Alternative Nœtherian Banach Algebras

M. Benslimane and N. Boudi

Département de Mathématiques, Faculté des Sciences de Tétouan, B.P. 2121. Tétouan, Maroc

(Research paper presented by A. Rodríguez Palacios)

AMS Subject Class. (1991): 46Hxx

Received July 21, 1996

1. Introduction

Sinclair and Tullo [6] proved that noetherian Banach algebras are finite-dimensional. In [3], Grabiner studied noetherian Banach modules. In this paper, we are concerned with alternative noetherian Banach algebras. Combining techniques from [3] with techniques and the result of [6], we prove that every alternative noetherian Banach algebra is finite-dimensional.

2. Preliminaries

A nonassociative algebra A over a field K of characteristic zero is said to be an alternative algebra if it satisfies:

$$x^2y = x(xy); \quad yx^2 = (yx)x$$

for all $x, y \in A$.

Let A be an alternative algebra. A is called semi-prime (respectively prime) if for any ideal I of A (resp. for any two of its ideals I and J) it follows from the equality $I^2 = (0)$ (resp. IJ = (0)) that I = (0) (resp. that either I = (0) or J = (0)). Let X be a subset of A. The right annihilator (respectively the left annihilator) of X in A is defined by $ran(X) = \{a \in A : Xa = 0\}$ (respectively $\{a \in A : aX = 0\}$). The annihilator of X is defined by $ann(X) = ran(X) \cap lan(X)$. If A is semi-prime and B is an ideal of A, then lan(B) = ran(B) = ann(B) is an ideal which has zero intersection with B. A is said to be noetherian if it satisfies the ascending chain condition on left ideals. One can prove that in A, there exists a smallest ideal B(A) such that A/B(A) does not contain nonzero trivial ideals [7, p. 162]; B(A) is called the

Baer radical of A. If the center Z(A) of A is nonzero and does not contain zero divisors of the algebra A, A is said to be a Cayley Dickson ring if moreover the ring of quotients $(Z(A)^*)^{-1}A$ is a Cayley Dickson algebra over the field of quotients of the center Z(A) (where $Z(A)^* = Z(A) - \{0\}$).

A (real or complex) nonassociative algebra A is said to be normed (respectively Banach) algebra if the underlying vector space of A is endowed with a norm (respectively complete norm) $\|\cdot\|$ satisfying

$$||ab|| \le ||a|| \cdot ||b||$$

for all $a, b \in A$. Any alternative algebra A over a field K can be imbedded in a unital alternative algebra A'

$$A' = K + A$$

For basic results on alternative algebras, the reader is referred to [7]. In particular, recall that every prime alternative algebra A that is not associative is a Cayley Dickson ring. Further, the Baer radical of a neetherian alternative algebra is nilpotent. Finally, note that if A is an alternative algebra, for any two of its ideals I and J, the product IJ is also an ideal of the algebra A.

3. Main result

Given a nonassociative algebra A over a field K, the left multiplication algebra L(A) of A is defined to be the subalgebra of $End_K(A)$ generated by all left multiplications L_a , a in A, and the identity Id on A. If A is a normed algebra then L(A) is clearly a subalgebra of the normed associative algebra BL(A) of bounded linear operators of A. In this case, the closed left multiplication algebra is defined to be the closure $L(A)^-$ of L(A) in BL(A).

LEMMA 1. Let A be a nonassociative Banach algebra over K ($K = \mathbb{R}$ or $K = \mathbb{C}$) and let y be an element of the nucleus N(A) of A. If the closure $(A'y)^-$ of A'y is finitely generated as a left ideal in A then A'y is closed.

Proof. Note first that for y in N(A), b in A, and T in $L(A)^-$, we have

$$(1) TL_b y = L_{Tb} y.$$

By linearity and continuity we need only to consider the case that $T = T_n = L_{a_1} \cdots L_{a_n}$ with a_i in A, $1 \le i \le n$. We will induct on n.

For n = 1, (1) holds since

$$L_{a_1}L_by = a_1(by) = (a_1b)y = L_{L_{a_1}b}y,$$

because y lies in the nucleus.

Suppose now that (1) is true for all $m \leq n - 1$. Then

$$T_n L_b y = L_{a_n}(T_{n-1}L_b y) = L_{a_n}(L_{T_{n-1}b}y) = L_{L_{a_n}T_{n-1}b}y = L_{T_nb}y,$$

as required.

