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AN EXTENSION OF THE STONE DUALITY:
THE EXPANDED VERSION

SONIA M. SABOGAL P. (∗)

Abstract. This paper deals with a duality between two categories ex-

tending the classical Stone Duality between totally disconnected compact

Hausdorff spaces (Stone spaces) and Boolean rings with unit. This dual-

ity was announced and very briefly sketched in [7]. The first category de-

noted by RHQS has as objects the representations of Hausdorff quotients

of Stone spaces and as morphisms all compatible continuous functions.

The second category denoted by BRLR has as objects all Boolean rings

with unit endowed with a link relation and as morphisms all compatible

Boolean rings with unit morphisms. Furthermore, we study connect-

edness from an algebraic point of view, in the context of the proposed

generalized Stone duality.
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Resumen. Este art́ıculo se trata de una dualidad entre dos categoŕıas, que

extiende la dualidad clásica de Stone entre espacios de Hausdorff, com-

pactos, totalmente disconexos (espacios de Stone) y anillos Booleanos con

unidad. Esta dualidad fue enunciada y muy brevemente bosquejada en

[7]. La primera categoŕıa denotada por RHQS tiene como objetos las

representaciones de cocientes de Hausdorff de espacios de Stone y como

morfismos todas las funciones continuas compatibles. La segunda cate-

goŕıa denotada por BRLR tiene como objetos todos los anillos Booleanos

con unidad dotados de una relación de ligazón, y como morfismos todos

los morfismos de anillos Booleanos con unidad, compatibles. Además es-

tudiamos la conexidad desde un punto de vista algebraico, en el contexto

de la propuesta dualidad de Stone generalizada.

Palabras claves. Dualidad de Stone, anillos Booleanos, cocientes de

espacios de Stone, continuos, espacio de Cantor.

1. Introduction

The well-known Stone’s Representation Theorem [9], [10] for Boolean rings
with unit, establishes the equivalence of the categories: Boolean rings with unit-
Boolean ring morphisms which preserve the unit and Stone spaces-continuous
functions.

In 1937, M. H. Stone [11] considered some of his own ideas applied to
distributive lattices and generalized his representation theorem to non-Boolean
distributive lattices. So, algebraic properties of distributive lattices were re-
lated to properties of a certain topological space of prime ideals of the lattice.
G. Gratzer [3], in 1963, proved a representation theorem for Stone lattices,
that is, a lattice which is distributive and pseudo-complemented, and in which
the formula a∗ ∪ a∗∗ = 1 holds identically; Stone lattices are a generalization
of Boolean algebras. Gratzer proved that every Stone lattice is isomorphic to a
sublattice of the lattice of all ideals of a complete and atomic Boolean algebra.
T. P. Speed [8], in 1969, studied connectedness, irreducibility , combinatorial
dimension and the noetherian property of the spaces of prime ideals of a dis-
tributive lattice. H. A. Priestley [5], [6], in 1970, showed that by defining
a topology and an order relation on the set of 2-valued homomorphisms of a
distributive lattice, one could obtain a space dual to the given lattice: a dis-
tributive lattice is isomorphic to the lattice of clopen increasing subsets of its
dual space, and every compact totally order disconnected space arises as the
dual of a distributive lattice. With these results, Priestley related properties
of a lattice to properties of its dual space.
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In the present work, a generalization of the Stone duality for Boolean rings
with unit is obtained in a different way, rather than omitting conditions in the
definition of Boolean ring with unit, they are considered enriched with a certain
relation: given a pair (A,α), where A is a Boolean ring with unit and α is a
link relation (Definition 2.9), by defining a topology and a closed equivalence
relation on the set of ultrafilters of A, a dual space to the given (A,α) is
obtained. Every pair (A,α) is isomorphic to the Boolean ring of clopen subsets
of the spectrum of A endowed with a certain relation, and every Stone space
endowed with a closed equivalence relation (that is, every representation of a
Hausdorff quotient of a Stone space) is viewed as the dual of a Boolean ring
with unit endowed with a link relation. The pairs (A,α) are a generalization
of Boolean algebras and the representations of Hausdorff quotients of Stone
spaces, are a generalization of Stone spaces.

