides actual refeeding
communication between the discourse plan-
ning and the surface realisation modules, as
well as backtracking and decision-taking dur-
ing the message building phase (target text
production). Some examples are pauline, spud,
indigen and popel.

3.— Integrated architecture. This architec-
ture consists in identifying an orthogonal set
of independent processes that can be used on
demand during text production. Representa-
tive samples are glinda, Oz kamp, picard and
diogenes.

2. 2. Authoring tools for multilingual text
generation

Multilingual text generation stands out
as one of the most innovative fields within
Translation Technologies (tt). Recently, John
Hutchins, one of the great precursors of tt and
machine translation, considered the incipient
research on nlg to be one of the most prom-
ising fields in the area of tt and pointed out
that it would be eventually integrated into mt
systems:

Users will want seamless integration of
information retrieval, extraction and sum-
marization systems with translation. Research
has begun in such areas as cross-lingual infor-

5 They are also named interactive systems.

mation retrieval, multilingual summarization,
multilingual text generation from databases,
and so forth and, before many years, there
may well be systems available on the market
and the Internet. (Hutchins, 2005: 3)

Other authors, such as Paris et al. (1995),
consider multilingual generation as an alterna-
tive to (machine) translation, due to the several
advantages it offers:

Multilingual generation is also more
appealing than monolingual generation fol-
lowed by translation because (1) the texts can
be generated in several languages simultane-
ously rather than waiting for the translation
process, (2) the underlying knowledge being
expressed in monolingual instructions can be
used to generate instructions in different lan-
guages, and (3) generating directly from the
underlying knowledge base can produce more
natural texts as the output text is not con-
strained by a source text. (Paris et al., 1995: 1)

Thus, the strength of multilingual text
generation lies in its capacity to generate docu-
ments in several languages from a sole source
of information: the conceptual choices made by
the user. As Hartley and Paris (1997: 110) point
out, «This technology shifts the attention to
an even earlier stage in the authoring process,
that of specifying the semantics of the text to be
produced, also called the ‘message’». In this way,
these systems, called authoring tools or drafting
tools, allow the users to manually specify the
conceptual content of the document and then
obtain the linguistic realisation in the selected
languages. Two important benefits arise: first,
additional generators for other languages can
be added, so a single authoring process supports
multilingual variants of a document directly:
one update to the document is reflected in
all languages simultaneously; secondly, each
generator can be adapted to its own language
and cultural settings, choosing its own most

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

264

appropriate realisation strategy independently
of the others (cf. Scott and Evans, 1998). Some
of these systems are drafter (Paris et al., 1995),
agile (Hartley et al., 2001) and pills (Scott
et al., 2001). drafter is a software-manual
drafting tool for English and French. agile
produces technical instruction texts in Bulgar-
ian, Czech and Russian and generates several
types of texts, common for software manuals,
in two styles. pills, for its part, is an authoring
tool designed to allow (monolingual) technical
authors to generate patient information leaflets
in multiple languages.

In order to store the concepts of the text(s)
to be produced, authoring tools rely on seman-
tic knowledge bases.6 They are, as Hartley and
Paris (1997: 118) explain, «the system’s central
repository for all the information that might
potentially be expressed in the texts, regardless
of the language or style used» and contain a
collection of entities —actions, states, objects,
and the relations between them— representing
the information commonly occurring in the
given domain (e.g. software, tourism, auto-
mobiles). This knowledge is generally derived
from multilingual corpora of domain texts
and is language-independent, so it constitutes
the foundations of the interlingua underlying

6 Knowledge bases use ontologies to structure the
knowledge of a given domain. An ontology, according to
Gruber (1993), is a specification of a conceptualization; that
is, it is a concept hierarchy of a certain field, which speci-
fies the relationships existing between the concepts and the
properties that they have. Its applications are well-known
and have meant major breakthroughs, for example, in the
field of Terminology (WordNet, MikroKosmos) and the
Semantic Web. On the other hand, as Bernardos (2003:
232) points out, the use of ontologies in nlg is more than
justified, because they allow the reutilization of informa-
tion resources, for both multilingual generation and other
related applications. Some examples of ontologies used
for text generation are Upper Model (Bateman, 1997; Re-
iter and Dale, 2000) and SENSUS (Knight and Luk, 1994;
Hovy, 1998).

the authoring system: it provides a conceptual
representation of the meaning or content of the
document in terms of a set of primitive con-
cepts from which the lexical units of different
languages can be constructed 7.

