INA ALTERNATIVA A LA INTEGRAL DE RIFMAN Pilar Turégano Moratalla

Pilar Turegano Moratalld.
Erenriadt ex Clencios Melendrica.
Pralesora Titalar de Exaela Uaiversiharid.
Alacele

el problema

LA aritmética y la geometría son, en el desarrollo habitual de la educaciön matemática, aprehendidas primero a nivel experimental. Tanto en la primera como en la segunda etapa de E.G.B. los alumnos se encuentran con multitud de fenómenos numéricos y geométricos y se familiarizan con ellos. Es soflo en un estudio ulterior cuando se les propone una teoría matemática, en la que los conceptos toman forma y son utilizados en razonamientos de los que se descarta el punto de vista empírico por lo general. La cnseñanza habitual de análisis procede de otro modo. Hasta que no tienen 16 anos aproximadamente, los alumnos no oyen ni siquicra hablar del infinito, de la idea de límite, etc. La enseñanza del análisis no pasa por ninguna fase previa de carácter experimental. El resultado es que a partir de los 16 años, los alumnos deben asimilar, al mismo tiempo, los fenómenos asociados a las apariciones del infinito y de los limites, y los conceptos y las teorías formales que los expresan y desarrollan matemáticamente. Interviene ahi una teoria que no tiene como función ordenar un conjunto rico de experiencias previas, simplemente porque tal conjunto no existe. H. Freudenthal (1973) ha puesto en evidencia las dificultades que resultan de este estado de cosas.

Tras un análisis exhaustivo de la bibliografía sobre las investigaciones en ese campo, podemos afirmar que los alumnos no tienen un rendimiento aceptable en los cursos de cálculo, ni siquiera en la universidad. Las causas que explican esta realidad las encontramos en el terreno episternológioo (Sierpinska, 1985, 1987, 1989), en el terreno didáctico (Orton, 1983a, 1983b), y en el terreno psicológico (Tall y Vinner, 1981).

Como ocurre con todo hocho didáctico, éste se presta a múltiples interpretaciones. Los psicólogos, pedagogos, profesores de matemáticas y alumnos darian sus explicaciones, todas ellas, a priori, dignas de interés. Pero ninguna de esas razones, considerada aisladamente, es suficiente para dar cuenta de la totalidad del fenómeno. Esto no impide que toda investigación presuponga la elección de un punto de vista
particular, forzosamente reductor, pero que permita cuestionar eficazmente la realidad de uno u otro de sus aspectos. En las ciencias llamadas clásicas, esta selección viene determinada por el paradigma en curso en cada una de esas disciplinas y que, en una época dada, constituye el objcto de un consenso en el seno de una comunidad científica reconocida como tal. Pero, ¿se puede hablar de paradigmas en didáctica de la matemática? Pensamos que el objeto de esta discipl ina se encuentra en la encrucijada de muchas otras disciplinas y suscita todavía, en el momento actual, múltiples debaies.

Enfrentados a esa doble realidad, hemos optado por reconocer la complejidad de la teoría para desentraniarla y tratar de construir presentaciones accesibles sin perder la claridad de las nociones centrales.

Hecha nuestra elección, creemos que un primer puso scría estableeer la fenomenología intrinseca del concepto, es decir, aquellos elementos que lo caractcrizan en su génesis histórica. Todos esos fenómenos que capturan las distintas facelas de la naturaleza del concepto o del campo conceptual que lo soporta son percibidos en el estudio sistemático de su génesis histórica, fenómenos que fueron sepultados y que impiden percibir hoy los significados esenciales que posibilitaron su construcción.

Esta buisqueda nos ha permitido encontrar que ex posible reconstruir el estudio de la integración, tomando como idea central el calculo de áreas planas. En este sentido, es posible rediseñar el currículum y el trabajo con los alumnos en tomo a lo que es esencial para su comprensión. Necesitamos volver a los fundamentos del cálculo: es preciso desartollarlo de nuevo a lo largo de la educación matemática de los estudiantes. Sin duda, cada nuevo enfoque debe ser más formal y riguroso que el precedente, y el primero puede ser may informal.

