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ABSTRACT 

The objectives of this article are twofold: (a) to outline the basic concepts associated 
with the linear mixed model and (b) to illustrate how this model can be used to analyse 
systematic interindividual differences in intraindividual change, this being achieved through a 
longitudinal study of a cohort of children living in Cordoba (Argentina). These objectives will 
be met by using the PROC MIXED statement of the SAS software. This software fits a wide 
variety of linear mixed models to longitudinal data, thus enabling valid statistical inferences 
to be made. Since the choice of covariance structure may influence the values obtained in 
significance tests for fixed effects, we focus our attention on this aspect. The most common 
covariance structures for modelling longitudinal data are described and guidelines are 
proposed for choosing the structure which enables more powerful and more efficient 
regression parameter estimates to be made. 
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1.- Introduction 
 

Over the last decade, social and health researchers have turned their attention to the 
relationships between individuals and the social milieu in which they develop, the aim being 
to evaluate the influence of context on individual behaviour. This has particular relevance in 
the field of education where, in addition to the individual progress of students, it is important 
to analyse the influence of schools themselves. Likewise, there is a long tradition within 
health research of studies analysing the variability between individuals from different 
geographical areas or different groups. This type of study provides information about the 
health of individuals and the area in which they live, or about the treatment received by 
patients and the characteristics of the health centre they attend. Therefore, different 
hierarchies of available information are established. In most situations only two hierarchical 
levels are considered, although three or more may be studied. For example, within the area of 
health, patients (level 1 unit) are grouped into hospitals (level 2), which in turn are grouped 
into geographical areas (level 3). In education an example of a three-level hierarchical 
structure would be pupils in classrooms within schools.  

 
Establishing this hierarchy of different variables has important repercussions for the 

data analysis. It is assumed that subjects belonging to the same group will tend to be more 
similar to one another than to members of other groups, and this similarity between 
individuals yields an intra-group correlation structure that rules out the use of traditional 
estimation methods. Therefore, considerable efforts have been made to analyse these 
hierarchical structures via approaches that enable valid statistical inferences to be made. The 
result of this is what are termed multilevel models, based on the linear mixed model. 

 
The hierarchical structure can also be applied to situations where repeated measures 

are taken of subjects, that is, in longitudinal studies. In the longitudinal field, a typical two-
level hierarchical structure would distinguish, on the first level, the repeated observations per 
subject and, on the second level, the individuals themselves. According to this hierarchical 
structure the individual effects and intraindividual variation, which is a function of time, 
define the first level, while the interindividual variation associated with the subjects’ 
characteristics define the second level. As longitudinal studies are usually characterised by 
autocorrelation between the observations of the same subject and by the sample attrition, they 
cannot be analysed by means of traditional regression models. Thus, multilevel models are 
currently used instead of these traditional models. Various authors have argued that multilevel 
models are the most suitable for the analysis of longitudinal data (Bock, 1989; Bryk & 
Raudenbush, 1992; Goldstein, 2003; Hoeksma & Knol, 2001; Plewis, 2001; Raudenbush, 
1989; Snijders, 1996). Using this analytic procedure it is possible to determine individual 
growth profiles and infer the effect of the variables that produce variance between subjects 
(Hox, 2002). 

 
The main aim of data analysis using the linear mixed model is to define an adequate 

error covariance structure in order to obtain efficient estimates of the regression parameters. 
The statistical software now includes the covariance structure as part of the statistical model 
and thus the covariance matrix can be used to estimate the fixed effects of treatment and time 
by means of the generalized least squares method. Noteworthy among this statistical software 
are the HLM (Bryk & Raudenbush, 1992; Bryk, Raudenbush, & Congdon, 1996; 
Raudenbush, Bryk, Cheong, & Congdon, 2000), the MLwiN (Prosser, Rasbash, & Goldstein, 
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1996; Rasbash et al., 2000) and the SAS (Littell, Milliken, Stroup, & Wolfinger, 1996; Sheu 
& Suzuki, 2001; Verbeke & Molenberghs, 1997). The present study, in the form of a tutorial, 
describes how to analyse longitudinal data using the PROC MIXED of the SAS system (SAS 
Institute Inc, 2000, 2004). The first part provides a brief description of the linear mixed 
model, whose application is then illustrated by studying data concerning the weight of a group 
of children from birth to five years of age. This study will serve to demonstrate how to model 
the error covariance structure which, undoubtedly, is the core of the linear mixed model. 