The next steps in the production of texts
depend on the specific authoring tools, but they
coincide to a great extent with the phases set
out before. First, the concepts of the generated
texts are drawn from the knowledge base and
fed to the document planner, which determines
the structure of the text to be produced; then,
a microplanner «maps domain concepts and
relations into content words and grammatical
relations» (Fiedler, 2005), that is, it chooses
the right linguistic expressions to be conveyed.
Finally, a surface generator, one for each of the
natural languages, performs the realisation of
the sentences.

drafter (Paris et al., 1995; Hartley and
Paris, 1997) is a good example of drafting tool.
It generates instructions on how to use soft-
ware applications, in English and French, and
comprises three modules: a Domain Knowledge
Base, the repository of information about the
software domain; an interface for the techni-
cal writer (the Developer’s Tool), which allows
technical communicators to specify formally
the procedures necessary for the end-users to
achieve their goals when using the software
application under consideration, and also
allows them to control the drafting process; and
the drafting tool (Automated Drafter), which
comprises two major components: the text
planner and the tactical generator. The result is
English and French drafts of the instructions
for the procedures defined so far by the techni-
cal communicator using the interface. These

7 This approach is also widely used in machine transla-
tion.

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

265

drafts may be modified by editing the resulting
text or by modifying the underlying procedures
and re-drafting.

With regard to this system’s scope, a study
carried out by Power and Scott (1997) showed
the commercial potential of drafter and
gist; the main benefit is that they can reduce
the time needed for producing texts in several
languages, but there are other important advan-
tages (op. cit.: 8):

1.— Improving document structure: the
conceptual schemes for defining content in
drafter and gist oblige users to base their
documents on a clear structure that includes all
essential components.

2.— Improving coherence: Automatic
generation would ensure coherence of style and
terminology across all documents for a given
product line.

3.— New working procedures: Non-pro-
fessional writers or translators could produce
acceptable versions of routine passages, and the
task of drafting these passages could thus be
assigned to domain experts.

These benefits can also be applied to texts
related to tourism. In recent years the tourism
sector has seen a considerable increase in the
number of bookings made on the Internet,
which implies in many cases the need to
create multilingual forms, general terms of
business, and contracts. Our system, GenTur,
has taken advantage of this opportunity and
provides users with tourism contracts, specifi-
cally terms and conditions for package travel
contracts.

On the other hand, the possibilities of
authoring tools in the field of translation
should be highlighted, as the latter can benefit
from many of the former’s multilingual applica-

tions: in this way, a generation system can serve
as a valuable source of parallel texts for the
translator, who can not only obtain documents
in several languages, but also select different
conceptual options in a language and obtain
their equivalents in the rest of them. In this
way, the documentation process would speed
up. In this respect, Hartley and Paris (1995),
as well as Power and Scott (1997), consider
that translators can play an important role in
drafter:

The new emphasis on user-centred design,
of documentation as well as of products,
requires translators to move outside their
traditional job description to assume an
authoring role with responsibility for the
usability of the texts they produce. Given the
imperative need to reduce the time-to-mar-
ket of international products, translators in
their emerging role find themselves involved
at a much earlier stage than previously in
the documentation process, and even in the
design of the product itself. (Hartley and
Paris, 1995: 1)

In other words, authoring tools give transla-
tors the opportunity to take part in the process
of knowledge acquisition —that is, building
language-independent conceptual models of a
specific domain—, as well as the opportunity to
use the multilingual sketches generated by the
program to write and edit the complete texts
(manuals, instructions, contracts, etc.).

