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Abstract. It is known that finding the shortest solution for a linear

Diophantine equation is a NP problem. In this paper we have devised

a method, based upon the basis reduction algorithm, to obtain short

solutions to a linear Diophantine equation. By this method we can ob-

tain a short solution (not necessarily the shortest one) in a polynomial

time. Numerical experiments show superiority to other methods which

use generalizations of the Euclid’s algorithm.
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Resumen. En este art́ıculo establecemos un método, basado en el
algoritmo de reducción de las bases, para obtner soluciones cortas de
una ecuación diofántica lineal en tiempo polinomio. Los resultados
numéricos obtenidos muestran cierta superioridad sobre otros métodos
que usan generalizaciones del algoritmo eucĺıdeo.

Palabras y frases clave. Ecuaciones diofánticas lineales, soluciones cor-
tas, algoritmo de reducción de la base.

1. Introduction

One can solve the linear Diophantine equation

aT x = b, x ∈ Z
n, (1)

where a ∈ Z
n and b ∈ Z, in a polynomial time. There are some methods

for solving (1) [2], all of which try to construct a unimodular matrix M (an
integer matrix with |det M | = 1) such that aT M = deT

1 , where d is the g.c.d. of
components of a, d = g.c.d. (a), and e1 is the first column of the identity matrix
I. Then, b

dMe1 is a special solution to (1) and the other columns of M consist
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of a basis to the integer solution space for the homogeneous equation aT x = 0.
From a computational point of view, it is important that absolute values of
components of M be small (it can be theoretically proved that matrices M
with absolutely small components do exist). There are algorithms that provide
a unimodular matrix M with a small first column, while the other columns
can grow rapidly [2]. Indeed, the main difficulty in working with integers is
the rapid growth of the intermediate results [1, 5]. Hence, it is important
to provide algorithms that restrain the growth of intermediate results. Some
algorithms for computing g.c.d. can be found in [2], where they are compared
from a numerical point of view.

In this paper, we have provided an algorithm to find a short solution to the
linear Diophantine equation (1) based upon the basis reduction algorithm for
integer lattices.

An (integer) lattice in Z
m is the set of all integer linear combinations of the

columns of an integer m×n matrix, say A. In this case, columns of A are said
to be a generating set for the lattice. Suppose L(A) is the lattice generated by
the columns of A. Then L(A) = {y ∈ Z

m | y = Ax, x ∈ Z
n}.

In lattice words, solving the system of linear Diophantine equations

Ax = b, x ∈ Z
n, (2)

is the ”existence problem”, namely:

Is b ∈ L(A)? If so, we must write b as an integer linear combinations of
columns of A.

Note that (1) is a special case of (2), corresponding to m = 1. By finding
the shortest solution to (1), we mean to solve the integer least squares problem

min ‖ y ‖ s.t. y ∈ L(A), y �= 0. (3)

The main difference between the above problems is related to complexity.
There is a polynomial algorithm for solving (2) while the other algorithms pro-
posed in the literature are NP. The algorithm given in this paper for solving (3)
approximately is based upon finding an appropriate representation of L(A), for
an adequate A, using the basis reduction algorithm. Since the basis reduction
algorithm gives a basis with short and nearly orthogonal vectors, then we are
expected to get a short solution to (1), albeit not the shortest one.

Section 2 presents the basis reduction algorithm and some of its properties.
Section 3 shows how we can obtain a general solution to a linear Diophantine
equation using the basis reduction algorithm. Then we use again the basis
reduction algorithm to get a general solution containing shorter vectors. We
compare numerically this method to other methods based upon a generalization
of the Euclid’s algorithm. Our numerical experiments show some superiority
to other methods.
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We should note that the solution of a single Diophantine equation as (1) is
a step in the ABS algorithms for solving a system of Diophantine equations,
providing some used parameters. So our result may also be useful for ABS
methods.

2. The Basis Reduction Algorithm

A lattice in Rn is defined as follows.