 
 
2.- Linear mixed model 
 
The linear mixed model is an application of the general linear model and is defined in 

the following terms: 
yi = Xiβ + Ziγi + ei                                                          (1) 
 

where yi is the vector of repeated measures data for the i-th subject, Xi is the known design 
matrix that includes covariables for the fixed effects, β is the vector of fixed-effects 
parameters, Zi is another known design matrix that includes covariances for the random 
effects, γi is the vector of random-effects parameters or the residuals at the subject level and ei 
is the vector of the errors at the level of observation. The fixed part of the model is specified 
by Xiβ and the random part by Ziγi + ei. 
 

The linear mixed model does not impose conditions on the covariance structures; it 
merely assumes that γi and ei have an independent multivariate normal distribution with a zero 
mean and covariance matrices G and Ri, respectively. On the basis of this model, the 
observations vector yi has a multivariate normal distribution with an expected value of 

 
        E(yi)= Xiβ                                             (2) 

and variance                     
  V(yi) = ZiGZi’+Ri                                           (3) 
 

where ZiGZi’ is the between-subjects component and Ri the within-subject component, such 
that the covariance matrix of observations is a function of G and Ri, where G=V(γi) and 
Ri=V(ei). Note that the fixed effects define the expected values of the observations, while the 
random effects represent the variances and covariances of the observations (Littell, 
Pendergast, & Natarajan, 2000). 
 

In longitudinal data, the repeated measures can be considered as dependent variables. 
For that reason, the multivariate analysis is a good alternative to the univariate analysis. 
However, the advantage of the linear mixed model over traditional analytic approaches to 
longitudinal data is that it models the covariance matrix. Thus, the fixed parameter estimates 
are more efficient and the model is more powerful in terms of testing the effects associated 
with the repeated measures. This approach is also more robust than traditional univariate and 
multivariate tests. However, when the covariance structure is not adequately fitted and sample 
sizes are small, a positive bias in type I error is produced (Wright & Wolfinger, 1997). 
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3.- Analysis of an empirical study: Growth differences in children 
 

This section describes the use of the PROC MIXED in the SAS system (version 9.1.3) 
with data concerning the weight of a group of children from birth to five years of age. These 
data form part of a study conducted by the CLACYD Foundation (the initials in Spanish 
standing for Cordoba, breast-feeding, food, growth and development). The research began in 
1993 and the cohort was followed up over the five-year period to 1998. All births occurring 
between 10 and 22 May 1993 in public and private institutions offering obstetric services 
were recorded. The inclusion criteria were that the babies had to live in Cordoba (Argentina), 
have a minimum weight of 2.5 kilos, not be the result of a multiple pregnancy and be free of 
any  malformations (Sabulsky et al., 2001). As it is an illustrative example we used a sub-
sample of 140 subjects (65 boys and 75 girls). As the dependent variable, weight in kilos was 
measured at birth and on five subsequent occasions (at 1, 2, 3, 4 and 5 years). The aim of the 
study was to examine whether there were systematic interindividual differences in 
intraindividual change in the children’s weight over time as a consequence of the method of 
feeding (breast vs. bottle). The breast-fed group, comprising 56 subjects (25 boys and 31 
girls), were fed solely breast milk during the first four months of life. The bottle-fed group, 
consisting of 84 subjects (40 boys and 44 girls), were either never breast-fed or weaned 
during the first two months of life. 

 
Table 1 shows the set of variables that form part of the study. The data file 

(weight.dat) has been organised with the SAS system following the repeated measures format 
(SAS Institute Inc, 2000), such that birth weight is taken as the baseline and the successive 
observations constitute the repeated measures. 

