
Bolet́ın de Matemáticas
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T-ADJUNCTION

LORENZO ACOSTA G. (∗)

Abstract. We show that the operator which associates the upper topol-

ogy to a pre-order relation can be extended to the morphisms of a sub-

category of Top, in such way that it results a functor and it is right

adjoint of the respective extension of the operator which associates to

each topology its specialization pre-order.
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Resumen. Se muestra que el operador que asocia la topoloǵıa supe-

rior a una relación de pre-orden puede extenderse a los morfismos de

una subcategoŕıa de Top, de tal manera que resulta un funtor y es ad-

junto a derecha de la respectiva extensión del operador que asocia a cada

topoloǵıa su pre-orden de especialización.
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Introduction

Let X be an ordered set. We say that a topology on X is (order-) concordant
if the specialization order (which is defined by x ≤ y ⇔ x ∈ cl{y}) is the given
order relation. Alexandrov studied maximal concordant topologies and called
them “discretes” (see [4]). Later, these topologies, which are characterized
like such topologies that are closed under arbitrary intersections, were called
Alexandrov topologies or quasi-discrete topologies. For a given order relation
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there is also a minimal concordant topology called the upper topology, the upper
interval topology or the weak topology. Concordant topologies are then those
topologies which are between the upper topology and the Alexandrov topology
of the ordered set. These topologies are studied by Gierz, Keimel, Lawson,
Mislove and Scott in their works on continuous lattices collected in [6]. They
are also used by Johnstone in his beautiful book on Stone Spaces [8]. Some
of the authors who have used these topologies are Erné, Gatzke, Hofmann,
Hoffmann, Schwarz, Stralka, Weck and several others.

Formally, we have:
Given a T0 topology τ on a set X, the specialization order on X associated to
τ is defined by

α (τ) = {(x, y) | x ∈ clτ (y)},
where clτ (y) denotes the closure of {y} in the topological space (X, τ). On the
other hand, given an order relation R on X, the Alexandrov topology associated
to R is the topology γ (R) , generated by the sets of the form

↑R (x) = {y ∈ X | (x, y) ∈ R},
and the upper topology associated to R is the topology υ (R) , generated by
the sets of the form X\ ↓R (x) , where

↓R (x) = {y ∈ X | (y, x) ∈ R}.
It is known (see for example [6] and [8]) that these operators are related by

α (τ) = R ⇔ υ (R) ⊆ τ ⊆ γ (R) .

This relation makes think in an adjunction. It is known, in fact, that γ is
the left adjoint of α, if we consider them as functions between the ordered
sets (Top (X) ,⊇) and (Pos (X) ,⊆) (see [1]). Here, Top(X) is the set of all
topologies on X and Pos(X) is the set of all order relations on X. However, υ
cannot be the right adjoint of α, because it is not a monotone operator between
these ordered sets.

In this paper we show that the operator υ can be extended to the morphisms
of a sub-category of Top in such way that it results a functor and it is right
adjoint of the respective extension of the operator α. To this end, we general-
ize the notion of left adjoint function between ordered sets and introduce the
notions of left r-adjoint function between sets endowed with a binary relation
and left t-adjoint function between topological spaces. In this way we show
that α is a functor with left adjoint γ and right adjoint υ.

1. Basic notions

In this section we recall the notions of adjoint function and adjoint functor.
We assume that the definitions of category and functor are known, but the
reader can consult for example [2], [3] and [6]. We also introduce the notion
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of left r-adjoint function between sets endowed with a binary relation and we
show that these functions are the morphisms of a category.

Let C and D be categories and let F : C → D, G : D → C be functors. We
say that F is left adjoint of G if there is a natural bijection between the sets
[FX;Y ] and [X;GY ] for each object X of C and each object Y of D ( [A;B]
denotes the set of morphisms from A to B in the respective category). In this
case we also say that G is right adjoint of F.

