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1. INTRODUCTION

Sinclair and Tullo [6] proved that ncetherian Banach algebras are finite-
dimensional. In [3], Grabiner studied ncetherian Banach modules. In this
paper, we are concerned with alternative noetherian Banach algebras. Com-
bining techniques from [3] with techniques and the result of [6], we prove that
every alternative noetherian Banach algebra is finite-dimensional.

2. PRELIMINARIES

A nonassociative algebra A over a field K of characteristic zero is said to
be an alternative algebra if it satisfies:

'y = z(zy); yz’ = (yr)z

for all z,y € A.

Let A be an alternative algebra. A is called semi-prime (respectively prime)
if for any ideal I of A (resp. for any two of its ideals I and J) it follows from
the equality I? = (0) (resp. IJ = (0)) that I = (0) (resp. that either I = (0)
or J = (0)). Let X be a subset of A. The right annihilator (respectively
the left annihilator ) of X in A is defined by ran(X) = {a € A : Xa =
0} (respectively {a € A : aX = 0}). The annihilator of X is defined by
ann(X) = ran(X) Nlan(X). If A is semi-prime and B is an ideal of A, then
lan(B) = ran(B) = ann(B) is an ideal which has zero intersection with B.
A is said to be ncetherian if it satisfies the ascending chain condition on left
ideals. One can prove that in A, there exists a smallest ideal B(A) such that
A/B(A) does not contain nonzero trivial ideals [7, p. 162]; B(A) is called the
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Baer radical of A. If the center Z(A) of A is nonzero and does not contain zero
divisors of the algebra A , A is said to be a Cayley Dickson ring if moreover
the ring of quotients (Z(A)*)~'A is a Cayley Dickson algebra over the field of
quotients of the center Z(A) (where Z(A)* = Z(A) — {0}).

A (real or complex) nonassociative algebra A is said to be normed (respec-
tively Banach) algebra if the underlying vector space of A is endowed with a
norm (respectively complete norm) || - || satisfying

llabll < llal| - f|o]

for all a,b € A. Any alternative algebra A over a field K can be imbedded in
a unital alternative algebra A’

A=K+ A

For basic results on alternative algebras, the reader is referred to [7]. In
particular, recall that every prime alternative algebra A that is not associative
is a Cayley Dickson ring. Further, the Baer radical of a noetherian alternative
algebra is nilpotent. Finally, note that if A is an alternative algebra, for any
two of its ideals I and J, the product IJ is also an ideal of the algebra A.

3. MAIN RESULT

Given a nonassociative algebra A over a field K, the left multiplication
algebra L(A) of A is defined to be the subalgebra of Endk(A) generated
by all left multiplications L,, a in A, and the identity Id on A. If A is a
normed algebra then L(A) is clearly a subalgebra of the normed associative
algebra BL(A) of bounded linear operators of A. In this case, the closed left
multiplication algebra is defined to be the closure L(A)~ of L(A) in BL(A).

LEMMA 1. Let A be a nonassociative Banach algebra over K (K =R or
K = C) and let y be an element of the nucleus N(A) of A. If the closure
(A'y)~ of A’y is finitely generated as a left ideal in A then A'y is closed.

Proof. Note first that for y in N(A), bin A, and T in L(A)~, we have
(1) TLyy = Lrvy.

By linearity and continuity we need only to consider the case that T' =T, =
L., ---L,, witha; in A, 1 <7 <n. We will induct on n.
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For n =1, (1) holds since

Lo, Lyy = a;(by) = (a1b)y = L, sy,

because y lies in the nucleus.
Suppose now that (1) is true for all m < n — 1. Then

ToLyy = Lo, (Tao1Lyy) = La, (L1, _1sy) = Lp, 7016y = L1,0Y,

as required.
Suppose now that the closure (A'y)~ of the left ideal A'y is finitely gener-
ated as a left ideal. Then

(Ay)"=L(A)z1 + -+ L(A)z, = L(A) 21+ -+ + L(A) "z,

for some zy,... ,z, in (A'y)” because (A'y)~ is closed. For each 1 < i < n,
choose a sequence {a;}r in A’ such that {a;;:y}r converges to z;. Let fi be
the map
fe: L(A)” x -+ x L(A)- —— (A'y)~
(Tla R 7Tn) ~ Tl (alky) + 4+ Tn(anky)v
and let f be the map given by f(T1,...,T,) = Ti(z1) + -+ + Th(z,). The
sequence {fy} converges uniformly to f on L(A4)~ x---x L(A)~ but the set of

surjective continuous linear operators is open [2]. Hence there exists a positive
integer k such that f, is surjective. Now, by (1),

fk(Tl’ cee >Tn) = TlLaucy +oo TnLanky
= LTl(alk)y et LTn(ank)y
= L(Tlalk+"'+Tnank)y € A,y
Thus (A'y)~ = A'y, as required. [
LEMMA 2. Let A be a nonassociative complex Banach algebra which satis-

fies the ascending chain condition on left ideals. Assume that the center Z(A)
of A consists of regular elements. Then Z(A) ~ C.