3. the gentur architecture

Our system, GenTur, could be considered
both a pipelined system oriented to a serial
process and an intercalated system, since dis-
course planning of utterances is determined at
sentence level in a combined form. Another
outstanding feature of GenTur is the pres-
ence of components related to integrated-type

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

266

architectures, such as a common information
space that stores plannings and variable val-
ues to be used later on during the generation
process. Figure 1 depicts the GenTur archi-
tecture.

3.1. The GenTur Modules

GenTur is a modular system for the auto-
matic generation of tourism contracts. In the
following paragraphs we will describe the func-
tionality of its modules and structures.

xgtling: This is the interlingua used for the
formal representation of tourism contracts and
is language-independent at the discourse plan-
ning level. For this reason, xgtling is not an
interlingua in the standard sense of the term,
since there is no underlying ontology, but a
representation interlingua which expresses the
information extracted from the Turicor corpus
(textual forms, variables, etc.) —considering the
contract as a collection of clauses, where each
clause can be analysed in smaller units (textual
forms and variables)— and which marks up
the macrostructure and the superstructure of
the information contained in the contracts (cf.
Suthers, 1995; Benetos, 2005). In this way, the
xgtling tags are written directly with the text

that realises them in the different languages.
On the other hand, we will use the terms

base contract and generating contract in a given
language to denominate the xgtling–written
formal superstructure that is able to generate a
tourism contract correctly. In addition, it will be
marked as GenL(xgtling).

Closely related to this interlingua is the GT–
GenLing module, which has been designed as
an interface to assist translators and law experts
when producing base contracts in the various
target languages. At present, base contracts are
produced in plain text (unicode). The data
result from linguistic analyses which are per-
formed on the Turicor corpus (Aguayo et al.,
2004).

GT–Engine: This is the core component of
the nlg system for producing tourism con-
tracts. This module feeds from base contracts
written in xgtling. GT–Engine consists of two
fundamental items:GT–Mth, the algorithm
for text generation, and GT–DB, the database
that stores the specific data of a given contract
(variables).

GT–HCI (GenTur user’s interface): This
subsystem interacts with users to guide them
when acquiring data for the GT–Engine to
feed the database with a new contract instance
and when choosing the different instantiations
allowed by the base contract as specified in the
xgtling.

GT–Form: This subsystem provides the
final representation of the generated document
(surface realisation). It has been designed to
generate contracts as xml documents with a
uniform format.

3.2. Preliminary work

Preparing base contracts in xgtling is a
non-trivial process. Two essential elements

figure 1: the gentur architecture

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

267

intervene in this: on the one hand, the actual
Turicor corpus, which comprises a wide range
of documents (tourism contracts, forms, rules
and regulations, legislation, reference material,
etc.). And, on the other hand, the law experts
and linguists, who are in charge of developing
the base contracts from corpus-driven data.
Then, a three-step protocol is followed in order
to feed the GenTur system:

1.— Writing the base contract in xgtling.
Firstly, the contracts in the Turicor corpus (fig.
2) are studied —using software applications
such as WordSmith Tools— in order to deter-
mine their main linguistic and textual features
(fig. 3). Then, the data taken from the corpus
are used to build text prototypes (fig. 4): they
are, as Corpas Pastor (2003) explains, texts
written according to the characteristic super-
structure, macrostructure and microstructure
of the previously analysed contracts. The next
step is to formally write these prototypes in
xgtling, so that a superstructure is reached in
the form of a full formal logic structure division
of the source contract.

2.— Creating and adapting the textual
segments in xgtling to the selected target lan-
guages that will be later used by the generation
engine. Once the contract has been analysed
and segmented, appropriate base contracts have
to be prepared for the remaining selected target
languages.

3.— Adapting the structures of the con-
tracts described in xgtling to each of the
selected languages chosen for generation. Base
contracts are obtained for each language and
contract type. Together with the user’s data and
choices, base contracts will be used later on to
generate contracts as output by means of the
GT–Mth algorithm.

figure 2: document from turicor corpus: terms and
conditions of a package holiday contract (spanish)

figure 3: concordances performed by wordsmith tools
for the term regulación within spanish package holiday
contracts

figure 4: text prototype for the legislation clause of the
spanish terms and conditions of package holiday contracts

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

268

4. the xgtling interlingua
xgtling is an interlingua that has been devel-
oped to formally represent the semi–structured
paragraphs that make up a contract. Taking
xgtling as a starting point, it is possible to
generate a contract in any target language for
which there is a formal specification written in
this interlingua.