Suppose now that the closure $(A'y)^-$ of the left ideal A'y is finitely generated as a left ideal. Then

$$(A'y)^- = L(A)x_1 + \dots + L(A)x_n = L(A)^-x_1 + \dots + L(A)^-x_n$$

for some x_1, \ldots, x_n in $(A'y)^-$ because $(A'y)^-$ is closed. For each $1 \le i \le n$, choose a sequence $\{a_{ik}\}_k$ in A' such that $\{a_{ik}y\}_k$ converges to x_i . Let f_k be the map

$$f_k: L(A)^- \times \cdots \times L(A)^- \longrightarrow (A'y)^-$$

$$(T_1, \dots, T_n) \longrightarrow T_1(a_{1k}y) + \cdots + T_n(a_{nk}y),$$

and let f be the map given by $f(T_1, \ldots, T_n) = T_1(x_1) + \cdots + T_n(x_n)$. The sequence $\{f_k\}$ converges uniformly to f on $L(A)^- \times \cdots \times L(A)^-$ but the set of surjective continuous linear operators is open [2]. Hence there exists a positive integer k such that f_k is surjective. Now, by (1),

$$f_k(T_1, \dots, T_n) = T_1 L_{a_{1k}} y + \dots + T_n L_{a_{nk}} y$$

$$= L_{T_1(a_{1k})} y + \dots + L_{T_n(a_{nk})} y$$

$$= L_{(T_1 a_{1k} + \dots + T_n a_{nk})} y \in A' y.$$

Thus $(A'y)^- = A'y$, as required.

LEMMA 2. Let A be a nonassociative complex Banach algebra which satisfies the ascending chain condition on left ideals. Assume that the center Z(A) of A consists of regular elements. Then $Z(A) \simeq \mathbb{C}$.

Proof. Suppose that some $x \in Z(A)$ has infinite spectrum in Z(A) then the boundary of the spectrum of x, $\partial(sp(x,Z(A)))$ contains an infinite sequence $\{\lambda_n\}$ of distinct nonzero complex numbers. For each positive integer n define

$$I_n = \left\{ z \in A, \ z(x - \lambda_1) \cdots (x - \lambda_n) = 0 \right\}.$$

 $\{I_n\}$ is an increasing sequence of left ideals in A. Define

$$\begin{array}{ccc} T:A' & \longrightarrow & A' \\ y & \leadsto & yx. \end{array}$$

We check easily that sp(T) = sp(x, Z(A)). Thus $\lambda_n \in \partial(spT)$. By Lemma 1, $A'(x - \lambda_n) = Im(T - \lambda_n)$ is closed. So, λ_n is an eigenvalue of T [5]. Each λ_n eigenvector of T is in I_n but not in I_{n-1} so that $\{I_n\}$ is a strictly increasing sequence of left ideals in A contrary to hypothesis. Thus, each element of Z(A) has finite spectrum.

Let x be in RadZ(A) and consider

$$T:A' \longrightarrow A'$$
 $y \rightsquigarrow yx,$

x is quasi-nilpotent, so $sp(T) = \{0\}$. Applying again Lemma 1 and [5, VII, Propositions 6.4 and 6.7] we deduce that there exists $z \in A$ such that zx = 0. Then, x = 0 by hypothesis. And thus, Z(A) is semi-simple. Consequently, Z(A) is finite-dimensional [4]. Hence, Z(A) is isomorphic to the complex field by the Wedderburn theorem for semi-simple finite-dimensional associative complex algebras. \blacksquare

As a consequence of lemma 2 and Slater's theorem for prime nondegenerate alternative algebras [7, p. 194], we obtain:

LEMMA 3. Let A be a complex noetherian alternative prime Banach algebra which is not associative. Then $A = \mathbb{O}_{\mathbb{C}}$ (the Cayley Dickson algebra over \mathbb{C}).

THEOREM 4. Let A be an alternative noetherian complex Banach algebra. Then A is finite-dimensional.

Proof. In the prime case this follows from Lemma 3 and the corresponding result for neetherian associative Banach algebras [6]. Suppose now that A is semi-prime. We claim that A can be embedded in a direct product of a finite number of prime alternative neetherian Banach algebras, and hence A would be finite-dimensional by the previous prime case.

