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Abstract. The definition of metric bundle, over a topological space T ,

requires the upper semicontinuity of the resulting function obtained when

an arbitrary pair α, β of local sections is followed by the distance function,

that is, the upper semicontinuity of t 7−→ d(α(t), β(t)). The assigment of

such a function to each pair of sections can be considered as a generalized

metric between sections. This leads to the construction of the Bundle of

Upper Semicontinuous Functions over the space T , suitable to play the

role of a real numbers object in the Category of Metric Bundles over T

and containing, as a section, the distance between any pair of arbitrary

sections of a given metric bundle over T . As desired, one of the main

features of this bundle is the completeness of its fibers. In this sense, this

bundle could be viewed as some sort of semicontinuous continuum.

Resumen. Se construye un campo de espacios métricos para representar

por secciones las funciones semicontinuas superiormente. Las fibras del

campo construido resultan ser completas y conexas.
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1. Introduction

The category of bundles of metric spaces over a topological space T is a gener-
alization of the category of metric spaces. The goal of this paper is to construct
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an object, in the category of metric bundles over T , that could be thought as
the counterpart of the real numbers object. The existence of metric bundles
and uniform bundles is discussed in [7] and [10], the data are provided by a
topological space T and a family of sections. In the category of metric bun-
dles over a fixed base space T , there is a generalized distance between global
sections whose values consist of upper semicontinuous functions. The values of
this generalized distance are used as data to construct a metric bundle, called
the Bundle of Upper Semicontinuous Functions whose fibers turn out to be
complete and connected metric spaces. In this sense, this bundle could be
viewed as some sort of semicontinuous continuum.

2. Preliminaries

Definition 1. Let p : G −→ T be a surjective function. A selection for p is a
function α : Q −→ G, with Q ⊂ T , such that p ◦ α is the identity map of Q. If
Q = T , α is a global selection.

If T is a topological space and Q is an open subset of T , α is a local selection.
When both G and T are topological spaces, a continuous selection is called a
section for p. A set Σ of sections is called full if for each u ∈ G, there exists
α ∈ Σ, such that α(p(u)) = u.

Definition 2. A function d : G×G −→ [0,+∞] such that, for all u, v, w ∈ G,

(1) p(u) 6= p(v), if and only if, d(u, v) = +∞,
(2) d(u, v) = 0, if and only if, u = v,
(3) d(u, v) = d(v, u), and
(4) d(u, v) 6 d(u, w) + d(w, v),

is called a metric for p.
For each t ∈ T , Gt := p−1(t) is a metric space, when endowed with the

restriction of d to Gt ×Gt.

If α : Q −→ G is a selection
for p, Tε(α) = {u ∈ G : p(u) ∈
Dom α and d(u, α(p(u))) < ε} is
called the ε-tube around α. See
Figure 1. .........................................................................................................................................................................................................................................................
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Definition 3. Let G and T be topological spaces, let p : G −→ T be a
continuous surjective function and let d be a metric for p, such that for every
u ∈ G and every ε > 0, there is a local selection α such that u ∈ Tε(α). Then
(G, p, T ) is called a bundle of metric spaces, provided that the collection of sets
Tε(α), where ε > 0 and α runs throughout the local selections for p, is a base
for the topology of G.

The space T is called the base space, Gt = p−1(t) is called the fiber above
the point t, for each t ∈ T , and G is called the fiber space.

Definition 4. Given two bundles of metric spaces (G, p, T ) and (H, q, T ), over
the same base space T , a morphism from the first one to second, is a con-
tinuous map Λ : G −→ H, such that for each u, v ∈ G, q(Λ(u)) = p(u) and
dH(Λ(u),Λ(v)) 6 dG(u, v), if p(u) = p(v), where dG and dH are the distance
functions of the fiber spaces G and H respectively.

The following is a particular case of a theorem of existence of uniform bundles
[7]. We sketch its proof since the cited reference is not easily accesible.

Theorem 1 (Existence Theorem of Metric Bundles). Let T be a topological
space, p : G −→ T be a surjective function, d be a metric for p and Σ be a
family of local selections for p. Assume that

(a) For every u ∈ G and every ε > 0, there exists α ∈ Σ such that u ∈
Tε(α).

(b) For every (α, β) ∈ Σ × Σ, the function Φ : Dom α ∩ Dom β −→ R,
defined by Φ(t) = d(α(t), β(t)), is upper semicontinuous.