 
 

Variable Description 

PERSON 
WEIGHTBL 
FEEDING 
WEIGHT 
 
AGE 

Person in the study (140 levels) 
Baseline (birth weight) 
Feeding method (breast vs. bottle) 
Weight across five-year period for 
each subject 
Age from 1 year to 5 years (5 levels) 

    Table 1. Variables in the SAS Data Set Weight 
 

Figure 1 shows the within-subject profile graphs according to the type of feeding 
during the first five years of life. Note that the profiles follow a similar pattern in both groups 
of children: marked increase in weight during the first year of life and a growing linear trend. 
It can also be seen that the between-subjects variation, particularly in the bottle-fed group, 
increases with age. 
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                                 BREAST-FED GROUP                    BOTTLE-FED GROUP 
 

 
Figure 1. Profile graphs according to feeding method (breast vs. bottle) 

 
 
Figure 2 shows the mean weight values over time as a function of the method of 

feeding (breast vs. bottle). The patterns coincide with those of the profile graphs (Figure 1). 
During the first year there is a large increase in weight and there are no differences between 
the children according to the method of feeding. Both groups present similar means at AGE=0 
or baseline and AGE=1. After year one the growth slope is less steep and a pattern of 
interindividual change appears as a function of the method of feeding. It can also be seen that 
the between-groups differences remain constant over time, the weight of bottle-fed children 
being greater. 
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Figure 2. Mean weight according to feeding method (breast vs. bottle) 
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As pointed out above, the linear mixed model enables a given covariance structure to 
be defined in order to obtain efficient regression parameter estimates. In the next section we 
describe the four covariance structures whose fit was examined in the present study. It will be 
seen that different information criteria were used in each one of the models in order to select 
the structure that offered the best fit. 

 

3.1.- Linear mixed models using SAS PROC MIXED 
 
The PROC MIXED program of the SAS system is suitable for fitting mixed models. 

In order to apply this program it is necessary to specify the components of equation 1 and 
determine the covariance structure of Ziγi and ei. PROC MIXED can be used not only to 
estimate the fixed parameters of β, but also the covariance parameters of G and Ri. By 
default, PROC MIXED estimates the covariance parameters using the method of restricted 
maximum likelihood (REML), also known as residual maximum likelihood. 

 
The mixed model is specified by means of the CLASS, MODEL, RANDOM and 

REPEATED statements. The CLASS statement identifies the classification variables (for 
example, gender, person, age, etc.). The MODEL statement specifies the model’s fixed effects 
equation, Xiβ. Thus, the design matrix Xi is defined and the model’s intercept is included by 
default. The RANDOM statement contains the random effects, Ziγi, including the structure of 
G=V(γi). The REPEATED statement models the intraindividual variation and includes the 
structure of Ri=V(ei), where Ri is a block diagonal matrix for each subject. If the REPEATED 
statement is not included it is assumed that Ri=σ2I.  

 
To illustrate the analysis we compared the influence of the method of feeding (breast 

vs. bottle) on the evolution of children’s weight from birth to five years of age and used the 
baseline WEIGHTBL as the covariable. Prior to carrying out the analysis, different structures 
of the matrix Ri were fitted. In addition to the simple model, which corresponds to an 
ANOVA, we also took into account a number of more frequently used models, such as the 
unstructured model, the compound symmetry model and the first-order autoregressive model. 
The most typical covariance structure for longitudinal data is the unstructured model, as it 
requires no assumption regarding the error terms and allows any correlation pattern between 
the observations. However, when it is assumed that the correlations between the observation 
points are constant, the covariance structure takes the compound symmetry form. This 
assumption is supported by the repeated measures ANOVA and is not very common with real 
data. Finally, a common structure in longitudinal data is the autoregressive one. This structure 
falls between the unstructured and compound symmetry models. In all these models it is 
assumed that each subject has the same covariance structure and that the data from different 
subjects are independent. 

 
An additional feature of the PROC MIXED is that it allows the user to specify, 

separately and jointly, covariance structures that assume within-subjects and/or between-
subjects heterogeneity. Within-subjects heterogeneity occurs when the variances across 
repeated measures are unequal while between-subjects heterogeneity occurs when covariance 
matrices differ across groups. In this study, we analyzed a model assuming within-subjects 
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heterogeneity because the data of the example are characterized by this structure, and we 
compared this model with models that assume within-subjects homogeneity. 

 
3.1.1 Simple (VC) 

 
The simple model assumes independent observations and homogeneous variance. 

