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A mathematical interpretation of the point
splitting procedure in quantum field theory

Carolina Neira Jiménez
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Abstract. In Quantum Field Theory, expressions which prove to be

useful to describe observables of the theory might diverge or have an

ambiguous meaning. In this paper, we present and compare known

regularization procedures which provide a good interpretation of some

of these expressions. On the basis of previous works on the subject

([8], [10], [13], [20]), we relate the so called “point splitting”procedure

familiar to physicists to heat kernel and ζ−function regularization used

both in mathematics and physics.
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Resumen. En teoŕıa cuántica de campos, algunas expresiones que son
útiles para describir observables de la teoŕıa pueden diverger o tener
un significado ambiguo. En este art́ıculo, presentamos y comparamos
algunos procedimientos conocidos de regularización que ofrecen una
buena interpretación de algunas de estas expresiones. Basándonos en
previos trabajos sobre el tema ([8], [10], [13], [20]), relacionamos el cono-
cido procedimiento de “separación puntual” familiar para los f́ısicos,
con la regularización por el núcleo del operador del calor y la función
ζ, ambas usadas en matemáticas y f́ısica.

1. Introduction

This article, which is a summary of the author’s Master’s thesis in Math-
ematics [11], offers a survey of known regularization methods in mathematics
and physics with the aim of clarifying some relations between them. In par-
ticular, we review how heat kernel regularization relates to ζ−regularization,
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each leading to a priori different notions of regularized determinants and how
the point splitting procedure can be interpreted as heat kernel regularization
in disguise. Although most of the results presented here are known or belong
to folklore knowledge (e.g. Theorem 5), we feel that a compact presentation
somewhat clarifies various approaches used in both mathematics and physics
to make sense of divergent expressions. The starting point for this work is the
lecture notes [13], in which regularization procedures for divergent integrals of
symbols of pseudo-differential operators (PDO’s) are investigated. Here, we
study a related problem, namely, how to define the integral on the diagonal
of the distribution kernel of a PDO. Whereas such a kernel is smooth outside
the diagonal, it can have singularities on the diagonal. We implement regular-
ization methods (see Theorem 1) to extend it to a function (which is not even
continuous) on the whole space (see Subsection 2.3).

After some preliminaries on PDO’s and symbols, in Section 3 we investigate
ζ−regularization and the ζ−function associated with an elliptic operator. The
Mellin transform relates this regularization procedure to the heat kernel pro-
cedure (see Subsection 2.4); this yields a relation between the ζ−determinant
and the renormalized heat kernel determinant of an admissible operator (see
Theorem 5). Underlying these two types of regularization procedures are cor-
responding regularization procedures for traces, the heat kernel regularization
procedure and the ζ−function regularization procedure. Regularized traces
obtained via the two methods differ by a term involving the Wodzicki residue
(see formula (18)). One usually expects regularization procedures to give rise to
anomalies; in Section 5 we show how conformal anomalies can arise for regular-
ized determinants. Finally, in Sections 6 and 7, we recall how ζ−determinants
come up as partition functions in quantum field theory and how the point split-
ting procedure in quantum field theory can be seen as a heat kernel procedure
in disguise and therefore be related to ζ−function regularization.

2. Pseudo-differential Operators on R
n

The following material is taken from [4]. Given x = (x1, . . . , xn), y =
(y1, . . . , yn) two points in R

n, the Euclidean scalar product and norm will be de-
noted by x·y = x1y1+· · ·+xnyn and |x| = (x·x)1/2 resp. For α = (α1, . . . , αn) ∈
N

n we set the following notations: |α| = α1 + · · ·+αn, x
α = xα1

1 · · ·xαn
n , α! =

α1! · · ·αn!, and finally, dα
x =

(
∂

∂x1

)α1 · · ·
(

∂
∂xn

)αn

and Dα
x = (−i)|α|dα

x , as
a suitable notation for multiple partial differentiation. We denote by S the
Schwartz class on R

n.

Remark 1. In the following, we let dx, dy, dξ, etc., denote the Lebesgue measure
on R

n with an additional normalizing factor of (2π)−n/2.

If f ∈ S, the Fourier transform of f is defined by f̂(ξ) =
∫
e−ix·ξf(x)dx, for

ξ ∈ R
n. For s ∈ R we denote the corresponding Sobolev space by Hs(Rn).
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If a ∈ N, a linear partial differential operator of order a is a polynomial
expression P = P (x,D) =

∑
|α|≤a aα(x)Dα

x where the aα(x) ∈ C∞(Rn,C).
The symbol σ(P ) = σ is defined by: σ(P )(x, ξ) = σ(x, ξ) =

∑
|α|≤a aα(x)ξα

which is a polynomial of order a in the dual variable ξ ∈ R
n. If f ∈ S, we can

use the Fourier inversion formula to express

Pf(x) =
∫
eix·ξσ(x, ξ)f̂(ξ)dξ =

∫∫
ei(x−y)·ξσ(x, ξ)f(y)dydξ.

Remark 2. Since the second integral does not converge absolutely, we cannot
interchange the order of integration in y and ξ.

We use this formalism to define the action of pseudo-differential operators
(PDO’s) for a wider class of symbols σ(x, ξ) than polynomials.

Definition 1. Let U ⊆ R
n be an open set and let a ∈ R. We say that σ(x, ξ)

is a symbol of order a, and we write σ ∈ Sa(U), if:

(a) σ(x, ξ) is smooth in (x, ξ) ∈ R
n × R

n and its support in x is contained
in a compact set K ⊂ U .

(b) For all (α, β) ∈ N
n × N

n there are constants Cα,β such that

|Dα
xD

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)a−|β| ∀(x, ξ) ∈ K × R

n.

If U = R
n we write Sa(U) = Sa.

For a symbol σ ∈ Sa(U), the associated operator P (x,D) is defined by:

P (x,D)(f)(x) =
∫
eix·ξσ(x, ξ)f̂(ξ)dξ =

∫∫
ei(x−y)·ξσ(x, ξ)f(y)dydξ

as a linear operator mapping S to S, and P is called a pseudo-differential
operator of order a.