Recall now that every ordered set (X,≤) (i.e. a set X endowed with a binary
relation ≤ which is reflexive, antisymmetric and transitive) is a category where
the objects are the elements of X and the set of morphisms from a to b is
{(a, b)} if a ≤ b and it is empty otherwise. Under this point of view a functor
between two ordered sets is a monotone function. Let f : (X,≤) → (Y,≤) and
g : (Y,≤) → (X,≤) be monotone functions. We have that f is left adjoint of g
if and only if for each x ∈ X and each y ∈ Y

f(x) ≤ y ⇐⇒ x ≤ g(y). (1.1)

In this context we say that f and g are adjoint functions. (The adjoint functions
are also called “residuated mappings” (see [5]) and “Galois connexions”).

If in (1.1) we use the convention

z ∈↓ (a) ⇔ z ≤ a

we obtain the next proposition:

Proposition 1. Let f : (X,≤) → (Y,≤) a function between ordered sets.
The following are equivalent:

a) f is left adjoint (of some function from (Y,≤) to (X,≤)).
b) For each y ∈ Y there is x ∈ X such that f−1(↓ (y)) = ↓ (x).

Definition 1.

a) Let R be a binary relation on the set X. We will denote by ↓R (x) the
set of the elements y ∈ X such that (y, x) ∈ R.

b) Let f : (X, R) → (Y, S) be a function between two sets endowed with
a binary relation. We will say that f is compatible if

(x, z) ∈ R ⇒ (f(x), f(z)) ∈ S.

c) Let f : (X, R) → (Y, S) be a function between two sets endowed with a
binary relation. We will say that f is left r-adjoint if it is compatible
and

for each y ∈ Y there is x ∈ Xsuch that f−1(↓S (y)) = ↓R (x). (1.2)
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In the context of the ordered sets, f is left r-adjoint if and only if f is left
adjoint. For, the set {(y, x) ∈ Y × X | f−1(↓S (y)) = ↓R (x)} is a function
g : Y → X which is the right adjoint of f.

Proposition 2. Let f : (X, R) → (Y, S) be a function between two sets
endowed with a binary relation. If f satisfies (1.2) and R is transitive then, f

is compatible.

Proof. Let (x, z) ∈ R.

f(z) ∈ Y ⇒ (∃w ∈ X)(f−1(↓S (f(z))) = ↓R (w))
⇒ (z, w) ∈ R

⇒ (x, w) ∈ R (by transitivity)
⇒ (f(x), f(z)) ∈ S. �

The following two propositions are evident:

Proposition 3. If f : (X, R) → (Y, S) and g : (Y, S) → (Z, T ) are left r-adjoint
functions then, g ◦ f : (X, R) → (Z, T ) is a left r-adjoint function.

Proposition 4. If R is a binary relation on the set X then, 1X : (X, R) →
(X, R) is a left r-adjoint function.

Corollary 1. The class of the sets endowed with a binary relation and the left
r-adjoint functions is a category where the composition is the usual one.

Remark 1. This category is a sub-category of the category Gra of [1] and
[2].

2. The functor α.

In this section we present the operator α which associates to each topology
on the set X the pre-order of specialization on X, and we show that it can
be extended to a functor from the category of the topological spaces to the
category of the pre-ordered sets.

Definition 2. Let τ be a topology on the set X. We define

α(τ) = {(a, b) ∈ X ×X | a ∈ clτ (b)},

where clτ (b) denotes the closure of {b} in the topological space (X, τ).

Example 1. a) If (X, τ) is a T1 space then, α (τ) = {(x, x) | x ∈ X}.
b) If τ = {φ,X} then, α (τ) = X ×X.
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Proposition 5. a) α(τ) is a pre-order (reflexive and transitive) relation on X.

b) τ is a T0 topology if and only if α(τ) is antisymmetric.

Proof. Part a) is evident. For the part b) it is enough to see that τ is a T0

topology if and only if

clτ (b) = clτ (a) ⇒ a = b. �

In the context of the T0 topological spaces α(τ) is then an order relation on
X called the specialization order for τ (see [8]).

Definition 3. Following [1] and [2], we denote by Gra the category which has
as objects the couples (X, R) where X is a set and R is a binary relation on
X, and as morphisms the compatible functions. We will denote by Pros the
full sub-category of Gra where the considered relations are the pre-order ones.
We will denote by Top the category of the topological spaces and continuous
functions.