Pensamos que el punto de vista que, a menudo, es eimpuestow al estudiante de instituto y de universidad es el de la integral de Riemann, en la que el área ya no es defínida como un objeto geométrico, sino como el resultado de un callculo segán un procedimiento dado. ¿Por qué no pensamos en la dificultad que puede suponer para el alumno el relacionar el área con el proceso de sumación que permite sumar infinitas cantidades α infinitamente pequeñaso? Y, aunque sea una forma de razonar sugestiva y útil, frecuentemente, desde el punto de vista lógico, adolece del defecto de no poder arribuir un significado exacto al concepto de acantidad infinitamente pequcñas.

Se sabe, desde los trabajos de psicología de la forma, que la percepción visual no se reduce a la sensación registrada por la retina. Una misma imagen puede dar lugar a más de una percepción. Así, pues, una percepción es una interpretación, una estructuración mental. Cuando decimos a los alumnos que los rectángulos se reducen a segmentos, por ejemplo, estanos hablando de una mancra sugerente de cómo se pintan
las imágenes mentales de los alumnos, no lo que se imprime realmente en sus retinas.
${ }_{i}$ Por qué no pensamos, también, en la dificultad de las tres magnitudes que hay presentes cuando definimos la integral de Riemanar: los rectángulos. los segmentos a los que se reducen y el área curvilinea a determinar? ¿No evitaríamos esta dificultad con la integración en el análisis no estándar? Justificamos nuestra propuesta, ya que hoy día lo infinitesimal encuentra en el análisis no estándar un sitio principal bajo forma axiomatizada, y, puesto que no se pueden evitar, sería mejor hacerles intervenir adecuadamente, aunque, eso si, en su momento.

El propósio de este trabajo es proponer a los profesores de cálculo una forma de presentación a nivel conceptual de la integral definida que difiere de la que usualmente aparcce en los textos, y que permitiria a los estudiantes una transferencia inmediata de cálculo de áreas, que han trabajado en la geometria ciemental, y de sus propiedades al anílisis, evitando los problemas ya mencionados que presenta a nivel conceptual la integral de Riemann. Pensemos, por un momento, si los estudiantes, en un primer contacto con el análisis, no entenderian más fácilmente que, al pasar de la geometria al análisis, nada ha cambiado excepto el lenguaje, que era antes más geométrico y después es más analítico.

Dos requisitos nos parecen necesarios para afrontar esta propuesta: el uso de un sencillo programa de ordenador que permita visualizar el proceso y realizar cálculos, y un buen trabajo previo sobre los aspectos cualitativo y cuantitative del frea.

LA INTEGRAL DEFINIDA

1. Definición

Consideremos una función real f definida en un intervalo cerrado $[a, b]$ acotada y, de momento, no negativa.

Se trata de calcular el área limitada por la curva, el eje $x y$ las ordenadas correspondientes a los puntos de abscisas a y b. La sugerencia que se le hace al estudiante es la de encontrar una figura reclangular cuya área sea igual a la de la figura originai, con lo que el problema queda reducido al callenlo de la caltura medias de la furción $f \mathrm{cn}$ todo el intervalo $[a, b]$ y a continuación, calcular el área pedida como el producto de esta altura por la longitud $b-a$ del intervalo cerrado $[a, b]$. Comenzaremos por definir con precisión la caltura mediam. Para ello consideramos las bisecciones conscoutivas del intervalo $\{a, b\}$, esto es, para cada natural 1,2,3.. consideramos el intervalo dividido en 2, 4. 8... partes iguales. Así, para cada entero positivo n asociamos una subdivisión del intervalo en 2^{n} partes iguales, que llamaremos la n-

Ésima subdivisión. Consideremos una n-entsima subdivisión y denotemos con hi y Hi, respectivamente, el infimo y el supremo de la función f en el i-ésimo intervalo de la subdivisión $\left(i=1, \ldots, 2^{n}\right)$. Estos números, hi y Iii, están bien definidos por la hipótesis de que f es acotada. A partir de ellos, podemos definir los números $h(f, a, b, n)$ y $H(f, a, b, n)$ por las relaciones

$$
\mathrm{h}(\mathrm{f}, \mathrm{a}, \mathrm{~b}, \mathrm{n})=\frac{1}{2^{n}} \sum_{\mathrm{i}=1}^{2^{n}} \mathrm{hi}
$$

y

$$
H(f, a, b, n)=\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} H i
$$

que nos representan las salturas medias» mínimas y máximas en relación con la n-ćsima subdivisión.