We call a symbol σ smoothing if σ ∈ S−∞ :=
⋂∞

j=1 S
−j . An equivalence

relation on the class of symbols is introduced by defining σ ∼ σ′, if σ − σ′ ∈
S−∞.
If σ ∈ S−∞ then for the corresponding operator we have P : Hs → Ht for all s
and t, consequently P : Hs → C∞ for all s so that P is infinitely smoothing in
this case. Thus, moding out by infinitely smoothing operators, given symbols
σj ∈ Saj where aj → −∞, we write σ ∼ ∑∞

j=1 σj if for every N ∈ N there
is an integer KN such that σ −∑KN

j=1 σj ∈ S−N and in this case we say that∑∞
j=1 σj is an asymptotic expansion for σ.

Let Ψa(U) denote the space of pseudo-differential operators of order a on
C∞

0 (U). More generally, let σ(x, ξ) be a matrix valued symbol, where we sup-
pose that the components of σ all belong to Sa(U). The corresponding operator
P is given by a matrix of pseudo-differential operators and is a map acting on
the vector valued functions with compact support in U . We shall continue
denoting the collection of all such operators by Ψa(U). The set

⋃
a∈R

Ψa(U) of
pseudo-differential operators of all orders generates an algebra.
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2.1. Polyhomogeneous Symbols on R
n. Let us describe the class of pseudo-

differential operators with which we are going to work, following [13].

Definition 2. Let U ⊆ R
n an open set. For a ∈ R, a symbol σ ∈ Sa(U) is

called a polyhomogeneous classical symbol of order a if for any N ∈ N, there is
an integer KN and there are functions σaj

, ψ such that

σ(x, ξ) −
KN∑
j=0

ψ(ξ)σaj
(x, ξ) ∈ S−N (U) ∀(x, ξ) ∈ U × R

n,

where lim
j→∞

aj = −∞, σaj
∈ Saj (U) is positively homogeneous in ξ of order aj ,

i.e., σaj
(x, tξ) = tajσaj

(x, ξ) ∀t > 0, and ψ is a smooth cut-off function on R
n

such that ψ(ξ) = 0 for all |ξ| ≤ 1
4 , ψ(ξ) = 1 for all |ξ| ≥ 1

2 . In short we write

σ(x, ξ) ∼
∞∑

j=0

ψ(ξ)σaj
(x, ξ).

In practice, we often have aj = a − j. We denote by CSa(U) the set of
polyhomogeneous classical symbols of order a over U and by Cla(U) the cor-
responding set of pseudo-differential operators. A pseudo-differential operator
with polyhomogeneous classical symbol is called classical pseudo-differential
operator.

Remark 3. The class of symbols we have just defined is a subset of a more
general class of symbols [9], the class of log-polyhomogeneous symbols, which
are symbols with an expansion as in Definition 2, such that

σaj
(x, ξ) =

k∑
l=0

σaj ,l(x, ξ) logl |ξ| ,

with σaj ,l(x, ξ) positively homogeneous in ξ of order aj .

Definition 3. ([5, 23]) Let σ ∈ CSa(U) be a symbol with asymptotic expansion
σ(x, ξ) ∼∑∞

j=0 ψ(ξ)σaj
(x, ξ). The noncommutative residue of σ is defined by

res(σ)(x) :=
∫

Sn−1
σ−n(x, ω)dω (1)

where σ−n is the homogeneous component of order −n of σ.

In order to simplify notations, we often omit the explicit mention of the
variable x ∈ U which is then understood. Hence, the coefficients which we
define in the following are to be understood as functions on U .

2.2. Finite Parts of Integrals of Symbols. For a symbol σ, the integral∫
Rn σ(x, ξ)dξ diverges in general so that it is necessary to extract a finite part.

We present two ways to do so, the cut-off procedure and the meromorphic func-
tion approach, both of which are widely used by mathematicians and physicists
in various disguises (Hadamard, Riesz (see [13]), Moretti [10], Wald [22]).
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Proposition 1. Let σ ∈ CSa(U). Then for fixed N ∈ N sufficiently large, σ

can be written σ(ξ) =
KN∑
j=0

ψ(ξ)σaj
(ξ) + gN (ξ), with σaj

, ψ and gN ∈ S−N (U)

as in Definition 2. We have

∫
B(0,R)

σ(ξ)dξ ∼
R→∞

∞∑
j=0

αj(σ)Raj+n + β(σ) logR+ α(σ) ,

with constant term given by

α(σ) =
∫

Rn

gN +
KN∑
j=0

∫
B(0,1)

ψ(ξ)σaj
(ξ)dξ −

KN∑
j=0

aj+n�=0

1
aj + n

∫
Sn−1

σaj
(ω)dω

and the coefficient of the logarithmic term is given by: β(σ) = res(σ).

Extracting a finite part from the asymptotic expansion of
∫

B(0,R)
σ(ξ)dξ we

set for σ ∈ CSa(Rn):

fpcut-off

∫
Rn

σ(ξ)dξ := lim
R→∞

(∫
B(0,R)

σ(ξ)dξ −
( ∞∑

j=0
aj+n�=0

αj(σ)Raj+n + β(σ) logR
))

= α(σ) =
∫

Rn

gN +
KN∑
j=0

∫
B(0,1)

ψ(ξ)σaj
(ξ)dξ −

KN∑
j=0

aj+n�=0

1
aj + n

∫
Sn−1

σaj
(ω)dω.

This finite part is independent of the reparametrization of R when β(σ) = 0.
In the case aj = a − j, we have that if the order a is not an integer, then
aj 
= −n, ∀j ∈ N, hence res(σ) = 0. And if a < −n, then aj + n < 0, ∀j ∈ N

and hence fpcut-off
∫

Rn σ(ξ)dξ =
∫

Rn σ(ξ)dξ, since ∀j ∈ N, αj(σ) = 0 = β(σ).

Proposition 2. Let σ ∈ CSa(U). Then for fixed N ∈ N sufficiently large, σ

can be written σ(ξ) =
KN∑
j=0

ψ(ξ)σaj
(ξ)+gN (ξ), with σaj

, ψ and gN ∈ S−N (U) as

in Definition 2. The map z �→
∫

Rn

|ξ|−zσ(ξ)dξ is meromorphic with a possible

simple pole at z = 0, with residue given by res(σ), and a finite part at z = 0
given by α(σ).
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Extracting a finite part from the meromorphic function z �→ ∫
Rn |ξ|−zσ(ξ)dξ,

we set for σ ∈ CSa(Rn):

fpRiesz

∫
Rn

σ(ξ)dξ := lim
z→0

(∫
Rn

|ξ|−zσ(ξ)dξ − 1
z

Res
z=0

∫
Rn

|ξ|−zσ(ξ)dξ
)

=
∫

Rn

gN +
KN∑
j=0

∫
B(0,1)

ψ(ξ)σaj
(ξ) −

KN∑
j=0

aj+n�=0

1
aj + n

∫
Sn−1

σaj
(ω)dω.