Then G can be equipped with a topology T such that

(1) The family B of subsets of G of the form Tε(αQ), where ε > 0, Q runs
throughout the collection of open subsets of Dom α, α throughout Σ
and αQ denotes the restriction of α to Q, is a base for T.

(2) Every α ∈ Σ is a section.
(3) (G, p, T ) is a bundle of metric spaces.

Proof. We first show that the collection of all sets Tε(αQ), with the specifica-
tions given in conclusion (1), is a base for a topology T in G.
Given two such tubes Tε(αQ) and Tδ(βP ) and u ∈ Tε(αQ) ∩ Tδ(βP ), let ρ =
min{ 1

4 (ε − d(u, α(p(u)))), 1
4 (δ − d(u, β(p(u))))} and let ξ ∈ Σ such that u ∈
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Tρ(ξ) = {v ∈ E : d(v, ξ(p(v))) < ρ}, then p(u) ∈ {s ∈ T : d(ξ(s), α(s)) < ε′},
where ε′ = 1

2 (d(u, α(p(u))) + ε), in fact, since u ∈ Tε(αQ) it follows that
d(u, α(p(u))) < ε and thus d(u, α(p(u))) < 3

4d(u, α(p(u))) + 1
4ε. On the other

hand, the relation u ∈ Tρ(ξ) implies d(u, ξ(p(u))) < 1
4 (ε − d(u, α(p(u)))) and

therefore d(ξ(p(u)), α(p(u))) < ε′. Similarly, p(u) ∈ {s ∈ T : d(ξ(s), β(s)) < δ′}
where δ′ = 1

2 (d(u, β(p(u))) + δ). By the semicontinuity hypothesis the sets
{s ∈ T : d(ξ(s), α(s)) < ε′} and {s ∈ T : d(ξ(s), β(s)) < δ′} are open, it follows
that S = P ∩Q ∩ {s ∈ T : d(ξ(s), α(s)) < ε′} ∩ {s ∈ T : d(ξ(s), β(s)) < δ′} is a
neighborhood of p(u) in the space T and Tρ(ξS) ⊂ Tε(α), indeed, the relation
v ∈ Tρ(ξS) implies d(v, ξ(p(v))) < ρ < 1

2 (ε− d(u, α(p(u)))), but p(v) ∈ S, then
d(ξ(p(v)), α(p(v))) < 1

2 (d(u, α(p(u))) + ε), thus d(v, α(p(v))) < ε and therefore
v ∈ Tε(αQ). The inclusion Tρ(ξS) ⊂ Tδ(βP ) is obtained in the same manner.

2) Let α ∈ Σ and t ∈ Dom α. A fundamental neighborhood of α(t) in E is
of the form Tε(βQ), where β ∈ Σ, Q ⊂ Dom α is open in T , ε > 0 and α(t) ∈
Tε(βQ). By hypothesis b), the set α−1(Tε(βQ)) = {s ∈ Q : d(α(s), β(s)) < ε}
is open in T , therefore α is a section.

3) The tubes around arbitrary local sections are open, in fact, let u ∈ G and
let σ be a local section for p (not necessarily in Σ) such that u ∈ Tε(σ). To
prove that (G, p, T ) is a uniform bundle, we must exhibit η > 0 and α ∈ Σ such
that u ∈ Tη(α) and Tη(αP ) ⊂ Tε(σ) for some neighborhood P of p(u) in T .

Let η = 1
4 (ε−d(u, σ(p(u)))) and let α ∈ Σ be such that u ∈ Tη(α). Since u ∈

Tε(σ) we have d(u, σ(p(u))) < ε and thus d(u, σ(p(u))) < 3
4d(u, σ(p(u))) + 1

4ε.
On the other hand, the relation u ∈ Tη(α) implies d(u, α(p(u))) < η = 1

4 (ε −
di(u, σ(p(u)))), therefore d(σ(p(u)), α(p(u))) < 1

2d(u, σ(p(u)))+ 1
2ε, then p(u) ∈

σ−1(Tε′(α)), where ε′ = 1
2 (d(u, σ(p(u)))+ε). Since σ is continuous, σ−1(Tε′(α))

is an open neighborhood P of p(u), then v ∈ Tη(αP ) implies p(v) ∈ P and
hence d(α(p(v)), σ(p(v))) < 1

2 (d(u, σ(p(u))) + ε), we also have

d(v, α(p(v))) < η <
1
2
(ε− d(u, σ(p(u)))),

thus d(v, σ(p(v))) < ε, that is v ∈ Tε(α). �
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The following construction does not resort to calculation of inductive limits
in the category of bundles of metric spaces, alternative that although legitime,
is somewhat cumbersome for the purpose of this paper.