4.1. General Structure

xgtling is based on a tag scheme (similarly
to xml-based languages) according to the fol-
lowing general structure:

‘<’ <tag> <parametres_list> ‘>’

 <block_content_tag>

‘</’ <tag> ‘>’

Taking into account the linguistic features
of the contracts in the Turicor corpus, xgtling
has been structured around:

a) the preamble, which contains by way of
header the basic data of the contract;

b) the body, which includes the description
of the contract clauses.

The preamble and body structures are
described in the next section. Figure 5 depicts
the general structure of xgtling.

4.2. Preamble of a contract

The preamble of a base contract will contain
data such as the name or title of the contract,
the description, the authors, the revision dates,
etc. There will also be a declaration of variables
that will appear later in the contract clauses.
Relevant tags or directives are the following:

<contract> This directive defines a con-
tract. It contains several attributes: id, family
and language.

<desc> This directive contains a brief
description of the document.

<date> This is the tag of initial date.
<author_block> This directive names all

the people who have created or modified the
base contract in xgtling.

<declaration> This directive contains all
variables that appear in the textual forms of
the entire document. The variables contained
within the directive <var> enable users to adapt
the generated contract to meet their needs, as
the values for such variables are selected by
the own users. This tag contains the following
attributes:

<clauses> This directive contains the
concept structure of the contract. This tag will
be composed of tags <clause>. A set of clauses
defines the document and, thus, contains the
body of the contract. The set of clauses speci-
fies the tags <block>, <nb>, <concept>, <tf> and
<select>, which will be described in the next
section.

figure 5: xgtling general structure

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

269

We can see the general contract structure in
Figure 5.

4.3. Clause Type tag

The clause is the semantic unit of the con-
tract. The general format of a clause is deter-
mined by the structure shown in Table 1 (from
now onwards we will provide a BNF (Backus-
Naur Form) description of the interlingua).
The parameter id corresponds to the clause
name, while t represents the clause type. If t
has value «N», this specific clause is necessary
and should be included in the contract. On the
contrary, when t has value «O» the clause can
appear optionally in the contract. Finally, the
optional parameter d corresponds to the textual
description of the clause semantic content. A
clause consists of blocks.

<clause> ::== '<'clause id="<c_name>" t="<c_type>"

 [d="<description_text>"] '>'

 <block_set>

'</' clause '>'

table 1: tag specification of clause type

4.4. Block tag
Table 2 illustrates the block format. The

parameter id identifies the block. A block may
be rendered in different textual forms. Each
optional textual form is marked by a blockNum
tag. This tag designates the units in which a
block can be decomposed. When generating a
contract, a command will skip a line to separate
the blocks.

<block> ::== ’<’ block id=»<block_name>»

[d=»<description_text>»] ’>’

 <nb_set>

’</’ block ’>’

table 2: block tag specification

4.5. BlockNum tag

During text generation users have to select
one textual realisation (blockNum) among
the several possibilities that there may exist
for a given block. Table 3 shows the structure
of this directive, which has only one attribute
(n). The attribute n refers to the number of the
blockNum (≥ 0). A blockNum is composed of
concepts that express similar ‘conceptual struc-
tures’.

<nb> ::== ’<’ nb n=»<blockNum_number>» ’>’

 <concept_set>

’</’ nb ’>’

table 3: blocknum tag specification

4.6. Concept tag

Table 4 shows the format of this directive. It
has two attributes. The attribute id identifies
a given, unique concept among several con-
cepts within the same blockNum. The second
attribute —t— refers to type and it indicates
whether the concept is obligatory or optional.
In case that attribute t does not appear, the con-
cept will be considered as obligatory.