Combining the two propositions yields the following theorem:

Theorem 1. Let σ ∈ CSa(U). Then for fixed N ∈ N sufficiently large, σ

can be written σ(ξ) =
KN∑
j=0

ψ(ξ)σaj
(ξ) + gN (ξ), σaj

, ψ and gN ∈ S−N (U) as in

Definition 2.

(i) The coefficient of the logarithmic term in the asymptotic expansion of∫
B(0,R)

σ(ξ)dξ when R→ ∞, is the residue at z = 0 of the meromorphic

function z �→ ∫
Rn |ξ|−zσ(ξ)dξ.

(ii) The finite part fpcut-off
∫

Rn σ(ξ)dξ of
∫

B(0,R)
σ(ξ)dξ when R → ∞ and

the finite part fpRiesz
∫

Rn σ(ξ)dξ of the map z �→ ∫
Rn |ξ|−zσ(ξ)dξ at

z = 0 coincide so that we can set

fp
∫

Rn

σ(ξ)dξ := fpRiesz

∫
Rn

σ(ξ)dξ = fpcut-off

∫
Rn

σ(ξ)dξ.

Let aj = a− j, then for any integer N larger than n,

(iii) If a ∈ −N and a ≥ −n, then res(σ) =
∫

Sn−1 σ−n(ω)dω and

fp
∫

Rn

σ(ξ)dξ =
∫

Rn

gN +
KN∑
j=0

∫
B(0,1)

ψ(ξ)σaj
(ξ)dξ −

KN∑
j=0

aj+n�=0

1
aj + n

∫
Sn−1

σaj
(ω)dω.

(iv) If a /∈ −N or if a < −n, then res(σ) = 0 and

fp
∫

Rn

σ(ξ)dξ =
∫

Rn

gN +
KN∑
j=0

(∫
B(0,1)

ψ(ξ)σaj
(ξ)dξ − 1

aj + n

∫
Sn−1

σaj
(ω)dω

)
.

2.3. Kernel of a PDO. If Ω ⊆ R
n is an open set, we denote by D(Ω) the set

of smooth functions with compact support on Ω, endowed with the topology
of the uniform convergence of the functions and their derivatives on compact
subsets of Ω, and by D′(Ω) its dual, i.e. the space of distributions on Ω (see
[19]). If A is a PDO on Ω, with symbol σ ∈ Sa(Ω), for any function f ∈ S(Rn)
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we have

f(x) =
∫
eix·ξσ(x, ξ)f̂(ξ)dξ =

∫∫
ei(x−y)·ξσ(x, ξ)f(y)dydξ

=
∫
KA(x, y)f(y)dy

where the kernel of the operator A is defined by

KA(x, y) :=
∫

Rn

ei(x−y)·ξσ(x, ξ)dξ .

A smoothing operator has a smooth kernel but the operators we are inter-
ested in typically have a distribution kernel. If a < −n the integral∫

Rn

ei(x−y)·ξσ(x, ξ)dξ

converges for every x, y. If a ≥ −n the integral∫
Rn

ei(x−y)·ξσ(x, ξ)dξ

can be interpreted as a distribution in D′(Ω × Ω) in the following way: If
ϕ ∈ D(Ω × Ω), we set ([3])

K(ϕ) =
∫∫∫

ei(x−y)·ξσ(x, ξ)ϕ(x, y)dx dy dξ.

The kernel of a PDO is an infinitely differentiable function outside the diagonal.
The kernel associated with the product of two pseudo-differential operators P
and Q is given by the convolution of the corresponding kernels:

KPQ(x, y) = KP 
 KQ(x, y) =
∫
KP (x, z)KQ(z, y)dz .

Generalizing Definition 1 we can consider symbols of complex order. In this
case condition (b) reads: For all (α, β) ∈ N

n × N
n there are constants Cα,β

such that |Dα
xD

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)�(a)−|β| ∀(x, ξ) ∈ K × R

n.

If U ⊆ R
n, we call a family of symbols σ(z, x, ·) ∈ CSα(z)(U) holomorphic if

σ(z, x, ξ) ∼∑∞
j=0 ψ(ξ)σα(z)−j(z, x, ξ) with x ∈ U, ξ ∈ R

n

is such that z �→ α(z) is holomorphic, z �→ σα(z)−j(z, ·, ·) is holomorphic as a
map with values in C∞(U × R

n), and for all N >> 0, the kernel associated
to the symbol σ(z, ·, ·) −∑N

j=0 ψσα(z)−j(z, ·, ·) is holomorphic with values in
CJN (U × U) for some JN such that limN→∞ JN = ∞.

Remark 4. When σ is classical, the derivatives σ(k)(z, ·, ·) are expected to be
log-polyhomogeneous, see [14].
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The following theorem generalizes the last results with

σ(z, x, ξ) = σ(x, ξ)ψ(ξ)|ξ|−z

of order a− z (with ψ(ξ) a cut-off function as in Definition 2), to holomorphic
families of symbols z �→ σ(z, x, ξ) of order α(z), following [5] and [8].

Theorem 2. Let U ⊆ R
n and z �→ σ(z, x, ·) ∈ CSα(z)(U) be a holomorphic

family of symbols on a domain G ⊆ C. Then the map z �→ fp
∫

Rn

σ(z, x, ξ)dξ is

meromorphic with possible simple poles at points zj ∈ G∩α−1(Z∩ [−n,+∞))
such that α′(zj) 
= 0 and the residue at such a pole is given by

Res
z=zj

fp
∫

Rn

σ(z, x, ξ)dξ = − 1
α′(zj)

res(σ(zj , x, ·)).

The function z �→ fp
∫

Rn σ(z, x, ξ)dξ is holomorphic if z /∈G∩α−1(Z∩[−n,+∞)).

In particular we have that if 
(α(z)) < −n, then the map

z �→ fp
∫

Rn

σ(z, x, ξ)dξ

is holomorphic.
Let us now see how far the kernel can be extended to the whole space. We

distinguish two cases, the case of operators of integer order and those of non
integer order.