This paper falls into two main parts: Section 2 establishes (Corollary 2.16)
the duality previously described as an extension of the Stone duality for Boolean
rings with unit. some other analogous dual pairs of categories are also consid-
ered in this section. Section 3, relates the topological property of connectedness
of Hausdorff quotients of Stone spaces, to properties of its dual space. In this
section, an algebraic characterization of continua, is presented (Corollary 3.1.5).

Throughout this paper, if A is a Boolean ring, then Spec(A) denotes the set
of ultrafilters in A, endowed with the topology whose basic open sets are

D(a) := { U ∈ Spec(A) | a ∈ U }, ∀a ∈ A.

On the other hand, if X is a Stone space then A(X) denotes the Boolean ring
of the clopen subsets of X.

2. The categories BRL1R versus RHPS and BRLR versus RHQS

In this section, two extensions of the Stone duality are established. The functors
establishing these extensions are defined in terms of the following relations.

Definition 2.1. Let X be a set and α be a relation on X. The Rα and Rα

relations in any subfamily of P(X) are defined as follows. Let C and D be
subsets of X,

CRαD ⇐⇒ (∃x)(∃y)(x ∈ C, y ∈ D, and xαy),

CRαD ⇐⇒ (∀x)(∀y)(x ∈ C, y ∈ D =⇒ xαy).

Definition 2.2. The category BRLR (Boolean rings with unit and with

a L-relation) is defined as follows.
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- Objects: Pairs (A,α) where A is a Boolean ring with unit and α is a
relation on A r {0}, that satisfies the following properties:
(L1) α is reflexive;
(L2) α is symmetric;
(L3) (∀c, d ∈ A) (cαd, c ≤ a, d ≤ b =⇒ aαb).

We will call L-relation a relation satisfying (L1), (L2) and (L3).

- Morphisms: f : (A,α) −→ (A′, α′), morphism of Boolean ring with
unit, such that f(c)α′f(d) implies cαd, ∀c, d ∈ A.

Definition 2.3. The category RPS (Representations of “pre-quotients”

of Stone spaces) is defined as follows.

- Objects: Pairs (X, γ), where X is a Stone space and γ is a reflexive
and symmetric relation on X.

- Morphisms: f : (X, γ) −→ (X ′, γ′), continuous functions such that xγy

implies f(x)γ′f(y), ∀x, y ∈ X.

The proof that BRLR and RPS are in fact categories is straightforward and
so omitted.

Definition 2.4. The functors S and A are defined by the diagrams of Figures
1 and 2 respectively, where, if f : A −→ A′ then f ! : Spec(A′) −→ Spec(A) is
defined by:

f !(U) = f−1(U), ∀U ∈ Spec(A′)

and similarly, if f : X −→ X ′ then f ! : A(X ′) −→ A(X) is defined by:

f !(C) = f−1(C), ∀C ∈ A(X ′)

BRLR
(A,α)

RPS
(Spec(A), Rα)

(A′, α′) (Spec(A′), Rα′)

-

-

?

-

6

S

f S(f) = f !

|

|

Figure 1
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BRLR
(A(X), Rγ)

RPS
(X, γ)

(A(X ′), Rγ′) (X ′, γ′)

�

�

6

�

?

A

A(f) = f ! f

|

|

Figure 2

Properties (L1) and (L3) guarantee that Rα is reflexive in Spec(A), whereas
(L2) guarantees that Rα is symmetric. On the other hand, the reflexivity and
symmetry of γ imply for Rγ the properties (L1) and (L2) respectively, while
the property (L3) for Rγ is deduced easily.

Furthermore, if f : (A,α) −→ (A
′
, α

′
) is a morphism of BRLR, U, G ∈

Spec(A
′
) and URα

′

G, then f !(U)Rαf !(G), that is f−1(U)Rαf−1(G). In fact:
let c ∈ f−1(U) and d ∈ f−1(G); then f(c) ∈ U and f(d) ∈ f(G), which
implies f(c)α

′
f(d) and since f is a morphism of BRLR, then cαd and hence

f−1(U)Rαf−1(G).