De la definición de estos números se deducen las relaciones siguientes:

$$
\begin{aligned}
& h(f, a, b, n) \leq h(f, a, b, n+1) \\
& H(f, a, b, n) \geq H(f, a, b, n+1) \\
& h(f, a, b, n) \leq H(f, a, b, n)
\end{aligned}
$$

para todo natural n.
Esto nos indica que las sucesiones $h(f, a, b, n)$, y $\boldsymbol{H}(f, a, b, n)$ para $n=$ 1.2.3... son sucesiones monótonas y acotadas, por lo que ambas tienen limite cuando $n \rightarrow \infty$, esto es:

$$
h(f, a, b)=\lim _{\mathrm{s} \rightarrow-} \mathrm{h}(\mathrm{f}, \mathrm{a}, \mathrm{~b}, \mathrm{n})=\sup _{0} \mathrm{~h}(\mathrm{f}, \mathrm{a}, \mathrm{~b}, \mathrm{n})
$$

y

$$
H(f, a, b)=\lim _{n \rightarrow-} H(f, a, b, n)=\inf _{n} H(f, a, b, n)
$$

con

$$
\mathbf{h}(f, a, b) \leq \boldsymbol{H}(f, a, b) .
$$

Estos números, a los que identificamos como «altura media» mínima y méxima, respectivamente, no se puede asegurar que sean iguales, pero, en el caso de serlo, ese número que denotamos por $M(f . a h)$, es la aaltura medias de la función $f(x)$ en el intervalo $\langle a, b\rangle$.

Definimos la integral de la función f en el intervalo $\{a b]$ como el producto de la aalura medias por la longitud del intervalo $\langle a, b\rangle$. Es decir,
$\int_{i}^{b} f=M(f, a, b)(b-a)$.
La definición es independiente del signo de la función $f \mathrm{c}$, incluso, del signo de $b-a$, de manera que se verifica:

$$
\int_{a}^{b}(-f)=-\int_{a}^{b} f
$$

$$
y
$$

$$
\int_{\mathrm{i}}^{\mathrm{b}} \mathrm{f}=-\int_{\mathrm{b}}^{\mathrm{a}} \mathrm{f}
$$

2. Existencia

La demostración de la existencia de la integral se reduce a demostrar la existencia de la «altura media\%, o sea, demostrar que las alturas minima $h(f, a, b)$ y máxima $H(f, a, b)$ coinciden, hecho que se consigue cuando f es monótona en $[a, b]$. Vé́moslo: consideremos una n-ésima subdivisión en 2^{*} intervalos iguales de $[a, b]$; designamos con

$$
a=x_{0}<x_{1}<x_{2} \ldots<x_{2_{1}^{4}}<x_{2^{s}}=b
$$

los puntos de subdivisión.
En el caso de que f sea, por cjemplo, monótona no decreciente, se tendrá

$$
\begin{align*}
& h(f, a, b, n)=\frac{1}{2^{a}} \quad\left[f\left(x_{1}\right)+f\left(x_{1}\right)+\ldots+f\left(x_{2^{-1}}\right)\right] \tag{1}\\
& y \\
& H(f, a, b, n)=\frac{1}{2^{n}} \quad\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{2^{n}}\right)\right] \tag{2}
\end{align*}
$$

ya que los infimos y los supremos se obtienen, por ser monótoma, no decreciente, en los extremos izquierdos y derechos, respectivamente, en cada subintervalo. Restando (1) de (2):

$$
H(f, a, b, n)-h(f, a, b, n)=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{2^{a}}=\frac{f(b)-f(a)}{2^{a}}
$$