(1) Suppose σ ∈ Sa and a /∈ Z.
If a < −n, K(x, y) is a continuous function on the whole space, and on
the diagonal K(x, x) =

∫
σ(x, ξ)dξ is a convergent integral. If a ≥ −n,

it is defined by the function

K̂(x, y) :=

{
K(x, y) if x 
= y,

fp
∫

Rn σ(x, ξ)dξ if x = y,

which extends to the whole space R
n × R

n.
(2) Suppose that σ ∈ Sa and a ∈ Z. If z �→ σ(z, x, ξ) ∈ CSα(z)(U)

is a holomorphic family of symbols on a domain G ⊆ C such that
σ(0, x, ξ) = σ(x, ξ), then we have the corresponding family of kernels
Kz(x, y) =

∫
Rn e

i(x−y)·ξσ(z, x, ξ)dξ. We define

K̂z(x, y) :=

{
Kz(x, y) if x 
= y,

fp
∫

Rn σ(z, x, ξ)dξ if x = y.

Let � = {(x, y) ∈ R
n × R

n : x = y}, then
(a) K̂z is an infinitely differentiable function in R

n × R
n \ � = �c.

(b) The map z �→ K̂z(x, y)
∣∣∣
�c

is holomorphic on the complex plane.
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(c) For x ∈ R
n, the map z �→ K̂z(x, x) is meromorphic with simple

poles at the points z ∈ G ∩ α−1(Z ∩ [−n,+∞)) with α′(z) 
= 0.
(d) If 
(α(z)) < −n, then K̂z is an infinitely differentiable function

on R
n × R

n, since in this case it is well defined on the diagonal.
(e) If 
(α(z)) < −n, then the map z �→ K̂z(x, y) is holomorphic.

2.4. The Mellin Transform. Given λ > 0, the map φλ : r �→ e−λr lies in
S((0,+∞)) and the function z �→ ∫∞

0
tz−1e−λtdt is holomorphic on the half

plane 
(z) > 0 and extends to a meromorphic function on the complex plane
with simple poles in −N, with residues given by (−λ)k

k! . If we consider the
change of variable u : t �→ λt in Γ(z) =

∫∞
0
e−ttz−1dt, we have

λ−z =
1

Γ(z)

∫ ∞

0

tz−1e−λtdt . (2)

This formula is valid for λ ∈ C with 
(λ) > 0, and represents a meromorphic
function on the plane. More generally, if φ ∈ S((0,+∞)), the Mellin transform
of φ is defined by (see [2]):

M(φ)(z) :=
1

Γ(z)

∫ ∞

0

tz−1φ(t)dt .

Proposition 3. Let f ∈ C∞(0,+∞) be a function with asymptotic expansion

for small t, of the form f(t) ∼∑k≥−n fkt
k
q + g log t, where n is the dimension

of the space, and suppose that f decays exponentially at infinity, that is, for
some λ > 0 and t sufficiently large, |f(t)| ≤ Ce−tλ for some constant C. Let
γ := − ∫∞

0
(log r)e−rdr be the Euler constant. Then

(1) The Mellin transform M(f) is a meromorphic function with poles con-
tained in the set n

q − N

q .

(2) The Laurent series of M(f) around z = 0 is −gz−1 +(f0 − γg)+O(z).

Thus we can define the finite part at z = 0 of the Mellin transform of a
function f that satisfies the assumptions of the above proposition:

fp
z=0

M(f)(z) =
d

dz

∣∣∣∣
z=0

zM(f)(z) = f0 − γg. (3)

3. The ζ function

The results we have described for operators acting on functions on R
n can

be generalized to operators acting on sections of a vector bundle on a manifold.
Throughout this paper, M is a Hausdorff, connected, closed (i.e., compact
and without boundary), oriented, C∞ m-dimensional manifold endowed with
a riemannian metric g, and E is a vector bundle on M of rank N . Write
C∞(M,E) for the smooth sections of E.
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3.1. Pseudo-differential Operators on Manifolds. A differential operator
of order k on the space of sections C∞(M,E) is a linear map A : C∞(M,E) →
C∞(M,E), such that for s ∈ C∞(M,E) and for local coordinates x1, . . . , xm

of M , A(s)(x1, . . . , xm) =
∑

|α|≤k aα(x)Dα
x s(x1, . . . , xm), where the aα(x) are

N × N square matrices whose entries are smooth functions in the variable
x = (x1, . . . , xm). Associated to the operator A is the symbol:

σ(A)(x, ξ) =
∑
|α|≤k

aα(x)ξα, ξ ∈ T ∗
x (M) .

We can extend this definition to pseudo-differential operators. In this case
the sum which represents the symbol of the operator is an infinite sum that
need not converge. A pseudo-differential operator A : C∞(M,E) → C∞(M,E)
is classical of order a if its symbol is polyhomogeneous, i.e., if the following
conditions are satisfied:

(1) In any local coordinates over which E is trivial, the symbol of A has
an expansion σ(A)(x, ξ) ∼∑∞

j=0 σj(x, ξ), where σj(x, ξ) is an N ×N -
matrix-valued function, which is positively homogeneous in ξ of degree
a− j.

(2) There exist local coordinates for which the term σ0(x, ξ) is not identi-
cally zero.

We call σ0(A) the principal (or leading) symbol of A; it corresponds to the
positively homogeneous component of σ of highest degree. It is defined by

σ0(A)(x, ξ) := lim
t→+∞σ(x, tξ)t−a

.

If σ0(A)(x, ξ) is invertible for ξ 
= 0, the operator A is elliptic. For s ∈ R,
Hs(M,E) denotes the Sobolev space on C∞(M,E), Cl(M,E) denotes the
algebra of classical PDO’s which act on C∞(M,E), and for any α ∈ R, let
Clα(M,E) be the subset of operators in Cl(M,E) of order α.

Example 1. If gij = g

(
∂

∂xi
,
∂

∂xj

)
, G = (|det(gij)|) 1

2 , and we define gjk by∑m
j=1 gijg

jk = δik, the Laplace-Beltrami operator corresponding to the metric
g is defined by

∆g = G−1
m∑

i=1

m∑
k=1

∂

∂xk

{
gikG

∂

∂xi

}
.

∆g is an elliptic PDO with principal symbol σ0(x, ξ) = −|ξ|2 (see [1]).