Definition 5. Let T be a topological space and X be the set of all bounded
upper semicontinuous real valued functions defined in T , endowed with the sup
metric. This metric will be denoted by d. Let t ∈ T , x, y ∈ X and denote
by V(t) the collection of all open neighborhoods of the point t. We say that
x is related to y at the point t or xRty, if and only if, the upper envelope
|x− y| of the function |x − y| is equal to zero at t, that is, xRty, if and only
if, lim sups→t |x(s) − y(s)| = infV ∈V(t) sups∈V |x(s) − y(s)| = 0, in symbols,
|x− y|(t) = 0.

With the above conventions, xRty, if and only if, for every ε > 0, there
exists V ∈ V(t), such that |x(s) − y(s)| < ε, for every s ∈ V . The relation Rt

is reformulated in the form made precise in the next proposition.

Proposition 1. Let t ∈ T and x, y ∈ X. The following are equivalent:

(i) xRty.
(ii) The function x− y is continuous at the point t and x(t) = y(t).

Proof. Assume that xRty, then the upper envelope |x− y| of x−y at the point
t is 0, that is, |x− y|(t) = 0. If ε > 0, there exists an open neighborhood V

of t such that sups∈V |x(s) − y(s)| < ε, thus |x(s) − y(s)| < ε, for each s ∈ V ,
in particular, |x(t) − y(t)| < ε, hence x(t) = y(t). Furthermore, |(x − y)(s) −
(x − y)(t)| = |(x − y)(s)| < ε, for every s ∈ V , then x − y is continuous at t.
Conversely, suppose that x − y is continuous at t and x(t) = y(t), then given
ε > 0, there exists an open neighborhood V of t such that |x(s)− y(s)| < ε, for
each s ∈ V , then xRty. �

Proposition 2. The relation Rt, just defined, is an equivalence relation in the
space X.

Proof. The relation Rt is clearly reflexive and symmetric. Let x, y, z ∈ X be
such that xRty and yRtz, then

inf
V ∈V(t)

sup
s∈V

|x(s)− y(s)| = 0 = inf
V ∈V(t)

sup
s∈V

|y(s)− z(s)|.



6 R. GARCÍA, E. REYES AND J. VARELA

Given ε > 0, there exists an open neighborhood V of t such that |x(s)−y(s)| <
ε/2 and |y(s)−z(s)| < ε/2, for every s ∈ V , it follows that sups∈V |x(s)−z(s)| 6
ε, therefore xRtz. �

An alternative, and now justified, notation for the relation Rt defined in X

is ≡t.

Definition 6. For every t ∈ T , denote by Et the quotient set of X module
the equivalence relation ≡t, that is, Et = X/Rt = X/ ≡t and for each x ∈ X,
denote by [x]t the equivalence class of x module ≡t.

Proposition 3. The relation ≡t is compatible with operations in X, in the
following sense:

(a) If x, y, u, v ∈ X are such that x ≡t u and y ≡t v, then x + y and u + v

belong to X and x + y ≡t u + v.
(b) If x, u ∈ X are such that x ≡t u and if f is a non-negative bounded

continuous real valued function defined in T , then fx and fu belong
to X and fx ≡t fu.

Proof. Let x, y, u, v ∈ X, x ≡t u, and y ≡t v, then the functions x − u and
y − v are continuous at t and x(t) − u(t) = y(t) − v(t) = 0, thus (x + y) −
(u + v) = (x − u) + (y − v) is also a continuous function at t and x(t) +
y(t) = u(t) + v(t), hence x + y ≡t u + v. Let s ∈ T and ε > 0 be given,
δ > 0 be such that δ(δ + f(s) + x(s)) < ε and V be an open neighborhood
of s such that x(r) < x(s) + δ and |f(r) − f(s)| < δ, for each r ∈ V , then
f(r)x(r) < (f(s) + δ)(x(s) + δ) = f(s)x(s) + δ(δ + f(s) + x(s)) < f(s)x(s) + ε,
thus fx ∈ X. It is apparent that fx − fu = f(x − u) is also continuous at t

and that f(t)x(t) = f(t)u(t), hence fx ≡t fu. �

Definition 7. Let x, y ∈ X, α ≥ 0 be a non negative real number and f

be a non negative bounded continuous real valued function defined in T . The
following define operations between equivalent classes module ≡t.

a) [x]t + [y]t := [x + y]t,
b) α[x]t := [αx]t and
c) f [x]t := [fx]t.