Now, if f : (X, γ) −→ (X ′, γ′) is a morphism of RPS, C,D ∈ A(X ′) and
f−1(C)Rγf−1(D), there exist x ∈ f−1(C) and y ∈ f−1(D) such that xγy,
since f is a morphism of RPS, we have f(x)γ′f(y), but clearly f(x) ∈ C and
f(y) ∈ D, therefore CRγD. On the other hand, it is clear that S and A respect
the composition and the identities. Using the standard Stone’s theory we have
that S and A are in fact functors between the categories BRLR and RPS,
thus we can state:

Proposition 2.5. The functors S and A are adjoint.

Proof. Let (A,α) be an object of BRLR and (X, γ) be an object of RPS. Let

[(X, γ), (Spec(A), Rα)]
Θ−−−−−→

RPS [(A,α), (A(X), Rγ)]BRLR

defined in the following manner: if f : (X, γ) −→ (Spec(A), Rα) is a morphism
of RPS, then
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Θf : (A,α) −→ (A(X), Rγ)

c 7−→ Θf(c) := f−1(D(c)).

Therefore Θ is a natural bijection between (A,α) and (X, γ). �

The adjunction established in the previous proposition is not an equivalence
as the following example shows:

Example 2.6. Let (P(N), α), with

α = {(C,D) | C ∩D 6= ∅} ∪ {(E,O), (O, E)},

where E and O are the even and odd natural number sets, respectively. Then it
is easy to see that α satisfies (L1), (L2) and (L3). In this case Spec(P(N)) = βN
is the Stone-C̆ech compactification of N and one can prove that (P(N), α) and
(A(βN), RRα) are not isomorphic objects in the category BRLR.

Definition 2.7. We denote by BRL1R (Boolean rings with an L1− re-

lation) the category of pairs (A,α) where A is a Boolean ring with unit and
α is a L-relation in A which moreover satisfies:

(L4) (∀a, b, c ∈ A) (c α a ∨ b =⇒ cαa ∨ cαb).

The morphisms are taken to be the same as in BRL R.
We will call L1-relation a relation that satisfies (L1) to (L4).

Definition 2.8. We denote by RHPS (Representations of Hausdorff

“pre-quotients” of Stone spaces) the category of pairs (X, γ), where X

is a Stone space and γ is a relation on X, reflexive, symmetric and closed (that
is, γ is a closed subset of X×X), and the morphisms are taken to be the same
as in RPS.

Definition 2.9. We denote by BRLR (Boolean rings with a link relation)

the category of pairs (A,α) where A is a Boolean ring with unit and α is an
L1-relation in A which moreover satisfies:

(L5) Rα is transitive in Spec(A).

The morphisms are the same as in BRL R.
We will call link relation a relation satisfying (L1) to (L5).
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Definition 2.10. We denote by RHQS (Representations of Hausdorff

quotients of Stone spaces) the category of pairs (X,∼), where X is a Stone
space and ∼ is a closed equivalence relation on X and morphisms are taken to
be the same as in RPS.

It is clear that the categories BRL1R and RHPS are full subcategories of
the categories BRLR and RPS respectively, then the categories BRLR and
RHQS are full subcategories of the categories BRL1R and RHPS respec-
tively.

Proposition 2.11. The categories BRL1R and RHPS are equivalent.

Before proving this proposition, four preliminary results will be established:

Lemma 2.12. Let A be a Boolean ring with unit and α be a relation on
A r {0}, satisfying the properties (L2), (L3) and (L4). Let F and G be filters
on A such that FRαG and let x ∈ A. Then at least one of the following four
statements holds:

i) ∀y ∈ F , ∀z ∈ G, xy α xz,
ii) ∀y ∈ F , ∀z ∈ G, xy α x′z,
iii) ∀y ∈ F , ∀z ∈ G, x′y α xz,
iv) ∀y ∈ F , ∀z ∈ G, x′y α x′z.

Proof. By contradiction, suppose that there exists x ∈ A such that:

(∃y1 ∈ F, ∃z1 ∈ G : xy1¬α xz1) and (∃y2 ∈ F, ∃z2 ∈ G : xy2¬α x′z2) and

(∃y3 ∈ F, ∃z3 ∈ G : x′y3¬α xz3) and (∃y4 ∈ F, ∃z4 ∈ G : x′y4¬α x′z4).