Each concept consists of a series of pos-
sible textual forms and selection tags. Of the
textual forms in which a given concept can be
rendered, only one can be selected to appear in
the target document. Selection tags indicate a
series of concepts that will be included in the
target document if a certain textual form has
been selected.

<concept> ::== ’<’ concept id=»<concept_id>»

[t=»<c_type>»] ’>’

 <tf_select_set>

’</’ concept ’>’

table 4: concept tag specification

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

270

4.7. Textual Form tag

Any given concept can be expressed by a
range of possible textual forms. The user has
to select the particular textual form in which
a given concept is to be rendered in the target
document. Table 5 illustrates the format of this
directive:

<tf> ::== ’<’tf n=»<tf_number>» [f=»<tf_

format>»]’>’<string> ’</’tf’>’

table 5: tag specification of textual forms

n: this attribute indicates the number of
the textual form (≥ 0). This attribute shows a
unique value for each textual form in which a
given concept can be expressed.

f : this is an optional attribute that indicates
the format of the textual form. If this attribute
does not appear, the textual form will not have
any particular formatting in the target docu-
ment. Otherwise, this attribute will be a chain
of four characters, that make reference to cen-
tred, bold, underlined and italics.

The content of a textual form is a chain of
characters. The chain will be analysed in case a
given textual form has been selected to render
a specific concept (among other possibilities).
The following structures can appear in a chain
of characters:

Variables: A variable appears in the form
%var_name, where var_name makes reference
to a variable whose value for the attribute id is
var_name.

Optionality: The sequence *[option1 |
option2…| optionN]* indicates optionality. If a
textual form is marked as optional, that means
that it may appear as option 1, 2, etc., or else
that it may not appear at all, depending on the
user’s choice.

Obligatority: Obligatority is marked as
+[option1 | option2…| optionN]+, which
means that the generated document will con-
tain option 1, option 2, … or option n, accord-
ing to the user’s selection.

The remaining content of a textual form is
not processed and will appear unchanged in the
target contract that is generated.

4.8. Select tag

The selection tag select determines that cer-
tain information may appear in the generated
text provided a textual form has been previ-
ously selected. Concepts are composed of both
textual forms and selection tags. A selection tag
consists of a set of concepts. Table 6 shows the
format of this new directive.

<select> ::== ’<’ select id=»<select_id>»

lval=»<tf_numbers>» ’>’

 <set_of_concepts>

’</’ select ’>’

table 6: select tag specification

5. text generation algorithm,
implementation and software

The generation algorithm is central to the sys-
tem core. It generates in sequence contracts in
various languages according to user’s specifica-
tions and choices (see 5.1.). It also performs a
series of complementary tasks (see 5.2.). Section
5.3 provides a sample of the entire process of
text generation.

5.1. The generation algorithm

Prior to generating the target document,
it is necessary to annotate in xgtling the set
of contracts that are going to be used. Then,

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

271

annotated base contracts are analysed by a
syntactical and a lexical parser in order to deter-
mine whether they have been correctly tagged.
If any of these base contracts contained errors,
a text file would show a list of errors and their
corresponding lines. When all base contracts
are correctly tagged, the information is stored
in the database. Then, the system generates
target contracts in the languages selected. The
algorithm executes upon all the clauses, the
blocks contained in such clauses, and so on
until it reaches the most internal tag, namely,
the textual forms. Table 7 depicts a pseudocode
approach to the general process of text genera-
tion.

The generation algorithm is based on the
selection of a guide language. This language
bears correspondence to the language in which
the variables, clauses and text forms of the con-
tract to be generated are going to be instanti-
ated. In this case it should be the user’s source
language. Once the guide language has been
selected, the user will select the different alter-
natives among clauses, blocks and text forms
and also complete the variables that the system
requests.