Definition 1. A set L ⊆ R
n is called a lattice when there exists a basis

{b1, b2, . . . , bk} for L such that

L =


k∑

j=1

αjbj |αj ∈ Z 1 ≤ j ≤ k

 . (4)

Let A be a nonsingular matrix of order n and L be the lattice generated
by the columns of A. If B is another nonsingular matrix, whose columns also
generate L, then |det A| = |det B|. So this number is independent the choice
of the basis, and is called the determinant of L, denoted by detL. It is equal
to the volume of the parallelepiped

{λ1b1 + · · · + λnbn | 0 ≤ λj ≤ 1, j = 1, . . . , n} ,

where b1, . . . , bn is any basis for L. This gives the well-known Hadamard in-
equalitiy

det L ≤
n∏

j=1

‖ bj ‖ .

It is trivial that equality occurs only if b1, . . . , bn are orthogonal, and that not
every lattice has an orthogonal basis. A classic theorem of Hermite states that
for each n there exists a number c(n) such that every n-dimensional lattice L
has a basis b1, . . . , bn with

n∏
j=1

‖ bj ‖≤ c(n) det L.

Such a basis may be viewed as an approximation of an orthogonal basis. Her-
mite showed that we could take

c(n) =
(

4
3

)n(n−1)/4

.

Minkowski improved this result by showing that even

c(n) =
2n

Vn
≈
(

2n

πe

)n/2

works, where Vn denotes the volume of the n-dimensional unit ball. However,
for this choice of c(n), there has not been found any polynomial algorithm
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which can give us a basis satisfying the Hermite result. For c(n) = 2n(n−1)/4,
Lenstra, Lenstra & Lovǎsz [6] designed a polynomial algorithm which
gave such a basis (if the lattice is given by generators). For this purpose, they
used the Gram-Schmidt orthogonalization.

Gram-Schmidt orthogonalization is an algorithm for deriving orthogonal vec-
tors b∗j , 1 ≤ j ≤ n, from linearly independent vectors bj , 1 ≤ j ≤ n. Let
B = (b1, . . . , bn) and B∗ = (b∗1, . . . , b

∗
n) be matrices with columns bj and b∗j ,

respectively. The vectors b∗j are defined as follow:

b∗j = bj −
j−1∑
k=1

rkjb
∗
k, j = 1, . . . , n, (5)

where
rkj = b∗T

k bj / b∗T
k b∗k, k = 1, . . . , j − 1. (6)

Theorem 1. [8]

i) The Gram-Schmidt procedure constructs an orthogonal basis b∗1, . . . , b
∗
n

for Rn.
ii) b∗k is the component of bk orthogonal to the subspace generated by

{b∗1, . . . , b∗k−1}.
iii) |det B| = |det B∗| =

n∏
j=1

‖ b∗j ‖.

Let B = (b1, . . . , bn) be a basis for L and B∗ = (b∗1, . . . , b
∗
n) the basis ob-

tained from the Gram-Schmidt orthogonalization procedure. We note that B∗

is typically not a basis for L because the numbers rkj are not all integer. A
nearly orthogonal basis is defined as follows.

Definition 2. Let B be a basis for L, and B∗ the basis obtained from the
Gram-Schmidt orthogonalization procedure. B is called a reduced basis if

|rkj | ≤ 1
2
, 1 ≤ k < j ≤ n, (7)

and

‖ b∗j+1 + rj,j+1b
∗
j ‖2≥ 3

4
‖ b∗j ‖2, j = 1, . . . , n − 1. (8)

Theorem 2. [8] Let B be a reduced basis for L. Then,

i) ‖ b∗j ‖≤ √
2 ‖ b∗j+1 ‖

ii) ‖ b1 ‖≤ 2(n−1)/4(det L)1/n

iii) ‖ b1 ‖≤ 2(n−1)/2 min{‖ y ‖ | y ∈ L, y �= 0}
iv)

n∏
j=1

‖ bj ‖≤ 2n(n−1)/4 det L
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A polynomial time algorithm to obtain a reduced basis for a lattice, given by
an initial basis, can be found in [3,4,6,7]. The algorithm consists of a sequence
of size reduction and interchanges as described below.