By the preceding proposition, these operations, between equivalent classes mod-
ule ≡t, are indeed well defined.
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Proposition 4. Let t ∈ T , x ∈ X, and f be a continuous bounded non
negative function, then [fx]t = [f(t)x]t = f(t)[x]t.

Proof. Since f(t) ≥ 0, by definition, [f(t)x]t = f(t)[x]t. It remains to verify
that f(t)x ≡t fx, indeed, since f is continuous at the point t, given ε > 0,
there exists an open neighborhood W of t such that |f(s)− f(t)| < ε, for every
s ∈ W , then 0 6 sups∈V |f(s)− f(t)| 6 ε. Hence

|f(t)x− fx|(t) = inf
V ∈V(t)

sup
s∈V

|f(t)− f(s)||x(s)| 6

ε inf
V ∈V(t)

sup
s∈V

|x(s)| = ε|x|(t).

It follows that |f(t)x− fx|(t) = 0, therefore f(t)x ≡t fx. �

Proposition 5. Let T be a topological space, t ∈ T and Et be the quotient of
X module ≡t, as defined above, then the function dt : Et×Et −→ R defined by
dt([x]t, [y]t) = |x− y|(t) is a distance function, that is, the fiber Et is a metric
space with respect to dt.

Proof. To show that dt is well defined, take [x]t, [y]t ∈ Et and v ∈ [y]t. Then

dt([x]t, [y]t) = inf
V ∈V(t)

sup
s∈V

|x(s)− y(s)| 6

inf
V ∈V(t)

sup
s∈V

(|x(s)− v(s)|+ |v(s)− y(s)|) 6

inf
V ∈V(t)

sup
s∈V

|x(s)− v(s)|+ inf
V ∈V(t)

sup
s∈V

|v(s)− y(s)| =

dt([x]t, [v]t) + dt([v]t, [y]t) = dt([x]t, [v]t).

By interchanging the roles of y and v, it follows that dt([x]t, [y]t) ≥ dt([x]t, [v]t).
This proves that the definition of dt is independent of the representatives chosen
in the classes [x]t and [y]t. It is obvious that dt is non negative and symmetric.
From the definition of dt, it follows that dt([x]t, [y]t) = 0, if and only if, x ≡t y,
if and only if, [x]t = [y]t, hence dt is reflexive. The triangle inequality is a
direct consequence of the triangle inequality of the absolute value. �

Remark 1. For every pair x, y ∈ X the function d̃ : T −→ R defined by
d̃(t) = dt([x]t, [y]t) = |x− y|(t) is a bounded upper semicontinuous function,
that is, d̃ ∈ X.
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3. The Representation Theorem

As an application of Theorem 1, a metric bundle is contructed whose global
sections represent the bounded upper semicontinous functions defined in the
topological space T .

Theorem 2. Let E =
∐

t∈T Et be the disjoint union of the family (Et)t∈T ,
p : E −→ T be the function defined by p(u) = t, if u ∈ Et, Σ := {x̂ : x ∈ X},
where x̂ : T −→ E, t 7−→ x̂(t) = [x]t and d∗ : E × E −→ [0,+∞] be the
function defined by d∗(u, v) = +∞, if p(u) 6= p(v), and d∗(u, v) = dt(u, v) if
p(u) = p(v) = t. Then (E, p, T ) is a metric bundle, Σ is a full set of global
sections for p and the family of ε-tubes around x̂ �V , where ε > 0, x̂ runs
throughout Σ and V throughout the collection of non empty open subsets of T ,
is a base for the topology of E. Even more, the Gelfand morphism, defined bŷ : X −→ Γ(p), x 7−→ x̂, is an isometry from the space X of all bounded upper
semicontinuous functions onto the space Σ , with respect to the corresponding
sup metrics.

Proof. Since p(u) 6= p(v), if and only if, d∗(u, v) = +∞, and dt = d∗ �Et×Et , it
follows that d∗ is a metric for p and since, for every x ∈ X, p(x̂(t)) = p([x]t) = t,
Σ is a family of selections for p. On the other hand, if u ∈ E and t ∈ T is such
that u ∈ Et, there exist x ∈ X such that u = [x]t. Hence, for every ε > 0,
u ∈ Tε(x̂). Now let x̂, ŷ ∈ Σ and consider ∆ : T −→ [0,+∞], defined by ∆(t) =
d∗(x̂(t), ŷ(t)). For every t ∈ T , p(x̂(t)) = p(ŷ(t)), hence ∆(t) 6= +∞ , for every
t ∈ T , and ∆(t) = d∗(x̂(t), ŷ(t)) = dt(x̂(t), ŷ(t)) = dt([x]t, [y]t) = |x− y|(t),
thus ∆ is an upper semicontinuous function. By Theorem 1, it follows that
E can be equipped with a topology T, with the properties specified in the
statement of the theorem, that is,

(1) the family of subsets of E of the form Tε(x̂Q) is a base of T, where
ε > 0, Q runs throughout of open subsets of T , x̂ throughout Σ and
x̂Q denotes the restriction of α to Q.