Each time a selection or variable instan-
tiation is carried out, it impinges on the rest of
languages in which the contract is going to be
generated, producing at the end of the process

cl := select all clauses

go_beginning(cl)

While there are_clauses(cl) left Do{

 If it is _obligatory (cl) or it has_to appear compulsorily (cl){

 bl := select all blocks(cl)

 go_beginning(bl)

 While there are_blocks(bl) left Do{

 nb := select all blocks(bl)

 nb_sel := select_numBlock(nb)

 cpt := select all concepts (nb_sel)

 While there are _concepts (cpt) left Do{

 If it is_obligatory(cpt) or has to appear obligatory(cpt){

 tf := select textual forms(cpt)

 Include_target_contracts(Analise(tf))

 }

 go_next(cpt)

 }

 go_next(bl)

 }

 }

 go_next(cl)

}

table 7: generation algorithm

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

272

a contract written in the guide language, as
well as the corresponding ones in the languages
wanted for generation.

5.2. The Generation Software

The most important function of the gen-
eration software is to produce target contracts
according to users’ choices. However, the sys-
tem can also perform other tasks, such as:

Contract management. Base contracts are
stored in the database until the user decides to
discard them. Thus they can be re-used to skip
part of the generation process, as some variables
and users’ choices may remain the same.

Family management. Contracts are organ-
ised in families. In fact, there is an attribute
family in the directive <contract> which allows
the user to have access to existing families, to
create new ones or to add new contracts to
those families.

Language management. The system pro-
vides users with the possibility of checking the
actual languages in the database, to eliminate
any particular language or to enter a new one in
the database.

Editor. An editor for xgtling has been
designed in order to ease the tedious but neces-
sary task of tagging the base contracts. Docu-
ments are then easily rendered in the inter-
lingua from a menu with options for authors,
variables and so forth.

Dictionary management. The system incor-
porates a basic multilingual dictionary that
links translation equivalents that are repeatedly
used during the generation process.

All these operations can be performed from
the main menu (see fig. 6).

5.3. The process of text generation

The first step of the process of multilin-
gual text generation is to produce documents
written in the xgtling interlingua in the sev-
eral languages involved. When creating a new
document, the editor will insert the necessary
tags (<clause>, <block>, <nb>, <concept>, <tf>,
<select>, <author>, <var>) as appropriate.

Figure 7 illustrates a document in Span-
ish which has been written by the editor in
xgtling.

The second step is to enter the information
relevant to each document and target language,
that is to say:

—the route for the input document;
—the route for the output document;

figure 6: xgtling main menu

figure 7: spanish interlingua written with the xgtling
editor

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

273

—the document identification for storage in
the database.

The information is then entered through the
form illustrated in figure 8.

Once all relevant information has been pro-
vided for the input document, the third step is
to check that the document is written correctly
in the xgtling interlingua, that the appropriate
language has been selected and that all docu-
ments (if several) belong to the same contract
family.

The checker is composed of a lexical parser
and a syntactic parser. The lexical parser divides
the input document in minimum information
units (tokens). The syntactic parser checks if

the tokens follow the interlingua formal gram-
mar.

Next a dialogue box will tell the user whether
the base contract is correctly constructed. After
the input document has been analysed and
checked for correctness, the system stores in the
database all the information pertaining to the
document, such as authors, variables, clauses,
etc. The actual process of generation starts
once all the information has been conveniently
stored in the database.

A fourth step is the selection of the structure
of the document, i.e. any optional clauses that it
may contain and which blockNums within each
block should be analysed. Choices are made
through a conceptual tree (fig. 9).

Then, the system analyses all the concepts
included in the blockNums which the user had
selected in the previous step. For each concept
analysis a dialogue box will provide the relevant
data: the blockNum, block and corresponding
clause, optionality and textual forms assigned
to the concept (see fig. 10 and 11). Finally, once
all concepts have been analysed, a dialogue box
will allow visualising any output document that
has been just generated. Figure 12 illustrates a
sample target contract in Spanish.