Consequently, G=0 and Ri= I. 2σ
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000
01000
00100
00010
00001

2σVC                                         (4) 

 
This model cannot be used with repeated measures obtained from the same subject due 

to their non-independence. The syntax of the PROC MIXED, when it doesn’t include the 
RANDOM or REPEATED statement, corresponds to the general linear model: 

 
proc mixed data = weight covtest; 

    class feeding person age; 
    model weight = weightbl feeding age feeding*age; 

 
The instruction DATA=name of data file allows access to the data set and the option 

COVTEST prints the statistical significance of the estimated covariance parameters. The 
CLASS statement includes the classification variables FEEDING, PERSON and AGE. In the 
MODEL statement, WEIGHT is defined as a response variable and WEIGHTBL represents 
the regression effect of the baseline. The variable FEEDING, due to its being a classification 
variable, models a different mean for each level of feeding method. Similarly, the different 
means are specified for the levels of AGE. Finally, the interaction FEEDING*AGE is 
modelled. Another way of expressing this same model is by adding the option TYPE=VC of 
the REPEATED statement. In this example, the variance estimate of the VC model is 

. 308832 .=σ
 
3.1.2.- Unstructured (UN) 
 
In the unstructured covariance matrix all the variances and covariances are different. 

Although this structure is the most heterogeneous it also offers the best fit. However, its 
application requires the estimate of many parameters, K(K+1)/2, where K is the number of 
repeated measures or observations. With the five repeated measures of the example analysed 
the matrix adopts the following pattern: 
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UN =                                                      (5) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2
554535251

54
2
4434241

5343
2
33231

524232
2
221

51413121
2
1

σσσσσ
σσσσσ
σσσσσ
σσσσσ
σσσσσ

 

The PROC MIXED that fits the unstructured model is specified as: 

 

proc mixed data = weight covtest; 
    class feeding person age; 
    model weight = weightbl feeding age feeding*age; 

repeated/type = un subject = person r rcorr; 

 

The FEEDING and PERSON variables included in the CLASS statement are 
classification variables. As the AGE variable contains only a few levels it can also be treated 
as a classification variable in order to avoid biased estimates of the variance and covariance 
parameters (Littell et al., 2000). The fixed effects, specified in the MODEL statement, 
correspond to WEIGHTBL, FEEDING, AGE and FEEDING*AGE. The unstructured 
covariance matrix (TYPE=UN) is specified using the REPEATED statement, in other words, 
in terms of Ri and assuming G=0. The option SUBJECT=PERSON defines Ri as a block 
diagonal matrix with a sub-matrix for each individual. Finally, the options R and RCORR 
require the Ri matrix to be printed in terms of covariance and correlation, respectively. 

 
The elements on the diagonal of Table 2 are the estimates of the between-subjects 

variances with respect to feeding method at different ages. Note that, as in Figure 1, the 
estimated variances increase over time, from  to . The covariances 
are situated above the diagonal and the correlations below it. The correlations between the 
values of the WEIGHT variable become weaker as the distance between observations 
increases. For example, the correlation of weights between AGE=1 and AGE=2 is 0.7632, 
while that between AGE=1 and AGE=5 is 0.6106. This indicates a trend towards weaker 
correlations as the interval between measures increases. With this type of data an ANOVA is 
not suitable. 

893802
1 .=σ 883472

5 .=σ

 
AGE 1 AGE 2 AGE 3 AGE 4 AGE 5 
0.8938 0.8921 1.0098 1.2798 1.6207 
0.7632 1.5286 1.4229 1.7209 2.1504 
0.7163 0.7718 2.2236 2.8210 3.3660 
0.6600 0.6790 0.9229 4.2017 5.2374 
0.6106 0.6195 0.8040 0.9100 7.8834 

Note: Variances on diagonal, covariances above diagonal, correlations 
below diagonal 

   Table 2. Covariance and Correlation Estimates for the Unstructured Matrix 
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3.1.3.- Compound Symmetry (CS) 
 

The compound symmetry structure assumes that the observations of the same subject 
have homogeneous variances and homogeneous covariances. With five repeated measures the 
matrix adopts the following pattern: 

 

      CS =                             (6) 

⎥
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+
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2
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1
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2

σσσσσσ
σσσσσσ
σσσσσσ
σσσσσσ
σσσσσσ

 
The covariance matrix CS can be specified with PROC MIXED in two different ways: 

with the RANDOM statement or with the REPEATED statement. However, the latter 
procedure is preferable as it can also be used when the within-subject correlation is negative. 
 