Size reduction: If for any pair of indices k and j, 1 ≤ k < j ≤ n, condition
(7) is violated, then bj is replaced by bj− r̂kj bk, where r̂kj = 	rkj
 is the integer
nearest to rkj .

Interchange: If condition (8) is violated for an index j, 1 ≤ j < n, then bj

and bj+1 are interchange.

Therefore, the basis reduction algorithm is as follow.

Basis reduction algorithm

1) Let B be a basis for the lattice L.
2) Let B∗ be the Gram-Schmidt orthogonalization of B.
3) For j = 2, . . . , n and for k = j−1, . . . , 1, replace bj by bj− r̂kj bk, where

r̂kj = 	rkj
 is the integer closest to rkj .
4) If

‖ b∗j+1 + rj,j+1b
∗
j ‖2<

3
4
‖ b∗j ‖2 ,

for some j, bj and bj+1 are interchange and we return to step 1 with
the new basis B.

Note. In matrix notation, we have B = B∗V , for some upper triangular matrix
V with 1 on the main diagonal. In step 2, by elementary column operations
one can change V into a matrix W in upper triangular form, with 1 on the
main diagonal and all other entries at most 1

2 in absolute value. Then, the
columns of B∗W form the basis B as it is after applying step 2.

Note. Let, at step 3, us interchange bj and bj+1. Also, let b̃1, . . . , b̃n be the
new basis (after application of step 3), and b̃∗1, . . . , b̃

∗
n be the new Gram-Schmidt

orthogonalization. Then b̃i = bi, for i �= j, j + 1, b̃j = bj+1 and b̃j+1 = bj . So
b̃∗i = b∗i , for i �= j, j + 1, and

b̃j = bj+1 = r1,j+1b
∗
1 + · · · + rj−1,j+1b

∗
j−1 + rj,j+1b

∗
j + b∗j+1

= r1,j+1b̃
∗
1 + · · · + rj−1,j+1b̃

∗
j−1 + rj,j+1b

∗
j + b∗j+1,

where |rk,j+1| ≤ 1
2 . Since rj,j+1 b∗j + b∗j+1 is orthogonal to vectors b1, . . . , bj−1,

then

b̃∗j = rj,j+1 b∗j + b∗j+1.

Therefore, by interchanging bj and bj+1, det BT
i Bi, where Bi = (b1, . . . , bi), is

multiplied by a factor β, β < 3
4 .
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Theorem 3. [3] The above algorithm finds a reduced basis for L in a polyno-
mial time.

The following program present the basis reduction algorithm [3].

for i = 1 to n do

b∗i = bi

for j = 1 to i − 1 do

µij = b∗T
i b∗j/Bj

b∗i = b∗i − µijb
∗
j

end

Bi = b∗T
i b∗i

end

k := 2
(1) for l = k − 1 do (∗)

if Bk <
(
0.75 − µ2

k,k−1

)
Bk−1 then goto (2)

for l = k − 2 downto 1 do (∗)
if k = n + 1 then stop

k := k + 1
goto (1)

(2) µ := µk,k−1

B := Bk + µ2Bk−1

µk,k−1 := µBk−1/B

Bk := Bk−1Bk/B

Bk−1 := B

(bk−1, bk) := (bk, bk−1)
for j = 1 to k − 2 do

(µk−1,j , µkj) := (µkj , µk−1,j)
end

for i = k + 1 to n do(
µi,k−1

µik

)
:=

(
1 µk,k−1

0 1

)(
0 1
1 −µ

)(
µi,k−1

µik

)
end

if k > 2 then k := k − 1
goto (1)
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(∗) if |µkl| > 0.5 then

r := nearest integer to µkl

bk := bk − rbl

for j = 1 to l − 1 do

µkj := µkj − rµlj

end

µkl := µkl − r

end

3. Solving a linear Diophantine equation using the basis reduction
algorithm

In this section, we use the basis reduction algorithm for solving a linear Dio-
phantine equation. For this purpose, consider the linear Diophantine equation

aT x = b, x ∈ Z
n, (9)

where a ∈ Z
n and b ∈ Z. Let L be the lattice consisting of all integer vectors

orthogonal to (pT ,−1)T , where pT = (aT ,−b). To solve (9) by using the basis
reduction, first we construct an initial basis B that generates L and then we
apply the basis reduction algorithm to it to obtain the reduced basis B. Then
we use B to obtain the general solution of (9).