6. conclusion

In this paper we have introduced an author-
ing tool for tourism contracts, GenTur, which
might prove a plausible solution for an ever-
growing multilingual working environment.
Thanks to its xgtling interlingua, GenTur is
an open authoring system which can be used
to generate practically all kinds of contracts in
many languages. In addition, it may serve as a
full guide to any user who wishes to reproduce
the contents of a given contract in several lan-
guages simultaneously.

figure 8: form to enter the document data

figure 9: selection of contract structure

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

274

Our primary focus has been the xgtling
interlingua, the true core of the GenTur sys-
tem. xgtling main features make it suitable
for information representation, as it is flexible
enough to provide a formal representation of

the kind of semi–structured information that
may be found in a contract. Especially remark-
able is its portability: it allows processing by
tools for uniform representation of information
as base contracts are described in a xml-like
language.

Future lines of research may involve ontol-
ogy-based work to link the textual forms of
similar concepts in several languages, with a
view to developing a multilingual generation
system that is able to generate the same base
contract in several languages simultaneously.
Furthermore, this ontology-based approach
will provide an interesting and very up-to-date
application: the reutilisation of information
resources in areas such as tourism, translation
or terminology.

recibido en agosto 2007
aceptado en diciembre 2007

7. references

Aguayo, A., J. L. Caro, G. Corpas, I. Gómez, and A.
Guevara. (2004). «Turicor: Un modelo concep-

figure 10: analysed concept

figure 11: selection of text form

figure 12: sample of output document (spanish)

TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008		 a new muLtiLinguaL authoring tooL of semistructured LegaL documents

275

tual de datos para almacenamiento y consulta de
un corpus multilingüe». In V Congreso Nacional:
Turismo y Tecnologías de la Información y las
Comunicaciones, pp. 327–344.

Barrutieta, G. (2001). Generador inteligente de
documentos de formación [on line]. <http://sapi-
ens.ya.com/cyberformacion/Generador.pdf>
[Accessed 26 May 2007].

Bateman, J. (1997). «Enabling technology for multi-
lingual natural language generation: the KPML
development environment». Journal of Natural
Language Engineering, 3/1, pp. 15-55.

Bateman, J. and M. Zock. (2003). «Natural Lan-
guage Generation». In R. Mitkov (ed.) (2003).
The Oxford handbook of computational linguistics,
Oxford: Oxford University Press.

Benetos, K. (2005). XML grammar for constructing
argumentative essays [on line]. <http://tecfaseed.
unige.ch/staf18/modules/ePBL/uploads/proj7/
paper4.xml> [Accessed 26 June 2007].

Bernardos, S. (2003). Marco metodológico para la
construcción de sistemas de generación de lenguaje
natural. Doctoral thesis. Madrid: Facultad de
Informática, Universidad Politécnica de Madrid.

Cahill, L., C. Doran, R. Evans, R. Kibble, C. Mell-
ish, D. Paiva, M. Reape, D. Scott, and N. Tipper
(2000). «Enabling resource sharing in language
generation: an abstract reference architecture». In
Proceedings of the 2nd International Conference on
Language Resources and Evaluation.

Corpas Pastor, G. (2003). «Diseño de un tipologi-
zador para la traducción jurídica: del corpus al
prototipo textual». In G. Corpas Pastor (ed.).
(2003). Recursos documentales y tecnológicos para
la traducción del discurso jurídico (español, alemán,
inglés, italiano, árabe), Granada: Comares.

Dale, R., B. Di Eugenio and D. Scott (1998). «Intro-
duction to the Special Issue on Natural Language
Generation» [on line]. Computational Linguistics,
24/3, pp. 345-353. <http://www.cs.mu.oz.au/acl/J/
J98/J98-3001.pdf> [Accessed 16 June 2007].

Fiedler, A. (2005). Natural Language Generation
[on line]. <http://www.ags.uni-sb.de/~afiedler/
lehre/nlg/lectures/nlg-05.pdf> [Accessed 17 June
2007].

Gruber, T. R. (1993). «A translation approach to
portable ontology specification». Knowledge
acquisition, 5/2, pp. 199-220.

Hartley, A. and C. Paris (1995). «Supporting Multi-

lingual Document Production: Machine Transla-
tion or Multilingual Generation?». In Working
Notes of the Multilingual Text Generation Work-
shop, International Joint Conference in Artificial
Intelligence (IJCAI-95), pp. 34-41.