Since FRαG, then y1y2y3y4 α z1z2z3z4 from which (x ∨ x′)y1y2y3y4 α (x ∨
x′)z1z2z3z4 then (xy1y2y3y4 ∨ x′y1y2y3y4) α (xz1z2z3z4 ∨ x′z1z2z3z4). Using
(L2) and (L4) we have (xy1y2y3y4 α xz1z2z3z4) or (xy1y2y3y4 α x′z1z2z3z4) or
(x′y1y2y3y4 α xz1z2z3z4) or (x′y1y2y3y4 α x′z1z2z3z4), and applying (L3), we
have xy1 α xz1 or xy2 α x′z2 or x′y3 α xz3 or x′y4 α x′z4 �

In the following lemma, take A = { xλ | λ ∈ Ω }, where Ω is an ordinal
number.

Lemma 2.13. Let A be a Boolean ring with unit and α be a relation in Ar{0}
satisfying the properties (L2), (L3) and (L4). If cαd (c, d ∈ A) then for every
λ ∈ Ω there exist filters Fλ, Gλ such that:
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(i) Fβ ⊆ Fλ and Gβ ⊆ Gλ ∀β ≤ λ;
(ii) FλRαGλ ;
(iii) c ∈ Fλ and (xλ ∈ Fλ or x′λ ∈ Fλ);
(iv) d ∈ Gλ and (xλ ∈ Gλ or x′λ ∈ Gλ).

Proof. By transfinite induction: let 0 be the first element of Ω. Since cαd then
x0c α x0d or x0c α x′0d or x′0c α x0d or x′0c α x′0d (applying (L2) and (L4)). It
suffices to take in each case: F0 :=< x0c > and G0 :=< x0d > or F0 :=< x0c >

and G0 :=< x′0d > or F0 :=< x′0c > and G0 :=< x0d > or F0 :=< x′0c > and
G0 :=< x′0d > respectively (observe that, since that α is defined on A r {0},
then F0 and G0 are in fact filters). In any of the four cases it is easy to prove
conditions (i)− (iv). Now, suppose that the statement is valid for every β < λ.

Let F :=
⋃

β<λ Fλ and G :=
⋃

β<λ Gλ. Using the inductive hypothesis it is
easy to see that F and G are filters such that FRαG. By Lemma 2.12, one of
the following four statements occurs:

(a) ∀y ∈ F , ∀z ∈ G, xλy α xλz;
(b) ∀y ∈ F , ∀z ∈ G, xλy α x′λz;
(c) ∀y ∈ F , ∀z ∈ G, x′λy α xλz;
(d) ∀y ∈ F , ∀z ∈ G, x′λy α x′λz ;

and it suffices to take respectively the following pairs of filters:

(a) Fλ :=< {xλy | y ∈ F} > and Gλ :=< {xλz | z ∈ G} >;
(b) Fλ :=< {xλy | y ∈ F} > and Gλ :=< {x′λz | z ∈ G} >;
(c) Fλ :=< {x′λy | y ∈ F} > and Gλ :=< {xλz | z ∈ G} >;
(d) Fλ :=< {x′λy | y ∈ F} > and Gλ :=< {x′λz | z ∈ G} >.

In each case one can prove easily that Fλ and Gλ satisfy (i)− (iv). �

Proposition 2.14. Let A be a Boolean ring with unit and α be an L1-relation
on A. Then the map

D : A −→ A(Spec(A))

c 7−→ D(c) := { U ∈ Spec(A) | c ∈ U } (∗)

is an isomorphism of Boolean rings with unit such that for every pair c, d ∈ A,

D(c)RRαD(d) ⇐⇒ cαd.
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Proof. It is known that D is an isomorphism of Boolean rings with 1. Suppose
now c, d ∈ A such that cαd. Let Uc :=

⋃
λ∈Ω Fλ and Ud :=

⋃
λ∈Ω Gλ, where

Fλ and Gλ are the filters whose existence is secured by Lemma 2.13. Then Uc

and Ud are ultrafilters which contain c and d respectively and UcR
αUd, that

is, D(c)RRαD(d). Conversely, if D(c)RRαD(d) then there exist U ∈ D(c) and
G ∈ D(d) such that URαG. It is clear that c ∈ U , d ∈ G and therefore cαd �

Proposition 2.15. Let X be a Stone space and let γ be a closed relation on
X. Then,

U : X −→ Spec(A(X))

x 7−→ Ux := { C ∈ A(X) | x ∈ C }

is a homeomorphism that satisfies: xγy ⇐⇒ UxRRγ Uy, for every x, y ∈ X.