Suppose that B is the matrix

B =

[
In+1

pT

]
,

where In+1 is the identity matrix of order n + 1. Note that columns of B form
a basis for lattice L. The lattice L consists of all vectors of the form

(αT ;β) = (α1, . . . , αn+1;β) ∈ Z
n+2 ,

where β = pT α.
Let B be the reduced basis obtained from B. Here, B is a basis for L, so is

B. Therefore (pT ,−1){B} = 0. Using Euclid’s algorithm or a generalization of
it (see [2]), we reduce the last row of B to deT

1 , where d ∈ Z and e1 is the first
column of In+1. Apply those operations to all other rows of B too. Assume B′

is the resulting matrix. Hence

B′ =

[
Q

deT
1

]
,

for some unimodular matrix, say Q. We note that d is the g.c.d. of the entries
of the last row of B, that is, indeed, the g.c.d. of components of p. Moreover,
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(pT ,−1)B′ = 0. Let z be the first column of Q and denote the other columns
by M , Q = (z,M). Since

0 = (pT ,−1)B′ = (pT ,−1)
[

z M
d 0T

]
,

then pT M = 0. Let M = (M
T
, u)T . Then, we have the following theorem.

Theorem 4. The Diophantine equation (9) is consistent if and only if
g.c.d.(u) = 1.

Proof. First of all, we note that pT M = 0 implies aT M = b uT . Assume
g.c.d.(u) = 1. Then uT N = eT

1 , for some unimodular matrix N , [2]. By
multiplying from right aT M = b uT by N , we have aT MN = b eT

1 . Hence,
x̃ = MNe1 is a solution to (9).

Conversely, suppose that x is a solution to (9). Since

(aT − b − 1)

 x
1
0

 = 0,

we get  x
1
0

 ∈ L.

Since B′ is a basis for L, then for some

y =
[

y1

y2

]
∈ Z

n+1,

where y1 ∈ Z and y2 ∈ Z
n, we have x
1
0

 = B′y =
[

z M
d 0T

] [
y1

y2

]
,

or [
x
1

]
= y1z + My2, (10)

0 = d y1. (11)

From (11) we have y1 = 0, meaning that the first column of B′ has no role in
the above representation and hence we can delete it. Since y1 = 0 then[

x
1

]
= My2 =

[
M
uT

]
y2 =

[
My2

uT y2

]
.

and then uT y2 = 1. Therefore, y2 is an integer vector satisfying the Diophantine
equation uT η = 1. It shows that g.c.d.(u) = 1, see [2]. ��
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Corollary. Let (9) be consistent. Then the general solution of (9) is

x = t + Uq, q ∈ Z
n−1,

where t = MNe1 is the first column of MN , and U is the matrix consisting of
the other columns of it, MN = (t, U). ��

Example. Consider the Diophantine equation

6758323x1+98756042x2+434402x3+5676x4+436285x5 = 877965345. (12)

The initial basis B is as follows

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

6758323 98756042 434402 5676 436285 −877965345


.

After applying the basis reduction algorithm on B, we have the reduced basis
B as

B =



0 −13 −16 −14 33 −2
0 1 1 1 −2 7
3 −20 24 8 8 122
1 −5 −31 42 −34 29

−3 −5 −2 −18 −66 337
0 0 0 0 0 1

27 −2 −4 −2 −3 −4


.

Using Euclid’s algorithm to obtain the g.c.d. of the last row of B, we can obtain
matrix B′:

B′ =



35 −56 −1 −81 14 −63
−9 17 0 12 6 4

−114 220 28 86 98 155
−63 84 47 92 60 −219

−403 824 −13 464 339 −81
−1 2 0 1 1 0

1 0 0 0 0 0


.