Definition 4. [12] An operator A of non negative order has principal angle θ,
if for every (x, ξ) ∈ T ∗(M) \ i(M) (i(M) denotes the zero section of T ∗(M)),
the map σ0(A)(x, ξ) has no eigenvalues on the ray Lθ = {reiθ : r ≥ 0}. A has
Agmon angle θ, if θ is a principal angle of A, and the spectrum of A does not
meet Lθ; in this case, we call Lθ a spectral cut of A.
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If A has a principal angle θ, then A is elliptic. If A has an Agmon angle θ,
then A is elliptic and invertible. The operator A is admissible if A is of order
zero and admits a spectral cut, or if A is of positive order and has a principal
angle (see [12]); in particular such an operator is elliptic.

Let A ∈ Cl(M,E) be a self-adjoint pseudo-differential operator of order
a ≥ 0 which admits an Agmon angle θ. Under these conditions, we can define
the complex power Az

θ (z ∈ C), and the logarithm logθ A (see [12] and [20]).
For 
(z) < 0, Az

θ is a bounded operator on any space Hs(M,E) of sections of
E of the Sobolev class Hs, defined by the integral:

Az
θ =

i

2π

∫
Γθ

λz(A− λI)−1dλ ,

where

Γθ = Γ1,θ ∪ Γ2,θ ∪ Γ3,θ,

Γ1,θ = {λ = reiθ, r ≥ R},
Γ2,θ = {λ = Reiφ, θ ≥ φ ≥ θ − 2π},
Γ3,θ = {λ = rei(θ−2π), r ≥ R},

R is a small positive number such that Γθ does not meet the spectrum of A,
λz = ez log λ where log λ = ln |λ| + iθ on Γ1,θ and log λ = ln |λ| + i(θ − 2π) on
Γ3,θ. (see [12]).

For any z ∈ C, Az
θ is a classical, elliptic pseudo-differential operator of

order az. Let A ∈ Cla(M,E) be an admissible pseudo-differential operator of
nonnegative order with spectral cut Lθ. For arbitrary k ∈ Z and s ∈ R, the
map z �→ Az

θ defines a holomorphic function from {z ∈ C,
(z) < k} to the
space of bounded linear maps from Hs(M,E) to Hs−ak(M,E) and we can set

logθ A :=
[
∂

∂z
Az

θ

]
z=0

. logθ A defines a PDO which is a bounded operator from

Hs(M,E) to Hs−ε(M,E) for any ε > 0 and any s ∈ R. When a = 0, logθ A
is polyhomogeneous of nonpositive order. When a > 0, this operator is not
polyhomogeneous: In local coordinates (x, ξ) on T ∗M , the symbol of logθ A
reads (see [12]):

σ(logθ A) = a log |ξ| + a polyhomogeneous symbol of order 0.

From now on, when we take logarithms and powers of an admissible operator
of positive order, we shall consider that it is with respect to a fixed Agmon
angle of the operator.

Under certain conditions, a PDO has a well defined trace or determinant. A
PDO A is trace-class if and only if the order of A is less than −m, where m is
the dimension of M .

Theorem 3. [17] Let M be a compact oriented manifold, endowed with a
Riemannian metric g and let A be a bounded operator on L2(M,dµg) defined
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by Au(x) =
∫

M

k(x, y)u(y)dµg(y) and suppose that x �→ k(x, x) ∈ L1(M).

Then A is of trace-class, and tr(A) =
∫

M

k(x, x)dµg(x).

This can be extended to operators acting on sections of a vector bundle E.
The corresponding statement is:

Theorem 4. [17] Let A be an operator of order less than −m on C∞(M,E),

with kernel k. Then A is of trace-class and tr(A) =
∫

M

trx k(x, x)dµg(x), where

the trace of the right hand side is the canonical trace on endomorphisms of the
finite dimensional vector space Ex (the fiber of E over x ∈M).

3.2. The ζ determinant. If Q is a hermitian matrix whose eigenvalues λ1,
. . ., λN are positive numbers, for z ∈ C we introduce the function (see [1])
ζQ,N (z) :=

∑N
n=1 λ

−z
n . Then the determinant of Q is recovered by the formula

det(Q) =
N∏

i=1

λi = e−ζ′
Q,N (0) (4)

where ζ ′Q,N (0) := d
dz ζQ,N (z)|z=0. The infinite-dimensional generalization of

this scheme consists in consideringQ as a nonnegative operator which admits an
Agmon angle, acting on a Hilbert space, with spectrum given by the eigenvalues
{λn}∞n=1. For z ∈ C the ζ function of Q is defined by ([6] and [15]):

ζQ(z) :=
∑′

n

1
λz

n

, (5)

where
∑′ means that we are summing only over the nonzero eigenvalues of Q.

We shall restrict ourselves to the case where Q is an admissible, positive pseudo-
differential operator, of positive order q, on the space of sections C∞(M,E).
In this case Q has discrete spectrum {λn}n∈N, each λn in the spectrum is an
eigenvalue whose space of generalized eigenfunctions is finite-dimensional, and
lim

n→∞λn = +∞ (see [4] and [21]). The formal determinant of the operator,
given by the product of all its eigenvalues, diverges. Nevertheless, in the case
of an admissible operator of positive order q acting on the smooth sections of
an m-dimensional manifold M , we have the asymptotic formula λn ∼ Cn

q
m

for some constant C (see [1] and [20]). With this, the sum (5) is absolutely
convergent for 
(z) > m

q and therefore ζQ(z) is holomorphic in this region of
the plane. In other words, when Q is positive, Q−z has a finite trace for 
(z)
sufficiently large. In [5] and [20] it is proved that ζQ(z) admits a meromorphic
continuation to the whole complex plane, which is regular at z = 0.

Equation (2) implies that for 
(λ) > 0:

λ−z =
1

Γ(z)

∫ ∞

0

tz−1e−tλdt = M(e−tλ)(z),
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where M is the Mellin transform defined previously. This can be extended to
matrices; if Q is an n× n hermitian matrix, with positive eigenvalues λi,
1 ≤ i ≤ n, and fQ(t) = tr(e−tQ) =

∑n
i=1 e

−tλi , then for z ∈ C,

ζQ(z) = tr(Q−z) =
n∑

i=1

λ−z
i =

n∑
i=1

1
Γ(z)

∫ ∞

0

tz−1e−tλidt = M(fQ)(z). (6)

It further extends to an admissible pseudo-differential operator Q of positive
order q, with positive principal symbol. The operator e−tQ, the solution of the
heat equation Q(u) = ∂u

∂t for u ∈ C∞(M,E), has a kernel e−tQ(x, y) defined
on M ×M , that on the diagonal admits the following asymptotic expansion
when t→ 0+ (see [1]):

e−tQ(x, x) =
N−1∑
n=0

t
n−m

q an(x) +O(t
N−m

q ) (7)

for each N = 1, 2, . . ., the an(x) being certain Q-dependent scalar functions.
Let n0 be the dimension of the null space of Q. Then

tr′(e−tQ) =
∑′

n
e−tλn = tr(e−tQ) − n0 ;

the function f(t) = tr′(e−tQ) satisfies the assumptions of Proposition 3. From
(7) and from Theorem 4 we have tr′(e−tQ) =

∑
n<N
n�=m

ant
n−m

q + (am − n0) +O(t).