Proof. It is known that U is a homeomorphism. Let C ∈ Ux and D ∈ Uy. If xγy

then clearly CRγD and therefore UxRRγ Uy. Conversely, suppose UxRRγ Uy. It
suffices to prove that (x, y) is a cluster point of γ = {(a, b) ∈ X ×X | aγb}.
Let Ox ×Oy be an (basic) open set of X ×X, with x ∈ Ox and y ∈ Oy. Since
X is totally disconnected, we may assume that Ox and Oy are clopen sets. So,
Ox ∈ Ux, Oy ∈ Uy, OxRγOy, from which there exist a ∈ Ox and b ∈ Oy such
that aγb. Therefore (a, b) ∈ Ox ×Oy ∩ γ. �

Remarks

1. It is not difficult to prove that the isomorphisms in the category BRL1R

are the isomorphisms of Boolean rings with unit that respect the rela-
tions in both senses. Similarly the isomorphisms in the category RHPS

are the homeomorphisms that respect the relations in both senses.
2. Since Rα is always closed for all relation α and since Rγ always satisfies

CRγA∪D =⇒ CRγA or CRγD, then the restrictions of the functors S
and A to the subcategories BRL1R and RHPS respectively determine
functors between those two subcategories.

3. Similarly, since the transitivity of Rα in Spec(A) is exactly (L5) and on
the other hand γ is transitive iff RRγ is transitive (it’s a consequence
of Proposition 2.15), then the restrictions of the functors S and A to
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the subcategories BRLR and RHQS respectively, determine functors
between them.

Proof of Proposition 2.11. It suffices to prove that the functor S (restricted to
BRL1R) is faithful, full and representative.

• S is faithful: let (A,α) and (A′, α′) be objects of BRL1R. We must prove
that

S′ : [(A,α), (A′, α′)] −→ [S(A′, α′), S(A,α)]

f 7−→ S(f) = f !

is one to one. Let h, g ∈ [(A,α), (A′, α′)], and suppose h 6= g. There exists
k ∈ A such that h(k) 6= g(k). If for example h(k) � g(k), let U be an ultrafilter
such that

< h(k) ∧ (1 + g(k)) >= {c ∈ A | h(k) ∧ (1 + g(k)) ≤ c} ⊆ U,

then h(k) ∈ U and g(k) /∈ U , therefore h−1(U) 6= g−1(U) and so S(h) 6= S(g).
Similarly if g(k) � h(k).
• S is full: now, we must prove that S is onto. Let t : (Spec(A′), Rα′) −→
(Spec(A), Rα) a morphism of RHPS. Observe the diagram of Figure 3, where
D and D′ are the isomorphisms defined by (∗) in Proposition 2.14.

(A,α) (A(Spec(A)), RRα)

(A′, α′) (A(Spec(A′)), RRα′ ))

-

�

?

g A(t)

D

D′−1

|
|
|
|?

Figure 3

Let g := D′−1 ◦A(t)◦D. Then g ∈ [(A,α), (A′, α′)] and S(g) = t. We will prove
that S(g) = t. It is obvious that

S(g) : (Spec(A′), Rα′) −→ (Spec(A), Rα).
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Let U ∈ Spec(A′), then

b ∈ S(g)(U) ⇐⇒ b ∈ g−1(U)

⇐⇒ b ∈ D−1(A(t)−1D′(U))

⇐⇒ D(b) ∈ A(t)−1D′(U)

⇐⇒ A(t)(D(b)) ∈ D′(U)

