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The parametrization problem of the minimal unitary extensions of an
isometric operator allows its application, through the spectral theorem, to the
case of the Fourier representations of a bounded Hankel form with respect to the
norms (f|f|2du,)!/2 and (f|f|2dps)!/2 where p,uy are positive finite measures
in T~[0,27[ (see [1]). In this work we develop a similar procedure for the
two—parametric case, where pq,u, are positive measures defined in T2~
[0,27[x[0,27[. With this purpose, we define the generalized Toeplitz forms on the
space of the two—variable trigonometric polynomials and use the lifting existence
theorems due to Cotlar and Sadosky [3]. We provide a parametrization formula
which is also valid to the special case of the Nehari problem.

In the whole work, V will stand for the vector space of all two—parametric
trigonometric polynomials:

V={fT2— C:f(5,t)=Tpn f(m,n) em,n(5,t) with f(m,n) finitely supported}

If we decompose the plane Z2 in two halfplanes F; and F, as follows: ;=
{(mq,m3) €22: my >0} =2XZ;, Fy=122\F,={(m;,my)€22: my <0}, we can denote
the subspaces of the analytic and anti—analytic polynomials in respects to the
given partition as : Wy={fe V: f(m,n)=0 if (m,n)eF,}, Wo={feV: f(m,n)
=0 if (m,n)€F;}. In V, the shifts of(s,t)=e?*f(s,t) and 7f(s,t)=ef(s,t), are
unitary operators and verify: i) o WiCc Wy, a-1Woc Wy, ii) T W Cc Wy, 71W,C
W, iii) or =70.

Remark. The set (V,W;,Wy,0,7) formed by a vector space V, two closed
subspaces of V, W; and W,, and two linear isomorphisms o,7:V— V
satisfying 1), ii) and iii) is called a discrete algebraic scattering system.

DEFINITION. a) A sesquilinear form B:VXV— C is called a Toeplitz
form if B(of,09)=B(7frg)=B(fg), V(fg) € VXV.
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b) Given three Toeplitz forms, By, Bj, By, we say that By is bounded by
B, and By [and write By<(By,By)], if By, B3>0, |Bo(f9)|2<By(£f)Ba(9,9),
Y(fg) e VXV.

¢) By is weakly bounded by B; and B, [By<(Bi,Bs)], if By, B3>0, and
| Bo(£9)12< By (£.£) B2(9,9), V(£,9) € Wy XW),.

The next lifting theorem, proved in (3] will be the object of our
parametrization. We use the next notation: If p,pq and py are three finite
complex measures in T2, we write p<(ug,u9) when py>0,u9>0,|u(A)]2<
1 (A) pg(A), for all Borel set A in T2.

THEOREM. Given three Toeplitz forms By, By, By in VXV, such that By<
(B1,By), then: a) (Lifting Property) There ezists a Toeplitz form By such that
Bg<(B1,By) and Bylyxw,=Bo. b) (Generalized Bochner Theorem) There egist
W, 11, o finite measures in T such that p<(p,us), and

Bi(£9)=[ [ fadu;, (i=12), f9€ V, Bo(f9)= [ [ fadu, (£9)€ WyxWy.

Here u;,p9 are unique, due to Bochner theorem, but 4 is not, and the set of
all the solutions can be parametrized throughout their Stieltjes transform by the
same method of the one—parametric case [1).

A parametrization formula describing all the liftings By will develop next.

In the space E = W;XW, we define the following inner product:

((f1,91)(f2,92)) = By (f1.f2) + B2(91,92) + Bo(f1,92) + Bo(f2,91) -

As By<(By,By), then (E/(-,-)) is a Hilbert space and we can suppose that
Wy~ [W1,0], Wy~ [0, W,] are closed subspaces of E.

If we define 7:E— E as 7[fg]=[f7g], it results that 7 is an isometric
operator with domain W;Xr-1W, and range 7 W;XW,. On the other hand
0: E— E, defined as o[f,g]=[cf,0g], is a unitary operator.

Thus, the space E is generated by [W;,0]~{rke, :k>0} and [0, W]~
{r*ep,-1:k<0}, mneZ. v

Our next goal is to describe the minimal commuting unitary extensions
(m.c.u.e.) of (0,7). A whole description which provides existence and unicity
conditions for the minimal commuting unitary extensions is due to Moran [4]. In
particular, a necessary and sufficient condition for the existence of such extensions
is (o"Tfirfy=(o™ff"),Vff'eD,, n=12,.. and here this condition is trivial,
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because o is a unitary operator and o(D,)=D,, o(A,)=A,, o= 0|p,

Using a formula stated by Chumakin [2], we can express the generalized
resolvent R, of 7 as R,=X,,02"T¢, if |z|]<1 where T,=7%, and
®,: E©D,— E©A, is foreach z in the unit circle, a non—expanding operator.

As E=D,®(E®D,) if {4 _1}icz, {uj0}jez are two orthonormal basis of
E®©D, and FO©A,, respectively, we can write:

€m,-1= Lie2 e U1 + uo, %, 0= Yiez d?i'"s‘,-l + W?: 'Ur?vwg €D,
and .
@, (u,-1)=Zje2i,j(2) uj0, Vi€Z

If we write ®=[p;;]; jez the associated matrix of the operator &,, then [|®,]<1.
We define the sequences {'u,’,';}l,}o c D, and {w¥%},50CD, by recurrence as:

1., pel ptl 1
() roh=Siczchi w1 +vh" (p20) and Twl=T;d; w1+ (p>0)

and the polynomial sequence {P}}:

0 0 0 0 _0
(2) [Pj(@)=(...,Cjo,le,...,Cjn,...)=Cj
1 2 0 1
P%(®)= P (2)2D%+P}*(2)®D1+...+ P;(2)®D"  +cf, (p>1)

- —rqk
where ¢?=(...,c%o,c%),...,c%,,...) and D¥=(dyg;), ez
So the following general result can be stated

THEOREM. Let 7,0 be the given operators and R, the generalized resolvent
of . From the vectorial sequences {Ph}, {vh}, {w,}, the m.c.u.e. of (0,7) are
parametrizated by the matric {(R,e; _1,ey0);5n€Z}, with |z|<1, whose
element j,n has the form

k-1 —k
(3) (Rz ej,-l:en,O) =Zm>1 2m [ZT:I Pj (d)) ¢ (wm ten,0>] + Zm}OZm <'U?len,0>
and where the matriz @ =[p; ,]i nez 15 the one associated to @, such that

(4) {0,:F0D,— EOA,: |,I<1, 08, =,0 5o }.

In order to see how it produces the desired lifting, we proceed as follows:

Having into account that V=V,z{r" W;}=V,e2{7™ W)}, we define the
form B’:VXV— C as B/(7™wy,7"wy)= (U™ ™[wy,0],[0,wp]) where U is a
unitary extension of 7 that satisfies (4). Thus, it is easy to prove that B’ is a
sesquilinear form, 7 and o—invariant and for each (fg)e VXV, |B’(fg)|2<
B (f,f)Ba(g,9). Moreover B’ extends to By and is uniquely determinated by U



TWO-PARAMETRIC LIFTINGS OF TOEPLITZ FORMS 19

because it suffices to calculate B’(7™e; _;,¢€x ), j,k€Z in order to determine the
lifting.
At last, each form B’ defines a measure g’ by the formula

B'(f9)=[ [ fadw.
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