Remark 2. In [3] the category Gra is denoted by Rel.

The next proposition shows the behavior of the operator α with continuous
functions and allows to consider it as a functor.

Proposition 6. If f : (X, τ) → (Y, µ) is a continuous function between the
topological spaces (X, τ) and (Y, µ) then f : (X, α(τ)) → (Y, α(µ)) is compati-
ble.

Proof.

(x, z) ∈ α(τ) ⇒ x ∈ clτ (z) ⇒ f(x) ∈ clµ(f(z)) ⇒ (f(x), f(z)) ∈ α(µ). �

Corollary 2. If we define α (f) = f then, α is a functor from Top to Pros.

Let R be a pre-order relation on X. Consider the topologies τ on X such
that α (τ) = R. It is known that,

α (τ) = R ⇔ υ (R) ⊆ τ ⊆ γ (R) , (2.1)

where υ(R) is the upper topology associated to R, which is generated by the
sets of the form ↓R (x) with x ∈ X, and γ (R) is the Alexandrov topology
associated to R, which has as open sets the sets M such that

x ∈ M ∧ (x, y) ∈ R ⇒ y ∈ M.

(This result is proved in the literature for order relations, although the anti-
symmetry of the relation is not used in the argumentations). The equivalence
in (2.1) suggests that γ is left adjoint and υ is right adjoint of α. In fact, if
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we consider Top(X) = {τ | τ is a topology on X}, ordered by the relation ⊇,
and Gra(X) = {R | R is a binary relation on X}, ordered by ⊆, we have that
α : Top(X) → Gra(X) and γ : Gra(X) → Top(X) are monotone functions
and γ is left adjoint of α. Moreover, we can show that, if we define γ (f) = f
then, γ is a functor from Gra to Top and α : Top → Gra is right adjoint
of γ : Gra → Top (see [1]). However, if we consider υ as a function between
the ordered sets (Gra (X) ,⊆) and (Top(X),⊇) , it is not monotone, as the
following example shows, and consequently, it can not be the right adjoint of
α:

Example 2. Let R be the usual ordering on R and let

S = {(x, y) ∈ Q×Q | x ≤ y} ∪ {(x, x) | x ∈ I},

where Q denotes the set of the rational real numbers and I denotes the set of
the irrational ones. We have S ⊆ R, but υ (S) # υ (R) .

Remark 3. If X is a finite set the operators υ and γ are equal.

3. The category Topla.

In this section we introduce the notion of left t-adjoint function between
topological spaces, we consider the respective sub-category of Top and we
show that the functor α can be restricted to this sub-category in such way
that its values are in the category of the pre-ordered sets and the left r-adjoint
functions.

Definition 4. Let f : (X, τ) → (Y, µ) be a function between the topological
spaces (X, τ) and (Y, µ). We will say that f is left t-adjoint if it is continuous
and for each y ∈ Y there is x ∈ X such that f−1(clµ(y)) = clτ (x).

Example 3. Let f : (X, τ) → (Y, µ) a left t-adjoint function:
a) If (Y, µ) is a T1topological space then, f is a surjective function.
b) If (X, τ) is a T1topological space then, f is an injective function.
c) If (X, τ) y (Y, µ) are T1 then, the left t-adjoint functions between them

are the continuous bijections.

The following two propositions show that the left t-adjoint functions are the
morphisms of a category.

Proposition 7. If f : (X, τ) → (Y, µ), g : (Y, µ) → (Z, η) are left t-adjoint
functions then, g ◦ f : (X, τ) → (Z, η) is a left t-adjoint function.
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Proof. It is clear that g ◦ f is continuous and if z ∈ Z there exists y ∈ Y such
that g−1(clη(z)) = clµ(y). For this y there exists x ∈ X such that f−1(clµ(y)) =
clτ (x). Thus,

(g ◦ f)−1(clη(z)) = f−1
(
g−1(clη(z))

)
= f−1(clµ(y))
= clτ (x). �

Proposition 8. 1X : (X, τ) → (X, τ) is a left t-adjoint function.