⇐⇒ t−1(D(b)) ∈ {D′(u) | u ∈ U}

⇐⇒ t−1(D(b)) = D′(u), for some u ∈ U

⇐⇒ {G ∈ Spec(A′) | b ∈ t(G)} = D′(u), for some u ∈ U,

but clearly U ∈ D′(u), therefore b ∈ t(U) and so S(g)(U) ⊆ t(U). Since S(g)(U)
and t(U) are ultrafilters then they must be equal.
• S is representative: let (X, γ) be an object of RHPS. From Proposition 2.15
we have that SA(X, γ) = (SpecA(X), RRγ ) ' (X, γ) (isomorphism in RHPS).
This completes the proof. �

From Remark 3 and Proposition 2.11, we have:

Corollary 2.16. The categories BRLR and RHQS are equivalent too.

Example 2.17. Let A = P(X), where X = {a, b, c} and

α = αA∪{({a}, {b}), ({b}, {a}), ({a, c}, {b}), ({b}, {a, c}), ({b, c}, {a}), ({a}, {b, c})},

where αA = {(C,D) | C ∩ D 6= ∅}. Then α satisfies the properties (L1) to
(L5). The topological representation of (A,α) is (Spec(A), Rα) with:

Spec(A) = {< a >, < b >, < c >},

where < a >= {{a}, {a, b}, {a, c}, X}, < b >= {{b}, {b, c}, {a, b}, X}, and
< c >= {{c}, {b, c}, {a, c}, X}. Thus, Spec(A) is a discrete space,

Rα = {(< a >,< a >), (< b >, < b >), (< c >,< c >),

(< a >,< b >), (< b >, < a >)}

and the corresponding quotient is (homeomorphic to) a discrete space with two
points.

Example 2.18. Let A = P(N),

α = { (C,D) | C ∩D 6= ∅ } ∪ { (C,D) | C,D are infinite }.
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Then α satisfies (L1) to (L5). The topological representation of (A,α) is
Spec(A) = βN, the Stone-C̆ech compactification of N, with the relation Rα =
{ (U ,U) | U ∈ βN } ∪ { (U ,G) | U and G are nonprincipal ultrafilters }. In
this case the quotient βN/Rα is (homeomorphic to) the Alexandroff compact-
ification of N.

Now, if BR1 denotes the classic category: Boolean rings with unit-Boolean
ring morphisms wich preserve the unit and ST denotes the classic category:
Stone spaces-continuous functions, then BRLR and RHQS can be viewed as
extensions of BR1 and ST respectively, such that they are equivalent when the
functors S and A are restricted to them. That is,

Proposition 2.19. The categories BRLR and RHQS contain a subcategory
isomorphic to BR1 and a subcategory isomorphic to ST, respectively. Further-
more, these subcategories are equivalent.

Proof. Let A be a Boolean ring with unit. Define in A the relation αA as
follows: for all c, d ∈ A,

cαAd ⇐⇒ c ∧ d 6= 0.

Then αA is a link relation (it is moreover the “smallest” link relation that we
can define in A, that is, if α is another link relation on A, then αA ⊆ α). On
the other hand, if f : A −→ A′ is a Boolean ring morphism which preserves the
unit and f(c)αA′f(d), e.g., f(c)f(d) 6= 0, then f(cd) 6= 0 which implies cd 6= 0,
that is, cαAd. Hence, f is a morphism of BRLR and the functor I described
in the diagram of Figure 4 is well-defined.

BR1

A

BRLR
(A,αA)

A′ (A′, αA′)

-

-

?

-

?

I

f I(f) = f

|

|

Figure 4
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In the opposite direction, we have the forgetful functor O defined in the
diagram of Figure 5.

BR1

A

ABRL
(A,α)

A′ (A′, α′)

�

�

?

�

?

O

O(f) = f f

|

|

Figure 5

It is clear that the functors I and O establish an isomorphism between the
categories BR1 and I(BR1) (the last one is a subcategory of BRLR). On the
other hand, if X is a Stone space, it is immediate that the equality relation
on X is a closed equivalence relation and that if f : X −→ Y is a continuous
function between Stone spaces, then f preserves the equality relation. So, the
functor F defined by the diagram of Figure 6, is well-defined.

ST
X

RHQS
(X, =)

Y (Y,=)

-

-

?