With the REPEATED statement and the options TYPE=CS and SUBJECT=PERSON, 
the matrix Ri is defined with two unknown parameters, one which models the common 
covariance and the other the residual variance: 

 

Ri =                    (7) 
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The PROC MIXED instructions specify the structure for each individual subject and 

print the sub-matrix Ri of a subject in terms of covariance and correlation (R and RCORR, 
respectively): 

 
proc mixed data = weight covtest; 

    class feeding person age; 
    model weight = weightbl feeding age feeding*age; 
    repeated/type = cs subject = person r rcorr; 
 

The parameter estimates of the matrix Ri obtained via the CS model are  

and . According to this compound symmetry structure the estimated variance 

is similar to that obtained with the VC structure, since it is a special case of 
the simple model. The CS covariance structure supports the assumption of the repeated 
measures ANOVA. This assumption is restrictive and is not usually met by real data. 

126522
1 .=σ

194212 .=σ

3207322
1 .=+σσ
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3.1.4.- First-order autoregressive (AR(1)) 
 

The first-order autoregressive model assumes that measurements which are close to 
one another in time will show high correlations. Its structure is homogeneous, the variances 
are equal and the covariances between observations of the same subject decrease 
exponentially as the lag increases. Therefore, it comprises two parameters: the parameter of 
the variance of observations and that of the correlation between adjacent observations: 

 

AR(1) = σ2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
1

1
1

1

234

23

22

32

432

ρρρρ
ρρρρ
ρρρρ
ρρρρ
ρρρρ

                                       (8) 

 
The correlation ρ is that between the observations of interval one and two, while 

correlation ρ2 is that between the observations of interval one and three, and so on. Therefore, 
the AR(1) correlations follow an exponential function: 

 
corrAR(1)(lag)=                     (9) lag

)1(ARρ
 

The autoregressive structure is defined in terms of Ri and G=0. This covariance 
structure is specified for each subject with the REPEATED statement: 
 

proc mixed data = weight covtest; 
    class feeding person age; 
    model weight = weightbl feeding age feeding*age; 
    repeated /type=ar(1) subject=person r rcorr; 
  

The variance parameter estimated by the AR(1) model is 3.8943 and ρ = 0.8716. 
According to equation (9), for observations separated by one year the correlation is 0.8716; 
for observations separated by two years the correlation is 0.7597; for observations separated 
by three years the correlation is 0.6622; and for observations separated by four years the 
correlation is 0.5772. These values are considerably higher than the zero correlation assumed 
by the ordinary least-squares analysis. 

 
Table 3 summarises the covariance and correlation matrices resulting from the simple, 

compound symmetry and autoregressive models. The unstructured covariance and correlation 
matrices are shown in Table 2. 
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 AGE 1 AGE 2 AGE 3 AGE 4 AGE 5 
Simple (VC) 3.3084 

1 
0 
0 

0 
0 

0 
0 

0 
0 

Compound Symmetry (CS) 3.3207 
1 

2.1265 
0.6404 

2.1265 
0.6404 

2.1265 
0.6404 

2.1265 
0.6404 

Autoregressive (AR(1)) 3.8943 
1 

3.3944 
0.8716 

2.9586 
0.7597 

2.5788 
0.6622 

2.2477 
0.5772 

Note: Variances and covariances in top line, correlations in bottom 
line 

   Table 3. Variance, Covariance and Correlation Estimates for Covariance Structures 
 
3.2.- Comparison of fits of covariance structures 
 
With the mixed model it is possible to select the covariance structure which best 

describes the data. The PROC MIXED uses three fit criteria: -2 times the residual log-
likelihood (-2RLL), Akaike’s Information Criterion (AIC) (Akaike, 1974) or its corrected 
version for finite samples (AICC) (Hurvich & Tsai, 1989), and the Bayesian Information 
Criterion (BIC) (Schwarz, 1978). These criteria are indices of relative goodness-of-fit and 
may be used to compare models with different covariance structures and the same fixed 
effects (Bozdogan, 1987; Keselman, Algina, Kowalchuk, & Wolfinger, 1998; Littell et al., 
1996; Wolfinger, 1993, 1996, 1997).  