Proof. Straightforward. �

Corollary 3. The class of the topological spaces and the left t-adjoint functions
is a sub-category of Top.

Definition 5. Topla is the category of the topological spaces and the left
t-ajoint functions.

TopT0la is the full sub-category of Topla where the objects are the T0

topological spaces.
Prosla is the category where the objects are the pre-ordered sets and the

morphisms are the left r-adjoint functions.
Posla is the full sub-category of Prosla where the objects are the ordered

sets.

The next proposition shows us that the functor α can be restricted to the
sub-category Topla of Top in such way that its values are in the sub-category
Prosla of Gra.

Proposition 9. If f : (X, τ) → (Y, µ) is a left t-adjoint function then, f :
(X, α(τ)) → (Y, α(µ)) is a left r-adjoint function.

Proof.

y ∈ Y ⇒ (∃x ∈ X)(f−1(clµ(y)) = clτ (x))
⇒ [(z, x) ∈ α (τ) ⇔ (f(z), y) ∈ α (µ)]
⇒ f−1

(
↓α(µ) (y)

)
=↓α(τ) (x). �

Corollary 4. α is a functor from Topla to Prosla.

To finish this section, we see that we can replace the pre-order relations by
the order relations if we work only with T0 topological spaces.
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Proposition 10. Let f : (X, τ) → (Y, µ) be a left t-adjoint function. If (X, τ)
is T0, the binary relation {(y, x) ∈ Y ×X | f−1(clµ(y)) = clτ (x)} is a function
from Y to X and we will denote it by f?.

Proof. It is sufficient to observe that if (X, τ) is T0, then clτ (x) = clτ (z) if and
only if x = z. �

Proposition 11. If f : (X, τ) → (Y, µ) is a morphism of TopT0la, then
f : (X, α(τ)) → (Y, α(µ)) is left adjoint of f? : (Y, α(µ)) → (X, α(τ)).

Proof.

(f(x), y) ∈ α(µ) ⇔ f(x) ∈ clµ(y)

⇔ x ∈ f−1(clµ(y))
⇔ x ∈ clτ (f?(y))
⇔ (x, f?(y)) ∈ α(τ). �

Corollary 5. α is a functor from TopT0la to Posla.

4. The functor υ.

In this section we introduce the operator υ mentioned in Section 2 and we
show that it can be viewed as a functor from the category of the pre-ordered
sets and left r-adjoint functions to the category of the topological spaces and
the left t-adjoint functions.

Definition 6. Let R be a binary relation on the set X. We define υ(R) as the
coarsest topology on X such that the sets of the form ↓R (x) are closed.

Example 4. a) If R = {(x, x) | x ∈ X} then, υ(R) is the cofinite topology on
X.

b) If R is the usual order on R then, υ(R) is the topology of the right open
tails on R.

c) υ(R) is the discrete topology on X if and only if R = {(x, x) | x ∈ X}
and X is a finite set.

d) If R = X ×X then, υ(R) = {φ,X}.

Proposition 12. Let R be a binary relation on X. The following are equivalent:
a) For each x ∈ X, ↓R (x) = clυ(R)(x).
b) R is a pre-order relation on X.
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Proof. Let us see that a) implies b): If x ∈ X we have x ∈ clυ(R)(x) = ↓R (x),
thus (x, x) ∈ R and R is reflexive. Suppose now that (x, y), (y, z) ∈ R. This
means that x ∈ clυ(R)(y) and y ∈ clυ(R)(z) and consequently, x ∈ clυ(R)(z) =
↓R (z). Then, (x, z) ∈ R and R is transitive.

Let us see now that b) implies a): Let x ∈ X. By the definition of υ(R),
↓R (x) is a closed set, and it contains x because R is reflexive. Consequently,
clυ(R)(x) ⊆↓R (x). Suppose that y ∈↓R (x). If y /∈ clυ(R)(x), there exist

x1, ..., xn ∈ X such that y ∈
n⋂

i=1

(X\ ↓R (xi)) and x /∈
n⋂

i=1

(X\ ↓R (xi)). Then

there exists i between 1 and n such that x ∈↓R (xi). By the transitivity of R
we have y ∈↓R (xi) which is absurd. Then, ↓R (x) ⊆ clυ(R)(x). �

The next proposition shows the behavior of υ with left r-adjoint functions
and allows us to consider it as a functor.