Hartley, A. and C. Paris (1997). «Multilingual Docu-
ment Production From Support for Translating
to Support for Authoring». Machine Translation,
12, pp. 109–129.

Hartley, A. F., D. Scott, J. Bateman and D. Dochev
(2001). «AGILE - A System for Multilingual
Generation of Technical Instructions». In Pro-
ceedings of 8th Machine Translation Summit (MT
Summit VIII), pp. 145-150.

Hovy, E. 1996. «Overview (of Language Genera-
tion)». In R. Cole, J. Mariani, H. Uszkoreit, A.
Zaenen and V. Zue (eds.) Survey of the State of
the Art in Human Language Technology. [on line].
<http://cslu.cse.ogi.edu/HLTsurvey/ch4node3.
html#SECTION41> [Accessed 15 June 2007].

Hovy, E. (1998). «Combining and Standardizing
Large-Scale, Practical Ontologies for Machine
Translation and Other Uses». In Proceedings of
the First International Conference on Language
Resources and Evaluation (LREC).

Hutchins, J. (2005). «Computer-based Translation
in Europe and North America, and its Future
Prospects» [on line]. In JAPIO 20th anniversary.
Tokyo: Japan Patent Information Organization.
<http://ourworld.compuserve.com/homepages/
WJHutchins/JAPIO-2005.pdf> [Accessed 15
June 2007].

Knight, K. and S. Luk (1994). «Building a Large-
Scale Knowledge Base for Machine Translation».
In Proceedings of the American Association of Artifi-
cial Intelligence AAAI-94.

Langkilde, I. (2002). «An Empirical Verification of
Coverage and Correctness for a General-Purpose
Sentence Generator» [on line]. In Proceedings of
the International Natural Language Generation
Conference. <http://faculty.cs.byu.edu/~irenelg/
papers/verifcc.ps.gz> [Accessed 18 June 2007].

Nirenburg, S., V. Lesser, and E. Nyberg. (1989).
«Controlling a language generation planner». In
Proceedings of the 11th. International Joint Confer-
ence on Artificial Intelligence, pp. 1524–1530.

Paris, C., K. Vander Linden, M. Fischer, A. Hartley,
L. Pemberton, R. Power, D. Scott (1995). «A Sup-
port Tool for Writing Multilingual Instructions».

J. L. CARo HeRReRo & AL.	 TRANS.	REVISTA	DE	TRADUCTOLOGÍA	12,	2008

276

In International Joint Conference in Artificial Intel-
ligence (IJCAI-95), pp. 1398-1404.

Power, R. and D. Scott. (1997). «nlg tools to support
technical authors and translators». ITRI techni-
cal report 97-06.

Reiter, E. and R. Dale. (2000). Building Natural
Language Generation Systems, Cambridge: Cam-
bridge University Press.

Scott, D. and R. Evans (1998). «Multilingual Docu-
ment Management Without Translation: Using
natural language generation in the Multilingual
Information Society» [on line] Elsnews, 7/1.
<http://mcs.open.ac.uk/ds5473/publications/
IEE-paper.htm> [Accessed 15 June 2007].

Scott, D. R., N. Bouayad-Agha, R. Power, S. Schultz,
R. Beck, D. Murphy and R. Lockwood. (2001).
«PILLS: A Multilingual Authoring System

for Patient Information». In S. Bakken (2001).
Visions of the Future and Lessons from the Past.
Proceedings of the 2001 AMIA Annual Symposium,
Washington, November 3-7, Philadelphia: Hanley
& Belfus, p. 1023.

Suthers, D. (1995) «Towards an Interlingua for Infor-
mation Objects» [on line]. Position Paper pre-
sented at CHI’95 Research Symposium, Denver,
Colorado, U.S.A <http://lilt.ics.hawaii.edu/lilt/
papers/1995/suthers-chi95argml.pdf> [Accessed
8 July 2007].

Vander Linden, K. (2000). «Natural Language Gen-
eration». In D. Jurafsky and J. H. Martin. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics
and Speech Recognition, Upper Saddle River (NJ):
Prentice Hall, pp. 763-798.