 
The interpretation of results must take into account, firstly, the null model likelihood 

ratio test. This test is statistically significant in well-fitted models, which indicates that they 
are better than the ordinary least-squares null model (H0: Ri=σ2I). It can be seen in Table 4 
that the null model likelihood ratio test is highly significant (p<0.0001) for CS, AR(1) and 
UN covariance structures, and thus all the structures used in this example provide a better fit 
than the null model. The -2RLL criterion, which measures the deviance between the data and 
the model, can be used to determine which covariance structure is the most adequate. The 
smaller this index is, the better the fit. In this study the best fit corresponds to the unstructured 
covariance matrix. However, the -2RLL criterion cannot be directly interpreted, but only in 
comparison with other models (Singer, 2002; Singer & Willett, 2003; Luke, 2004). The 
difference of deviances between two models is distributed as a chi-squared with as many 
degrees of freedom as the difference between the number of estimated parameters in each 
model. In Table 4 the deviance of the UN model is 1857.5, while that of the CS and AR(1) 
models is greater. The difference between the deviances of the UN and CS model is 581.1, 
while that between the UN and AR(1) models is 292.9. These differences, when compared 
with a chi-squared distribution with 13 degrees of freedom (15 parameters – 2 parameters), 
are statistically significant (p<0.001). The UN model clearly shows the best fit. However, this 
model is not parsimonious; that is to say, it is unable to explain the data with few parameters. 
Therefore, the AIC and BIC fit criteria have been proposed on the basis of the deviance but 
they penalize due to the number of parameters to be estimated: 

 
AIC = -2RLL + 2d                              (10) 
BIC = -2RLL + d ln(N)       (11) 
 

where d is the number of parameters to be estimated and N is the sample size. 
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As with the -2RLL criterion, the smaller the value of the AIC and BIC criteria, the 
better the fit. Examination of the AIC and BIC criteria confirms that the unstructured 
covariance matrix is the one which best fits the data (Table 4). 

 
Structure Name CS AR(1) UN 
Covariance 
Parameters 

2 2 15 

-2RLL 2438.60 2150.40 1857.50 
AIC 2442.60 2154.40 1887.50 
BIC 2448.50 2160.30 1931.60 
Chi-Square 387.94 676.17 969.12 
Pr>Chi-Square <.0001 <.0001 <.0001 

           Table 4. Fit Statistics and Null Model Likelihood Ratio Test 
 
 
3.3.- Tests of fixed effects 

 

 Once the covariance structure has been selected the results from the tests of fixed 
effects can be interpreted. On the basis of the results obtained it can be concluded that all the 
fixed effects are statistically significant (WEIGHTBL, FEEDING, AGE, FEEDING*AGE). 
  
 Table 5 shows the statistical significance of the fixed effects for models with different 
covariance structures. This enables us to see how a given covariance structure affects the 
accuracy of the inference of fixed effects. It can be seen that although the interaction 
FEEDING*AGE of the VC model is not statistically significant (p=0.3817), it is significant in 
the other models. Furthermore, although the p values of the CS, AR(1) and UN models are 
statistically significant for all the fixed effects, the F values differ. 
 

Structure 
name 

WEIGHTBL FEEDING AGE FEEDING*AGE 

VC 59.88   
p<.0001 

35.07 
p<.0001 

521.56 
p<.0001 

1.05 
p=0.3817 

CS 16.75 
p<.0001 

9.81 
p=0.0021 

1444.90 
p<.0001 

2.90 
p=0.0214 

AR(1) 15.20 
p=0.0002 

7.33 
p=0.0076 

857.37 
p<.0001 

3.33 
p=0.0104 

UN 20.93 
p<.0001 

9.67 
p=0.0023 

749.50 
p<.0001 

4.73 
p=0013 

    Table 5. Values of F Test for Fixed Effects for different Covariance Structures 
 

The study of an interaction that is statistically significant can be completed with the 
LSMEANS statement: 

 

    lsmeans feeding*age /cl; 

 

This statement enables us to obtain the means corresponding to the FEEDING*AGE 
combinations and, with the CL option, the confidence limits. The results of the LSMEANS 
statement for the UN model are shown in Table 6. When analysing the means of the 

26 



Revista Electrónica de Metodología Aplicada  
2007, Vol. 12 nº 2, pp. 15-31 

 
 
 
 

FEEDING*AGE interaction it can be seen that children in the bottle-fed group (FEEDING 2) 
are heavier, this effect being greater at four and five years of age.  