Proof. Suppose that some z € Z(A) has infinite spectrum in Z(A) then the
boundary of the spectrum of z, d(sp(z, Z(A))) contains an infinite sequence
{A\.} of distinct nonzero complex numbers. For each positive integer n define

Inz{zeA, z(x—)\l)---(a:—)\n)=0}.
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{I.} is an increasing sequence of left ideals in A. Define

T:-A4 — A
y YT,

We check easily that sp(T) = sp(z, Z(A)). Thus A, € d(spT). By Lemma 1,
A'(z — X,) = Im(T — \,) is closed. So, )\, is an eigenvalue of T' [5]. Each A,
eigenvector of T' is in I, but not in I,_; so that {I,} is a strictly increasing
sequence of left ideals in A contrary to hypothesis. Thus, each element of
Z(A) has finite spectrum.

Let z be in RadZ(A) and consider

T:A — A
y oy,

z is quasi-nilpotent, so sp(T) = {0}. Applying again Lemma 1 and [5, VII,
Propositions 6.4 and 6.7] we deduce that there exists z € A such that zz = 0.
Then, z = 0 by hypothesis. And thus, Z(A) is semi-simple. Consequently,
Z(A) is finite-dimensional [4]. Hence, Z(A) is isomorphic to the complex
field by the Wedderburn theorem for semi-simple finite-dimensional associative
complex algebras. 1

As a consequence of lemma 2 and Slater’s theorem for prime nondegenerate
alternative algebras [7, p. 194], we obtain:

LEMMA 3. Let A be a complex ncetherian alternative prime Banach alge-
bra which is not associative. Then A = Q¢ (the Cayley Dickson algebra over
C).

THEOREM 4. Let A be an alternative ncetherian complex Banach algebra.
Then A is finite-dimensional.

Proof. In the prime case this follows from Lemma 3 and the corresponding
result for ncetherian associative Banach algebras [6]. Suppose now that A is
semi-prime. We claim that A can be embedded in a direct product of a finite
number of prime alternative noetherian Banach algebras, and hence A would
be finite-dimensional by the previous prime case.

To prove the claim, let A be a semi-prime alternative noetherian Banach
algebra. We note first that A satisfies both acc and dcc on annihilator ideals
because the first annihilator coincides with the third one. Denote by < the
family of all nonzero ideals M of A such that ann(M) is maximal in the set of
all annihilator ideals ann(B), where B is a nonzero ideal of A. Now we have:
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i) For any M €, ann(M) is a prime ideal of A.

ii) Any nonzero annihilator ideal ann(I), I being an ideal of A, contains an
ideal M € S.

iii) There exist finitely many ideals M, ... , M, in § such that ann(M; +
-+ M,) =N ann(M;) = 0.

(i) Let B be an ideal of A containing strictly ann(M). Then BN M
is nonzero and hence ann(B N M) = ann(M) by maximality of ann(M).
Now if C is another ideal of A containing ann(M), BC C ann(M) implies
(M NB)C C ann(M)NM = 0. Hence, C is contained in ann(B N M) =
ann(M). Therefore A/ann(M) is prime. ‘

(ii) By the acc on annihilator ideals, there exists a nonzero ideal N of A
contained in ann(I) such that ann(N) is maximal in the set of the annihilator
ideals ann(B), B a nonzero ideal of A contained in ann(I); but ann(N) is
actually maximal in the set of all annihilator ideals. Indeed, let C be a nonzero
ideal of A such that ann(N) C ann(C). Then C is contained in ann(ann(C))
and hence in ann(ann(N)), because annihilator reverse inclusions, but N C
ann(I) implies ann(ann(I)) C ann(N) and hence ann(ann(N)) is contained
in ann(ann(ann(I))) = ann(I). Then C is actually contained in ann(I).
Hence ann(N) = ann(C) which implies that N € .

(iii) Let I = >~ M; where M, ranges over &. Since A is ncetherian, I is
generated by a finite number of M;, that is, I = M; +- -+ M,,. Now ann([) =
Nann(M;) = 0, since otherwise ann(l) would contain an ideal M €S by (ii),
and hence M would be contained in I N ann(I) = 0 by semiprimeness of A,
which is a contradiction.

Therefore A is a subdirect product of the alternative ncetherian Banach
algebras A/ann(M;), 1 < i < n, each of which is prime by (%), which concludes
the proof of the claim.

Consider now the general case. Let B be the Baer radical of A. By [7,
Theorem 5, p.256], B is nilpotent ideal (with index of nilpotence, say n)
containing any solvable, in particular nilpotent ideal of A. Since the closure
of B is also nilpotent with the same index of nilpotence, B is closed and A/B
is a semi-prime alternative noetherian Banach algebra, and therefore finite
dimensional. Consider the following sequence of ideals B? defined inductively
by B! = B and B*! = BB’ (recall that the product of two ideals of an
alternative algebra is an ideal). Then B?/B*! can be regarded as a finitely -
generated left L(A/B)-module. Since A/B is finite dimensional, L(A/B) is
also finite dimensional, and hence the same is true for B7/B*1. In particular,
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B™! is finite dimensional since B® = 0. A recursive argument allows then us
to show that B is finite dimensional, which completes the proof. [

COROLLARY 5. Let A be a real alternative ncetherian Banach algebra,
then A is finite-dimensional.

Sketch of the proof: For the proof, we prove first that Ac is noetherian. By
applying Theorem 4, we deduce that Ac and hence A is finite-dimensional.

Remark. Sidney has shown that a Banach algebra in which all left ideals
are closed is noetherian (see for example [1] for the proof). Using the similar
argument, we can prove that an alternative Banach algebra is noetherian if
and only if all its left ideals are closed.
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