-

?

F

f F (f) = f

|

|

Figure 6

In the opposite direction we have another forgetful functor O’ defined by
the diagram of Figure 7.
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ST
X

RHQS
(X,∼)

Y (Y,∼′)

�

�

?

�

?

O′

O′(f) = f f

|

|

Figure 7

With these functors, F(ST) is a subcategory of RHQS, isomorphic to ST.

Now, let (A,αA) be an object of I(BR1). We have that RαA is exactly
the equality relation on Spec(A). In fact, if U,G ∈ Spec(A) then URαAG

means that, for all u ∈ U and for all g ∈ G, ug 6= 0, which implies U = G.
In this manner (Spec(A), RαA) = (Spec(A),=) is an object of F(ST). In a
similar way, if (X, =) is an object of F (ST ) then the relation R= is precisely
αA(X), since if C,D ∈ A(X) then CR=D means that C ∩ D 6= ∅, therefore
(A(X), R=) = (A(X), αA(X)) an object of I(BR1). Therefore the categories
I(BR1) and F(ST) are equivalent. �

Remark Observe that from Proposition 2.11, Corollary 2.16 and Proposi-
tion 2.19, two extensions of the Stone duality are established.

And last but not least, we want to point out that Hausdorff quotients of
the Cantor space form a wide family of topological spaces: these are precisely
the compact metric spaces and includes, for example, all continua (metric,
compact and connected spaces). Moreover, it is well known that the Boolean
ring that corresponds to the Cantor space is the unique (up isomorphisms)
Boolean ring with unit, countable and without atoms [1], [2] or [4]. We will
call this ring the Cantor’s ring and we will denote it by K.
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We define the following full subcategories of BRLR and RHQS:

Definition 2.20. We denote by CRLR (Cantor’s ring with a link relation)
the full subcategory of BRLR whose objects are the pairs (K, α).

Definition 2.21. We denote by RHQC (representations of Hausdorff quo-
tients of Cantor space) the full subcategory of RHQS whose objects are the
pairs (ΣN,∼) where ΣN is the Cantor space.

The following result is immediate.

Corollary 2.22. The categories CRLR and RHQC are equivalent.

In the diagram of Figure 8 the main results established up to now are illus-
trated and summarized. In particular, this diagram shows:

1. The adjunction established by the functors S and A , (Proposition 2.5).
2. The equivalence established by the restrictions of the functors S and A

to the subcategories BRL1R and RHPS (Proposition 2.11).
3. The equivalence established by the restrictions of the functors S and A

to the subcategories BRLR and RHQS (Corollary 2.16).
4. The equivalence established by the restrictions of the functors S and A

to the subcategories I(BR1) and F (ST ), (Proposition 2.19).
5. The equivalence established by the restrictions of the functors S and A

to the subcategories CRLR and RHQC, (Corollary 2.22).
6. The isomorphism established by the functors I and O, (Proposition

2.19).
7. The isomorphism established by the functors F and O’, (Proposition

2.19).
8. The equivalence established by the Stone’s Representation Theorem for

Boolean rings with unit (Stone duality).
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Figure 8

3. Connectedness

In this section using results of previous section, an algebraic interpretation of
the topological notion of connectedness is presented.
The following notion appears in [1] and will be used in Lemma 3.1: let A be
a Boolean ring, t ∈ A, t 6= 0 and n ∈ Z+. We will call C ⊆ A a n-partition

of t if: (i) |C| = n; (ii) (∀c ∈ C)(c < t); (iii)
∨

c∈C c = t; (iv) 0 /∈ C; (v)
(∀c, d ∈ C)(c 6= d =⇒ cd = 0).

Lemma 3.1. Let (A,α) be an object of BRLR. The following statements are
equivalent:

(i) every 2-partition C = {a, b} of the ring’s unit, satisfies aαb.
(ii) If C = {b1, · · · , bm} is a m-partition of 1 (m ∈ N, m ≥ 2), then for

any bi, bj , 1 ≤ i, j ≤ m, there exist bi1 , bi2 , · · · , bik
belonging to C, such

that bi1αbi2 , bi2αbi3 , · · · , bik−1αbik
, bi1 = bi and bik

= bj (that is, the
graph (C,α|C) is path connected).