Matrix 6 × 5 in the right corner of B′ is the matrix M :

M =


−56 −1 −81 14 −63

17 0 12 6 4
220 28 86 98 155
84 47 92 60 −219

824 −13 464 339 −81
2 0 1 1 0

 .
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Again, apply Euclid’s algorithm on M to obtain the g.c.d. of the last row of it.
The resulting matrix is

M ′ =


14 −95 106 −1 −63
6 6 −7 0 4

98 −12 48 28 155
60 32 −100 47 −219

339 125 −104 −13 −81
1 0 0 0 0

 .

Since the g.c.d. of the last row of M is equal to 1, then (12) is consistent.
Consider the 5× 5 matrix in the right corner of the above matrix, first column
which is a special solution to (12). Its other columns consist of a basis for
the solution space of the corresponding homogeneous Diophantine equation to
(12). Therefore, the general solution of (12) is

x1

x2

x3

x4

x5

 =


14
6

98
60

339

+


−95 106 −1 −63

6 −7 0 4
−12 48 28 155

32 −100 47 −219
125 −104 −13 −81

 q, q ∈ Z
4.

Note that the size of the components of the above general solution is smaller
than that of the equation (12), that is a good property of the algorithm.

Now, again consider the matrix M ′. Having applied the basis reduction
algorithm to M ′ and then Euclid’s algorithm to its last row, we obtain the
matrix 

−6 −11 95 −1 10
9 2 −6 0 −1
1 −5 12 28 64
8 −26 −32 47 −21

67 −277 −125 −13 8
1 0 0 0 0


that gives the following general solution to (12), better than the previous one
(specially, for the first column)

x1

x2

x3

x4

x5

 =


−6

9
1
8

67

+


−11 95 −1 10

2 −6 0 −1
−5 12 28 64

−26 −32 47 −21
−277 −125 −13 8

 q, q ∈ Z
4.

In [2] we compared some methods, such as the Euclid, Bradley, Kertzner,
Rosser and Morito-Salkin algorithms, from a computational point of view, for
solving a linear Diophantine equation and observed that the Rosser algorithm
was the best one. These methods are generalizations of the Euclid’s algorithm.
All of them try to construct a unimodular matrix such that a multiplier of
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the first column is a special solution and the other columns contain a basis
of the integer solution space for the corresponding homogeneous equation for
Diophantine equation.

If we solve (12) by Rosser algorithm, we obtain the following general solution
x1

x2

x3

x4

x5

 =


−88

15
0

−216
−17

+


284 −621 −346 −132
−20 44 24 9

2 −38 −17 −8
139 1446 624 424
124 −321 −64 10

 q, q ∈ Z
4.

Note that our general solution is better than that of Rosser algorithm.
In what follows, we compare the Rosser algorithm (R.A.) and our algorithm

(O.A.) from view point of the size of numbers in computed general solution
and CPU time (size of an integer number is the number of bits in its binary
representation). For this purpose, we solve (1) for n = 5, 10, 15, 20, such that
the data are chosen in interval [1, 108] at random. For each n = 5, 10, 15, 20 we
solve 30 Diophantine equations and compute:

A: the size of data in (1)
B: the size of the computed special solution
C: the size of the computed basis
T : CPU time.

If we define µA, µB , µC and µT as the average of the A, B, C and T ,
respectively, then we have

n 5 10 15 20
µA 20.69 20.29 21.43 22.95
µT 0.056 0.263 0.722 1.434

O.A. µB 4.83 2.63 1.63 1.6
µC 6.6 3.61 2.61 2.25
µT 0.013 0.031 0.073 0.135

R.A. µB 6.29 5.39 4.14 4.4
µC 10.11 9.29 8.29 9.45

By observing the above table, we conclude that in all cases our algorithm
obtained a better general solution than the Rosser algorithm while its CPU time
is larger. Since Rosser algorithm has an advantage over the generalizations of
Euclid’s algorithm, thus our new method should be better than such methods.
Acknowledgement: The author would like to thank Professor Emilio Spedi-

cato for reading and correcting the final manuscript of this work.
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