Therefore,

Γ(z)ζQ(z) :=
∫ ∞

0

tz−1 tr′(e−tQ)dt (8)

is well defined for 
(z) > m
q .

Proposition 4. If Q is an admissible PDO of positive order q, the function
ζQ(z), that is well defined for 
(z) > m

q , is regular at z = 0 and admits a

meromorphic extension to the whole complex plane. Moreover, if RN (z) =∫ 1

0
tz−1O(t)dt+

∫∞
1
tz−1 tr′(e−tQ)dt,

ζQ(0) = am − n0, and ζ ′Q(0) =
∑
n<N
n�=m

q · an

n−m
+ γ(am − n0) +RN (0). (9)

As a consequence of this analysis and generalizing (4), it makes sense to
introduce the ζ-determinant of Q:

detζ(Q) := e−ζ′
Q(0). (10)
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3.3. The heat kernel determinant. Let Q be an admissible, positive,
pseudo-differential operator of positive order q on the space of sections
C∞(M,E) and let Q̃ denote the restriction of Q to the subspace orthogonal to
the null space of Q. For ε > 0 we consider the function hε : (0,∞) → (0,∞)
given by

hε(λ) := exp
(
−
∫ ∞

ε

e−tλ

t
dt

)
.

(11)

By the spectral theorem hε(Q̃) makes sense as a positive bounded operator.

Proposition 5. [1] If Q is an elliptic, positive operator on C∞(M,E), hε(Q̃)
is of the type “Identity+a trace-class operator”.

As a consequence of this proposition, it is possible to define the determinant
of hε(Q̃), and it makes sense to define the ε−regularized heat kernel determinant
of Q as ([1]):

detε(Q) := det(hε(Q̃)) = exp(tr(log hε(Q̃))) , (12)

being a finite number (see equation (21) in Section 6). This formula is obvi-
ous in the finite dimensional case with ε = 0. Letting ε tend to 0 in (12), by
Proposition 3 we get infinity. It is therefore necessary to subtract from (12)
the divergent part before taking such a limit. This procedure is called regular-
ization, which motivates the terminology regularized heat kernel determinant
of Q for the quantity

det′(Q) := exp
{

lim
ε→0

[log detε(Q) − (divergent terms )]
}
. (13)

Let us investigate the relation between the ζ-determinant and the regularized
heat kernel determinant of an operator.

Theorem 5. If Q is an admissible operator of positive order q, then

det′(Q) = eγζQ(0) detζ(Q) .

Remark 5. This result can be found in [1] for the case of the Laplacian.

Proof. Equations (11) and (12) imply that

log detε(Q) = −
∫ ∞

ε

tr′(e−tQ)
t

dt (14)

since summing over the nonzero eigenvalues of Q, tr(e−tQ̃) = tr′(e−tQ). Now,
from equations (9) and (10), we have that

log detζ(Q) = −
∑
n<N
n�=m

q · an

n−m
− γ(am − n0) −RN (0) .
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Following the asymptotic expansion given in (7) and Proposition 4, we can split
the integral over [ε,∞) into the sum of the integrals over [ε, 1) and [1,∞], and
if

w =
∑
n<N
n�=m

q · an

n−m

we obtain

log detζ(Q) = −w − γ(am − n0)

− lim
ε→0

∫ 1

ε

(
tr′(e−tQ) −

∑
n<N
n�=m

ant
n−m

q − (am − n0)
)
dt

t
−
∫ ∞

1

tr′(e−tQ)
t

dt

= −γζQ(0) + lim
ε→0

[
log detε(Q) −

(∑
n<N
n<m

q · an

n−m
ε

n−m
q + ζQ(0) log ε

)]
= −γζQ(0) + log(det′(Q)). ��

Remark 6. We have the equality between the two determinants when ζQ(0) = 0,
which happens, for example, when Q is a differential operator which admits an
Agmon angle, and is of even order on an odd-dimensional manifold ([18], [20]).

In the case Q = −∆g and dim(M) = 2, a = V olg(M)
4π , b = χ(M)

6 − 1, and we
have

log detζ(−∆g) = a− γb− lim
ε→0

∫ 1

ε

(
tr′(et∆g ) − a

t
− b
) dt
t
−
∫ ∞

1

tr′(et∆g )
t

dt

= −γb+ log(det′(−∆g)) . (15)

From (13) and (15) we deduce that det′(−∆g) = eγ((χ(M)/6)−1) detζ(−∆g),
this shows that the ζ-determinant of −∆g coincides with the heat kernel de-
terminant up to a finite positive constant depending only on the topology of
M .

4. Noncommutative residue of a PDO

The representation of the ζ-function for a pseudo-differential operator Q of
order q > 0 on C∞(M,E) as a Mellin transform

ζQ(z) = tr(Q−z) =
1

Γ(z)

∫ ∞

0

tz−1 tr′(e−tQ)dt

allows to describe the asymptotic behaviour of tr(e−tQ) when t tends to zero:

tr(e−tQ) ∼
t→0

αm(Q) +
∞∑

j=0
j �=m

αj(Q)t−zj +
∞∑

k=1

βk(Q)tk log t , (16)

where zj = m−j
q , j ∈ N − {m}, (see [23]). Logarithmic terms do not arise

(βk = 0) whenQ is a differential operator. If we consider any pseudo-differential
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operator A on C∞(M,E) of order a, choosing an elliptic operator Q of order q
larger than a, then for any real parameter u, the ζ-function of Q+ uA is well
defined (see [7]). In his doctoral thesis, Wodzicki defined the noncommutative

residue of A by the formula res(A) = q · d

du

∣∣∣∣
u=0

(
Res

z=−1
ζQ+uA(z)

)
.