Proposition 13. If f : (X, R) → (Y, S) is a morphism of Prosla, then
f : (X, υ(R)) → (Y, υ(S)) is a morphism of Topla.

Proof.

y ∈ Y ⇒ (∃x ∈ X)
(
f−1(↓S (y)) =↓R (x)

)
⇒ [z ∈↓R (x) ⇔ f(z) ∈↓S (y)]
⇒

[
z ∈ clυ(R)(x) ⇔ f(z) ∈ clυ(S)(y)

]
⇒ f−1

(
clυ(S)(y)

)
= clυ(R)(x).

Clearly, f is continuous since the inverse image of a sub-basic closed set is a
closed set. �

Corollary 6. If we define υ(f) = f , then υ is a functor from Prosla to Topla.

The behavior of υ is good, because it transforms order relations in T0 topolo-
gies. Consequently, it can be restricted to a functor from Posla to TopT0la.

Proposition 14. Let R be a pre-order relation on X. The following are equiv-
alent:

a) R is an order relation on X.

b) υ(R) is a T0 topology on X.

Proof. It is sufficient to remark that for each x ∈ X, ↓R (x) = clυ(R)(x). �

Corollary 7. υ is a functor from Posla to TopT0la.
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5. α is left adjoint

In this section we show that the functor υ is right adjoint of the functor α if
we work with the appropriate categories. Using this adjunction we introduce
the notion of “specialized topology”.

Theorem 1. The functor α : Topla → Prosla is left adjoint of the functor
υ : Prosla → Topla.

Proof. Let (X, τ) be an object of Topla and (Y, S) be an object of Prosla.
We state the following:

[(X, α(τ)), (Y, S)]Prosla = [(X, τ), (Y, υ(S))]Topla.

If f ∈ [(X, α(τ)), (Y, S)]Prosla we have to see that f : (X, τ) → (Y, υ(S)) is a
left t-adjoint function, for which it is sufficient to show that for each y ∈ Y,
f−1(↓S (y)) is the closure of some point in (X, τ). But if y ∈ Y , there exists
x ∈ X such that

f−1(↓S (y)) =↓α(τ) (x) = clτ (x).
On the other hand, if f ∈ [(X, τ), (Y, υ(S))]Topla, we have to see that f :
(X, α(τ)) → (Y, S) is a left r-adjoint function. In fact,

f−1 (↓S (y)) = f−1(clυ(S)(y))
= clτ (x), for some x ∈ X

= ↓α(τ) (x), for some x ∈ X. �

Corollary 8. The functor α : TopT0la → Posla is left adjoint of the functor
υ : Posla → TopT0la.

Proposition 15. For every pre-order relation on X we have α(υ(R)) = R.

Proof.

(a, b) ∈ α(υ(R)) ⇔ a ∈ clυ(R) (b) ⇔ a ∈↓R (b) ⇔ (a, b) ∈ R. �

Proposition 16. For every topology τ on X we have υ(α(τ)) ⊆ τ.

Proof. Because of the adjunction of Theorem 5.1, 1X : (X, τ) → (X, υ(α(τ)))
is a continuous function, thus υ(α(τ)) ⊆ τ. �

Example 5. Let X be an infinite set and let τ be a T1 topology on X and µ

be the cofinite topology on X.We have υ(α(τ)) = µ.

This example shows that υ(α(τ)) is not always equal to τ and gives sense
to the following definition:
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Definition 7. Let τ be a topology on X. If υ(α(τ)) = τ we will say that τ is
specialized.

Example 6.

1) The cofinite topology on X is specialized.
2) The topology {φ,X} on X is specialized.
3) The only T1 specialized topology on X is the cofinite one.
4) The topology of the open right tails on R is specialized.
5) The topology of the open intervals centered in 0 on R is specialized.
6) The specialized topologies on X are exactly those of the form υ (R) for

some pre-order relation on X.