Si tomamos el límite cuando $n \rightarrow \infty$;

$$
\lim _{x \rightarrow-}[H(f, a, b, n)-h(f, a, b, n)]=\lim _{n \rightarrow \infty} \frac{f(b)-f(a)}{2^{\prime}}=0
$$

de donde

$$
\mathrm{H}(f, a, b)=\mathrm{h}(f, \mathrm{a}, \mathrm{~b})
$$

con lo cual queda probada la existencia de la integral. Concluimos que, si la función f es monótoma (y acolada) en $/ a, b /$, entonces la integral $\int \mathrm{b}$
f existe, y, puesto que, con la integrabilidad de funciones monotonas se puede justificar la integrabilidad de, práclicamente, todas las funciones mancjadas en el câlculo (a pesar de que son pocas las funciones monótonas, la mayoria son monótonas a trozos), no habría necesidad de más en los cursos de calculo introductorio.

La demostración de existencia de la integral para el caso de funciones continuas requiere hacer uso del concepto de continuidad uniforme. eoncepto dificil para el estudiante, por lo que no consideramos necesaria su demostración en el curso de cálculo introductorio, sobre todo si queremos evitar los problemas que le causan los infinitesimales.

$$
\text { Sifes continua en }[a, b] . \int_{1}^{b} f \text { existe. Por las hipótesis, } \mathrm{f} \text { es unifor- }
$$ memente continua, lo que nos indica que, dado un real arbitrario $\delta>0$, existe otor real $\epsilon>0$, tal que

$$
\begin{aligned}
& \qquad\left|f\left(x_{i}\right)-f\left(x_{2}\right)\right|<\epsilon \text { si }\left|x_{1}-x_{y}\right|<\delta . \\
& \text { Escogemos un } n_{e} \text { tal que } \frac{b-a}{2 \sigma_{0}}<\delta \\
& H(f, a, b, n)-h(f, a, b, n)=\frac{1}{2^{n}} \sum_{i=1}^{2 n}(H i-h i)<\epsilon
\end{aligned}
$$

para todo $n>n_{0}$ ya que por la continuidad los valores infimos y supremos son valores de la función. De la desigualdad anterior se deduce que $H(f, a, b)=h(f a, b)$, con lo cual queda demostrado que existe esa *altura media», y de ello deducimos la existencia de la integral.

Dejamos para un trabajo posterior hablar de las propiedades y apli-
caciones de la integral definida, así como de los resultados obtenidos al Ilevar al aula esta propuesta didáctica que llevamos poniendo en práctica durante 3 años con alumnos de Magisterio.

BIBLIOGRAFIA

BIRHOFF, G. (1973): A source book in classical analysis, Cambridge, Mass., Harvard University Press.
BOYER. C. (1949): The histary of the calculus and its conceptual development, Dover Publications, New York.
EDWARDS, CH. (1979): The historical development of the calculus, Springer-Verlag, New York.
FREUDENTAL, H. (1973): Mathematics as an Educational Task. Reidel Dordrecht.
LEBESGUE, H. (1966): Measure and the integral, Holden-Day, Berkeley, California.
ORTON, A. (1983a): Sudents understanding of integration, Educational Studies in Mathematics, 14, 1-18.
-(1983b): Siudents' wndersianding of differentiation, Educational Studies in Mathematics, 14, 235-250.
SIERPINSKA, A. (1989): How \& when attitudes towwards mathemafics \& infinity become constifued into abstacles in smdens? Actes PME 13, 166-173.
-(1987): Humanities students and epistemological obstacles related to limits, Educational Studies in Mathematics, 18, 4, 371-197.
-(1985): Obstacles épistémologiques relatifs à la notion de limite, Recherches en Didactiques de Mathematiques, 6, 1, 5-7.
STRUIK. A. (1969): A source bood in mathpmatics 1200-1800, Harvard University Press, Cambridge, M.A.
TALL, D, and VINNER, S. (1981): Concep image and concept definition in mathematics, with particular reference to limits and contimuity, Educational Studies in Mathematics, 12, 151-169.
TUREGANO, P., PENALVA, C. (1990): Alumnor universitarios ante el infiniso: intuición y formalizacion, Actas del Primer Congreso Iberoamericano de Educación Matemática, Sevilla.