In reference with Definition 3 in Section 2, let dx = dx1 ∧ . . . ∧ dxm be the
locally defined coordinate form on M and let dξ be the volume form on T ∗M ,
or the restriction of dξ to the unit cosphere bundle S∗M ⊆ T ∗M or the unit
cosphere S∗

xM at a fixed x ∈M . Then

res(σ(A))(x) =
∫

S∗
xM

trx σ−m(A)(x, ξ)dξ,

is (nontrivially) a global top degree form on M whose integral is the noncom-
mutative residue of A (see [7])

res(A) =
∫

M

res(σ(A))dx.

Following [5] and [8] we can consider holomorphic families of symbols in
Cl(M,E) and we have the following generalization of Theorem 2. The proof
can be found in [8].

Theorem 6. Let f be a holomorphic function on C such that f ′(z) 
= 0 for
z ∈ f−1{j−m : j ∈ N}. Let (B(z))z∈C be a holomorphic family of operators in
Cl(M,E) with B(z) of order f(z). The function z �→ tr(B(z)) is holomorphic
in the domain {z ∈ C : 
(f(z)) < −m} and can be extended to a meromorphic
function on the whole complex plane, with only simple poles. If they exist, the
poles occur at the points zj = f−1(j −m), j ∈ N. At z = zj the residue is:

Res
z=zj

tr(B(z)) = − 1
f ′(zj)

res(B(zj)) .

Applying this theorem to the holomorphic family AQ−z, where A∈Cl(M,E)
and Q is an elliptic admissible pseudo-differential operator of positive order,
we have the following theorem.

Theorem 7. Let Q be an elliptic admissible pseudo-differential operator of
order q > 0, which acts on C∞(M,E). The function tr(AQ−z) defined for

(z) >> 0 admits a meromorphic extension to C with a simple pole at z = 0,
and its residue is proportional to the noncommutative residue of A:

res(A) = q · Res
z=0

tr(AQ−z) . (17)

The right hand side of this equation does not depend of Q and the left hand
side is local by the locality of the Wodzicki residue.

Replacing Q by Q+uA in (16) and differentiating e−t(Q+uA) with respect to
u, we can see that tr(Ae−tQ) also admits an asymptotic expansion when t→ 0
(see [7]). This yields another formula for the noncommutative residue of A:
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Theorem 8. When t→ 0+, tr(Ae−tQ) admits an asymptotic expansion

tr(Ae−tQ) ∼
∑

j

ajt
j−a−m

q − res(A)
q

log t+O(1).

In brief, in analogy with the results of Section 1.2, we have that for any
pseudo-differential operator A and an appropriate elliptic operator Q of order
q,

res(A) = q · Res
z=0

tr(AQ−z)

= −q · coefficient of log t in the asymptotic

expansion of tr(Ae−tQ) as t→ 0.

Consequently, applying Proposition 3 to f(t) = tr(Ae−tQ) and using equation
(3) we get:

Corollary 1. For A and Q as above,

fp
z=0

tr(AQ−z) = fp
z=0

M(f)(z) = fp
t=0

tr(Ae−tQ) − γ
res(A)
q .

(18)

5. Conformal Anomalies

In this section we study the variation of the determinant of ∆g under a
conformal variation of the metric: g �→ eαϕg where α ∈ R, ϕ ∈ C∞(M,R), for
dim(M) = 2.

Recall from equations (12) and (14) that for ε > 0 the regularized heat
kernel determinant of −∆g reads:

detε(−∆g) = exp

(
−
∫ ∞

ε

tr(et∆̃g )
t

dt

)
,

where on the right hand side, ∆̃g denotes the restriction of ∆g to the orthogonal
complement of its null space. The knowledge of the function ε �→ detε(−∆g)
depends on the knowledge of t �→ tr(et∆̃g ), for all t ∈ [ε,∞) (see [1]).

To understand how the determinant depends on the parameter ε we consider
a one-parameter family of Laplacians. The following proposition expresses the
conformal anomaly of the determinant detε(−∆g).

Proposition 6. [1] Let M be a smooth compact connected manifold without
boundary. Let g0, g1 be conformal equivalent riemannian metrics on M , such
that g1 = eϕg0 for some ϕ ∈ C∞(M,R) and let ∆g0 , ∆g1 be the Laplace
operators on M with respect to (each one of) the metrics g0, g1. Then we have,

detε(−∆g1) =
[
V olg1(M)
V olg0(M)

exp(−W0(ε, ϕ))
]

detε(−∆g0),
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with

W0(ε, ϕ)≡ 1
4πε

(V olg1(M)−V olg0(M))+
1

24π

(
1
2

∫
M

ϕ(η)(−∆g0ϕ(η))dµg0(η)

+
∫

M

ϕ(η)Rg0(η)dµg0(η) +K0(ε, ϕ)
)
,

Rg0 is the scalar curvature with respect to g0, K0(ε, 0) = 0, and lim
ε→0

K0(ε, ϕ) =
0.

The following theorem shows that conformal anomalies coincide for ζ and
heat kernel determinants, and therefore do not depend on the chosen regular-
ization procedure.

Theorem 9. Let g0 be a fixed riemannian metric on M . Let gα ≡ eαϕg0, for
α ∈ [0, 1], with ϕ ∈ C∞(M,R). Set ∆α ≡ ∆gα

, a one-parameter family of
Laplacians. Then

det′(−∆g1)
det′(−∆g0)

=
detζ(−∆g1)
detζ(−∆g0) .

Proof. By Theorem 5 we have log det′(−∆α) = γζ−∆α
(0) + log(detζ(−∆α)).

Since
d

dα
ζ−∆α

(0) = 0 (see [18]), we have that

d

dα
log(det′(−∆α)) =

d

dα
log(detζ(−∆α)).

Integration of
d

dα
log(det′(−∆α)) with respect to α between 0 and 1 produces

det′(−∆g1)
det′(−∆g0)

=
detζ(−∆g1)
detζ(−∆g0)

. ��

6. Partition functions and regularized determinants

For a hermitian vector bundle E on M , the space C∞(M,E) of smooth
sections of E is endowed with the inner product induced by the hermitian
structure 〈·, ·〉x of the fiber over x ∈M , i.e., denoting by dµg the volume form
on M with respect to the riemannian metric g:

〈σ, ρ〉 :=
∫

M

〈σ(x), ρ(x)〉xdµg(x), ∀σ, ρ ∈ C∞(M,E) .