 

 
Least Squares Means 

                                Standard 

 Effect    Feeding Age Estimate   Error  DF  t Value  Pr > |t|  Alpha   Lower   Upper 
 feeding*age  1     1    9.5263   0.1263  137   75.41    <.0001   0.05   9.2765   9.7761 

 feeding*age  1     2   11.7255   0.1652  137   70.97    <.0001   0.05  11.3988  12.0522 

 feeding*age  1     3   13.8214   0.1993  137   69.36    <.0001   0.05  13.4273  14.2154 

 feeding*age  1     4   16.0307   0.2739  137   58.52    <.0001   0.05  15.4890  16.5723 

 feeding*age  1     5   18.2432   0.3752  137   48.62    <.0001   0.05  17.5013  18.9852 

 feeding*age  2     1    9.8353   0.1032  137   95.35    <.0001   0.05   9.6313  10.0392 

 feeding*age  2     2   12.5712   0.1349  137   93.19    <.0001   0.05  12.3045  12.8380 

 feeding*age  2     3   14.7095   0.1627  137   90.41    <.0001   0.05  14.3878  15.0312 

 feeding*age  2     4   16.9448   0.2237  137   75.76    <.0001   0.05  16.5025  17.3870 

 feeding*age  2     5   19.4346   0.3063  137   63.44    <.0001   0.05  18.8289  20.0404 
  Table 6. Least squares means output for the FEEDING*AGE combinations 

 

Finally, if we want to estimate the effect of feeding method for a given individual, for 
example, one with a baseline (WEIGHTBL) value of 3.7, it is necessary to specify in the 
LSMEANS statement the following options: 

 

    lsmeans feeding / diff at weightbl=3.7 cl; 

 

The DIFF option estimates the difference between the two levels of the FEEDING 
variable, the AT option estimates the means at a WEIGHTBL level of 3.7, and the CL option 
calculates the confidence limits of the means for each level of feeding method and for the 
difference between the two means. Continuing with the UN model the results obtained 
through these options of the LSMEANS statement are shown in Table 7. It can be seen that 
there is a difference, with respect to weight, of -0.8297 between the two levels of feeding 
method and in favour of the bottle-fed group. 
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Least Squares Means 

                                Standard 

Effect Feeding Weightbl Estimate   Error   DF  t Value Pr > |t| Alpha   Lower    Upper 
feeding    1     3.70   14.1753   0.2171  137   65.30   <.0001   0.05  13.7460  14.6045 

feeding    2     3.70   15.0049   0.1815  137   82.65   <.0001   0.05  14.6459  15.3639 

Differences of Least Squares Means 

                                                 Standard 

   Effect   Feeding _Feeding  Weightbl  Estimate    Error   DF  t Value  Pr > |t|  Alpha 
   Feeding   1        2        3.70     -0.8297    0.2668  137   -3.11    0.0023    0.05 

                          Effect   Feeding  _Feeding      Lower       Upper 

                          Feeding   1         2         -1.3572     -0.3022 
   Table 7. Least squares means output for WEIGHT=3.7 

 
 
4.- Conclusions 
 
One of the main characteristics of an analysis based on the linear mixed model is the 

fit of the repeated measures covariance structure. This is possible as a result of new statistical 
programs that enable this structure to be included in the model. The choice of covariance 
structure can be made using graphs, by comparing covariance estimates or through the use of 
fit indices, the latter being the chosen option in the present study. Once the covariance 
structure has been defined it can be used to estimate the fixed effects. 
  
 With respect to specifying the covariance matrix by means of the PROC MIXED of 
the SAS system, two aspects should be highlighted. Firstly, the covariance produced by the 
variation between subjects is specified by means of the RANDOM statement. Secondly, when 
the study is based — as in the case analysed — on repeated measures the covariance structure 
between these measures is specified using the REPEATED statement. It is important to note 
that the fixed effects estimates with different covariance structures may yield the same values, 
even though the standard errors of these estimates can vary widely. Consequently, although 
the significance tests depend on the covariance structure chosen, this is not the case for the 
fixed effects estimates. This has a greater repercussion when the data are not balanced or the 
time intervals between observations are not constant. 
  

 Finally, it should be noted that additional models and analyses can be considered 
within the framework of linear mixed models. For example, the age effect could be analysed 
as a linear trend rather than as a classification variable with different values. Thus, the age 
variable could be treated as a continuous variable, with age effects being modelled by means 
of polynomial trends over time. However, as we pointed out in the Introduction, the aim of 
the present study was to show how to use an analytical approach that enables adequate 
modelling of longitudinal data using the PROC MIXED of SAS. 
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