Problem: Characterize topologically the specialized topologies on a set X.

6. α is also right adjoint

In this section we show that the known adjunction between α and γ can
be restricted to the sub-categories introduced in Section 3. Therefore, α is a
functor which is right and left adjoint. Additionally we obtain several other
adjunctions and isomorphisms between some sub-categories of the treated cat-
egories.

We know that α : Top → Gra is right adjoint of γ : Gra → Top (see [1]).
If we restrict these functors to the sub-categories Topla of Top and Prosla of
Gra, we obtain the following:

Theorem 2. α : Topla → Prosla is right adjoint of γ : Prosla → Topla.

Proof. We know that [(X, γ(R)), (Y, µ)]Top = [(X, R), (Y, α (µ))]Gra. It is
enough to show that f : (X, γ(R)) → (Y, µ) is left t-adjoint if and only if
f : (X, R) → (Y, α (µ)) is left r-adjoint. For this, we observe that for each
y ∈ Y and each x ∈ X we have

clµ (y) = ↓α(µ) (y)
clγ(R)(x) = ↓R (x). �

It is known that the topologies of the form γ(R) are exactly those which are
quasi-discrete (i.e. those which are closed under arbitrary intersections). Then,
if we call Topqdla the full sub-category of Topla where the objects are the
quasi-discrete topological spaces and Topspla the full sub-category of Topla
where the objects are the specialized topological spaces, we have the following:
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Corollary 9.

a) γα : Topla → Topqdla is left adjoint of the inclusion functor from
Topqdla into Topla.

b) υα : Topla → Topspla is right adjoint of the inclusion functor from
Topspla into Topla.

c) γα : Topqdla → Topspla and υα : Topspla → Topqdla are isomor-
phisms, where (γα)−1 = υα.

d) α : Topqdla → Prosla and γ : Prosla → Topqdla are isomorphisms,
where α−1 = γ.

e) α : Topspla → Prosla and υ : Prosla → Topspla are isomorphisms,
where α−1 = υ.

7. The fibre of the construct Topla

Following the ideas in [2], we introduce and study the order relation on the
set of topologies on X, induced by the forgetful functor from the category of
the topological spaces and the left t-adjoint functions, to the category of sets.

We will denote by Topla(X) the set of topologies on X ordered by

τ ≤ µ ⇔ 1X : (X, τ) → (X, µ) is a morphism of Topla.

Now, we are able to characterize this order relation using the ⊇ order and the
function α.

Proposition 17. Let τ, µ ∈ Topla(X).

τ ≤ µ ⇔ τ ⊇ µ ∧ α (τ) = α (µ) .

Proof. Suppose that τ ≤ µ. Since 1X : (X, τ) → (X, µ) is continuous, we
have τ ⊇ µ. Moreover, since 1X : (X, α (τ)) → (X, α (µ)) is left r-adjoint we
have α (τ) = α (µ) . Conversely, suppose that τ ⊇ µ and α (τ) = α (µ) . There-
fore 1X : (X, τ) → (X, µ) is continuous and for each x ∈ X, (1X)−1(clτ (x)) =
clµ (x) . Consequently, 1X : (X, τ) → (X, µ) is left t-adjoint. �

The equivalence relation determined by α on Topla(X) divides this set in
classes in which the given order is the ⊇ order. Moreover, if two topologies are
in different classes they are not comparable.

The following proposition is now evident:

Proposition 18. Let R be a pre-order relation on X.

α−1 (R) = {τ ∈ Topla(X) | γ (R) ≤ τ ≤ υ (R)}

= {τ ∈ Top(X) | γ (R) ⊇ τ ⊇ υ (R)}.
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Example 7. a) If R = {(x, x) | x ∈ X} then, α−1 (R) = {τ ∈ Top(X) | τ is
T1}.

b) If R = X ×X then, α−1 (R) = {{φ,X}}.
c) If R is the usual order on R then, α−1 (R) = {τ ∈ Top(X) | µ ⊇ τ ⊇ η},

where µ is the right tails topology on R and η is the open right tails topology
on R.
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