For a field theory with classical action 〈φ,Aφ〉 =
∫

M
φAφdµg, the partition

function reads

Z[A] =
∫

Conf(M)

e−
1
2 〈φ,Aφ〉Dφ , (19)

here Dφ is a heuristic probability measure over the infinite dimensional space
Conf(M), that is the space of configurations or smooth sections φ of the vector
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bundle on the manifold M . Such a Gaussian integral on a finite dimensional
space R

n reads ∫
Rn

e−
1
2 〈x,Ax〉dx = (detA)−1/2, (20)

where A is an n × n matrix. If A is a positive operator on L2(M,E) with
eigenvalues {λj}, and if for all j, we have λj = 1 + µj with

∑∞
j=1 µj <∞, the

determinant of A is well defined [16]. By Proposition 5, for an elliptic, positive
operator A, for any ε > 0 the operator hε(Ã) is of the type 1 + Bε, with

tr(Bε) < ∞. Then
∑n

k=1 log λk converges to tr(log hε(Ã)) := lim
n→∞

n∑
k=1

log λk,

whose exponential yields a well defined determinant. Taking a finite part when
ε tends to 0 we have the formula

detA = etr(log A). (21)

Physicists set the following Ansatz in analogy with formula (20):

Z[A] := (detA)−
1
2 ,

using an appropriate definition of the determinant of A, namely one of the
definitions (10), (13) introduced in the previous sections.

From Z[A] one builds the effective action:

S = S[A] := − logZ[A].

In physics the effective action is expressed in terms of the effective lagrangian

S =
∫

M

L(x)dµg(x) .

From (21), we have the matrix identity tr(logA) = log(detA), and hence

e−S = (detA)−
1
2 = e−

1
2 tr(log A) ,

so that the effective action can be interpreted as S =
1
2

tr(logA).

Let L(x, x′) denote the kernel of the operator logA. Under certain conditions

given by Theorem 4, we have S =
1
2

∫
M

L(x, x)dµg(x), so that the effective

lagrangian is

L(x) =
1
2
L(x, x) . (22)

From L we can obtain some information of physical interest. The kernel of
the operator logA diverges for x = x′, as in the case of the kernel of A−1 (see
[22]). Thus equation (22) does not make sense; our aim is to give it a precise
meaning. To do so, we use results of the previous section.
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7. Two Regularization Procedures

7.1. ζ−regularization. ζ−regularization of a pseudo-differential operator A
with symbol σ ∈ CSa is a particular instance of more general holomorphic
regularization procedures.

By a holomorphic regularization of the symbol σ, R : σ �→ σ(z, ·, ·), we mean
a choice of a holomorphic family of symbols σ(z, ·, ·) ∈ CSα(z) on a domain
G ⊆ C, such that σ(0, x, ξ) = σ(x, ξ). Correspondingly, we define the family of

kernels KR
z (x, y) =

∫
Rn

ei(x−y)·ξσ(z, x, ξ)dξ. We consider the regularized kernel

K̂R(x, y) = fp
z=0

KR
z (x, y) =

K(x, y) if x 
= y,

fp
z=0

∫
Rn

σ(z, x, ξ)dξ if x = y.

ζ−regularization corresponds to choosing σ(z) = σ(AQ−z), given by the sym-
bol of the product of the operators A and Q−z, where Q is any admissible
pseudo-differential operator of positive order q and z ∈ C.

This has a counterpart on the kernel level; for every z, let K̂z denote the
regularized kernel corresponding to AQ−z. As we previously pointed out, out-
side the diagonal K̂z is an infinitely differentiable function; on the diagonal K̂z

has a possible simple pole at z = 0.

From Theorem 4, integrating K̂z(x, x) on M , we obtain fp
z=0

tr(AQ−z),

fp
z=0

tr(AQ−z) = lim
z→0

(
tr(AQ−z) − 1

z
Res
z=0

tr(AQ−z)
)
.

From (17) we have that res(A) = q · Res
z=0

tr(AQ−z) and this residue does not
depend of the order of Q, so we have the formula

fp
z=0

tr(AQ−z) = lim
z→0

(
tr(AQ−z) − 1

qz
res(A)

)
.

Thus L(x, x) is regularized by K̂z, the regularized kernel corresponding to
log(A)Q−z, and S = S[A] is regularized by fp

z=0
tr(log(A)Q−z).

7.2. Point Splitting Procedure. Following [10], [22], the point splitting pro-
cedure to find a renormalization of a divergent quantity defined on the diagonal,
boils down to replacing one of the variables x by some nearby point x′ and then
taking the limit x′ → x. A precise mathematical description of this procedure
requires introducing a regularizing kernel corresponding to e−εQ, where ε is a
small positive number and Q is a Laplace-Beltrami operator associated to the
metric of the manifold and then taking the limit when ε tends to 0.

Separating the variables mathematically comes down to introducing a
smoothing kernel Kε in the following way:
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i) We replace the kernel KA of an operator A by the convolution
KA 
 Kε, where Kε is the kernel of e−ε∆g , being ∆g the Laplace-
Beltrami operator associated with the metric g in the manifold M or,
more generally, choosing Kε as kernel of e−εQ where Q is an elliptic
operator with positive principal symbol and of positive order.

ii) We make an expansion in powers of ε. Such an expansion exists since
KA 
 Kε is the kernel of Ae−εQ and we know that tr(Ae−εQ) has an
asymptotic expansion in ε (Theorem 8), that is related by the Mellin
transform to the expansion of tr(AQ−z), according to equation (18).

iii) We take the finite part when ε goes to 0 to obtain (see (18)):

fp
z=0

tr(AQ−z) = fp
ε=0

tr(Ae−εQ) − γ
res(A)
q .

Thus L(x, x) is regularized byKlog(A)
Kε, the regularized kernel corresponding
to log(A)e−εQ, and S = S[A] is regularized by fp

ε=0
tr(log(A)e−εQ).

In this way we find a relation between the ζ−regularization procedure and
the point splitting procedure, giving a mathematical interpretation to the last
one. The two regularization methods coincide if res(A) = 0, which happens
if the homogeneous component of degree −n of the symbol of A is zero (n =
dim(M)); that is the case, for example, if A is a differential operator, a classical
pseudo-differential operator of non integer order or if the order of A is less
than −n.
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