To prove the claim, let A be a semi-prime alternative noetherian Banach algebra. We note first that A satisfies both acc and dcc on annihilator ideals because the first annihilator coincides with the third one. Denote by \Im the family of all nonzero ideals M of A such that ann(M) is maximal in the set of all annihilator ideals ann(B), where B is a nonzero ideal of A. Now we have:

- i) For any $M \in \Im$, ann(M) is a prime ideal of A.
- ii) Any nonzero annihilator ideal ann(I), I being an ideal of A, contains an ideal $M \in \Im$.
- iii) There exist finitely many ideals M_1, \ldots, M_n in \Im such that $ann(M_1 + \cdots + M_n) = \bigcap ann(M_i) = 0$.
- (i) Let B be an ideal of A containing strictly ann(M). Then $B \cap M$ is nonzero and hence $ann(B \cap M) = ann(M)$ by maximality of ann(M). Now if C is another ideal of A containing ann(M), $BC \subseteq ann(M)$ implies $(M \cap B)C \subseteq ann(M) \cap M = 0$. Hence, C is contained in $ann(B \cap M) = ann(M)$. Therefore A/ann(M) is prime.
- (ii) By the acc on annihilator ideals, there exists a nonzero ideal N of A contained in ann(I) such that ann(N) is maximal in the set of the annihilator ideals ann(B), B a nonzero ideal of A contained in ann(I); but ann(N) is actually maximal in the set of all annihilator ideals. Indeed, let C be a nonzero ideal of A such that $ann(N) \subseteq ann(C)$. Then C is contained in ann(ann(C)) and hence in ann(ann(N)), because annihilator reverse inclusions, but $N \subseteq ann(I)$ implies $ann(ann(I)) \subseteq ann(N)$ and hence ann(ann(N)) is contained in ann(ann(ann(I))) = ann(I). Then C is actually contained in ann(I). Hence ann(N) = ann(C) which implies that $N \in \mathfrak{F}$.
- (iii) Let $I = \sum M_i$ where M_i ranges over \Im . Since A is notherian, I is generated by a finite number of M_i , that is, $I = M_1 + \cdots + M_n$. Now $ann(I) = \bigcap ann(M_i) = 0$, since otherwise ann(I) would contain an ideal $M \in \Im$ by (ii), and hence M would be contained in $I \cap ann(I) = 0$ by semiprimeness of A, which is a contradiction.

Therefore A is a subdirect product of the alternative noetherian Banach algebras $A/ann(M_i)$, $1 \le i \le n$, each of which is prime by (i), which concludes the proof of the claim.

Consider now the general case. Let B be the Baer radical of A. By [7, Theorem 5, p. 256], B is nilpotent ideal (with index of nilpotence, say n) containing any solvable, in particular nilpotent ideal of A. Since the closure of B is also nilpotent with the same index of nilpotence, B is closed and A/B is a semi-prime alternative noetherian Banach algebra, and therefore finite dimensional. Consider the following sequence of ideals B^j defined inductively by $B^1 = B$ and $B^{j+1} = BB^j$ (recall that the product of two ideals of an alternative algebra is an ideal). Then B^j/B^{j+1} can be regarded as a finitely generated left L(A/B)-module. Since A/B is finite dimensional, L(A/B) is also finite dimensional, and hence the same is true for B^j/B^{j+1} . In particular,

 B^{n-1} is finite dimensional since $B^n = 0$. A recursive argument allows then us to show that B is finite dimensional, which completes the proof.

COROLLARY 5. Let A be a real alternative noetherian Banach algebra, then A is finite-dimensional.

Sketch of the proof: For the proof, we prove first that $A_{\mathbb{C}}$ is noetherian. By applying Theorem 4, we deduce that $A_{\mathbb{C}}$ and hence A is finite-dimensional.

Remark. Sidney has shown that a Banach algebra in which all left ideals are closed is neetherian (see for example [1] for the proof). Using the similar argument, we can prove that an alternative Banach algebra is neetherian if and only if all its left ideals are closed.

ACKNOWLEDGEMENTS

We are very thankful to the referee for his valuable comments and suggestions in improving the proofs.

REFERENCES

- [1] AUPETIT, B., "Propriétés Spectrales de Algèbres de Banach", Lecture Notes in Math., Vol. 735, Springer-Verlag, Berlin-New York, 1979.
- [2] GLEASON, A.M., Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132.
- [3] GRABINER, S., Finitely generated noetherian and artinian Banach algebras, *Indiana Univ. Math. J.*, **26** (1977), 413-425.
- [4] KAPLANSKY, I., Ring isomorphisms of Banach algebras, Canad. J. Math., 6 (1954), 374-381.
- [5] CONWAY, J.B., "A Course in Functional Analysis", Graduate Texts in Math., Vol. 96, Springer-Verlag, New York-Berlin, 1985.
- [6] SINCLAIR, A.M., TULLO, A.W., Noetherian Banach algebras are finite dimensional, *Math. Ann.*, **211** (1974), 151-153.
- [7] ZHEVLAKOV, A., SLIN'KO, A.M. SHESTAKOV, I.P., SHIRSHOV, A.I., "Rings that are Nearly Associative", Pure Appl. Math., Vol. 104, Academic Press, New York-London, 1982.