(iii) For all a ∈ A r {0, 1}, we have aαa′.
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Proof.
(i) =⇒ (ii): By induction on m: for m = 2, (ii) coincides with (i). Suppose
that the assertion is valid for some m ∈ N, m ≥ 2. Let C = {b1, · · · , bm, bm+1}
be a m + 1-partition of 1. It suffices to prove that for every bj ∈ C there
exists a path that connects bj with b1. Obviously b1 connects with himself (α
is reflexive in A r {0, 1}). If C = {b1, b2, b3} is a 3-partition, then {b1, b2 ∨ b3}
is a 2-partition and therefore b1αb2 ∨ b3, which implies (applying (L4)) that
b1αb2 or b1αb3. If b1αb2, we consider the 2-partition {b3, b1 ∨ b2}, from which
b3α b1∨b2 and, b3αb1 or b3αb2. In any case, we obtain that b1 can be connected
with b2 and with b3. Similarly, if b1αb3, consider the 2-partition {b2, b1 ∨ b3}
and obtain the same conclusion.

Now, if m > 3 then {b1, b2, · · · , bm−1, bm ∨ bm+1} is a m-partition of 1,
and by the inductive hypothesis, there exists a path from b1 to b2, from
b1 to b3, · · · , from b1 to bm−1. Similarly {b1, bm, b3, , · · · , b2 ∨ bm+1} and
{b1, bm+1, b3, · · · , b2 ∨ bm} are m-partitions too and again, there exist paths
from b1 to bm and from b1 to bm+1. In total, there exists a path from b1 to bj

for all j = 1, 2, · · · ,m + 1.

(ii) =⇒ (iii): if a ∈ A r {0, 1}, then C = {a, a′} is a 2-partition of 1 and by
hypothesis there is a path which connects a with a′, therefore necessarily aαa′.

(iii) =⇒ (i): let C = {a, b} a 2-partition of 1. Clearly a ∈ A r {0, 1} and
b = a′, then aαa′ = b. �

Definition 3.2 (Connectedness in the category BRLR). An object (A,α) of
BRLR will be called connected if it satisfies any one of the three conditions
of the previous lemma.

Lemma 3.3. Let X be a Stone space and let X/ ∼ be a Hausdorff quotient
of X. Then X/ ∼ is disconnected if and only if there exist C and D clopen
subsets of X, disjoint, nonempty, such that C ∪D = X and C¬R∼D.

Proof. If X/ ∼ is disconnected let A ∪B = X/ ∼ be a disconnection of X/ ∼.
If j : X −→ X/ ∼ is the quotient map, then it is enough to take C = j−1(A)
and D = j−1(B). Conversely, if there exist C and D clopen subsets of X

satisfying the required conditions, then j(C)∪ j(D) = X/ ∼ is a disconnection
of X/ ∼. �
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We have a translation from topological connectedness to algebraical con-
nectedness and conversely:

Proposition 3.4. Let (A,α) be an object of BRLR and (X,∼) be an object
of RHQS. Then

(i) X/ ∼ is connected if and only if (A(X), R∼) is connected.
(ii) (A,α) is connected if and only if Spec(A)/Rα is connected.

Proof. (i) It follows by contradiction and by means of Lemma 3.3.

(ii) It’s an immediate consequence of (i) and the isomorphism (see Propo-
sition 2.14):

D : (A,α) −→ (A(Spec(A)), RRα) (∗)

c 7−→ D(c) := { U ∈ Spec(A) | c ∈ U }.

�

The following corollary establishes an algebraic characterization of continua:

Corollary 3.5. Every continuum can be represented (algebraically) as a con-
nected object of CRLR. Conversely, every connected object of CRLR repre-
sents a continuum

Proof. X is a continuum if and only if it is homeomorphic to a Hausdorff
connected quotient of the Cantor space, X/ ∼, which (using Proposition 3.4.
(i)) is equivalent to a connected object (A(X), R∼) of CRLR. Conversely, from
Proposition 3.4. (ii), we have that if (K, α) is a connected object of CRLR,
then Spec(K)/Rα is a continuum. �
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