(2) every x̂ ∈ Σ is a section and
(3) (E, p, T ) is a bundle of metric spaces.

Let x, y ∈ X, then |x(t)− y(t)| 6 d(x, y), for every t ∈ T , thus sups∈V |x(s)−
y(s)| 6 d(x, y), for every open neighborhood V of t, therefore dt(x̂(t), ŷ(t)) =
|x− y|(t) = infV ∈V(t) sups∈V |x(s)− y(s)| 6 d(x, y). It follows that
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supt∈T dt(x̂(t), ŷ(t)) 6 d(x, y). The converse inequality is immediate, since for
every t ∈ T , |x(t)− y(t)| 6 |x− y|(t) = dt(x̂(t), ŷ(t)). �

Definition 8. The bundle (E, p, T ) given by Theorem 2, will be called the
Bundle of Upper Semicontinuous Functions.

Lemma 1. Let (F, q, T ) be a bundle of metric spaces and Γ(q) its set of all
global sections, let u ∈ F , β ∈ Γ(q) and t ∈ T such that β(t) = u, then
the family {Tε(β �W ) : ε > 0 and W ∈ V(t)} is a fundamental system of
neighborhoods of u = β(t).

Proof. Let Tε(α �V ) be an arbitrary basic neighborhood of u = β(t), then
t ∈ V . To be shown that there exists % > 0 and W ∈ V(t) such that u ∈
T%(β �W ) ⊂ Tε(α �V ). Following C. M. Neira [4], Lemma 1, chapter II, page
15, let δ > 0 be such that d(β(t), α(t)) < δ < ε, then there exists W ∈ V(t)
such that W ⊂ V and d(β(s), α(s)) < δ, for each s ∈ W . Let % = ε − δ and
v ∈ T%(βW ), then d(v, β(p(v)) < %, hence d(v, α(p(v))) < ε. �

The image X̂, of the space X of upper semicontinuous functions under the
Gelfand morphism, x 7−→ x̂, is closed under addition and non negative function
multiplication, as it is made precise in the following proposition.

Proposition 6. Let t ∈ T , x, y ∈ X, α ≥ 0 be a non negative real number
and f be a bounded continuous non negative real valued function, then

(a) (x̂ + ŷ)(t) = (x + y)̂ (t)
(b) αx̂(t) = (αx)̂ (t) and
(c) (fx̂)(t) = (fx)̂ (t)

Proof. Directly, from the definition of pointwise addition and multiplication,
Definition 7 and Proposition 4, it follows that (x̂ + ŷ)(t) = x̂(t) + ŷ(t) =
[x]t + [y]t = [x + y]t = (x + y)̂ (t), αx̂(t) = α[x]t = [αx]t = (αx)̂ (t) and
(fx̂)(t) = f(t)x̂(t) = f(t)[x]t = f [x]t = [fx]t = (fx)̂ (t). �

The property depicted in item (c) of the above proposition, is extended to
arbitrary global sections in Γ(p), in the next lemma.

Lemma 2. Let Γ(p) be the set of all global sections of the Bundle of Upper
Semicontinuous Functions (E, p, T ), let f be a non negative continuous real
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valued function defined in T and σ ∈ Γ(p), then fσ ∈ Γ(p), where (fσ)(t) =
f(t)σ(t) = (f(t)σ)(t), for each t ∈ T .

Proof. Let t ∈ T and let x ∈ X be such that σ(t) = x̂(t), then σ(t) ∈ Tε(x̂),
(fσ)(t) = f(t)σ(t) = f(t)x̂(t) = f(t)[x]t = [fx]t and p((fσ)(t)) = t. Since
σ is continuous at the point t, given ε > 0 and a neighborhood W ∈ V(t),
there exists a neighborhood V ∈ V(t) such that σ(s) ∈ Tδ(x̂ �W ) for each
s ∈ V , where δ is chosen such that (f(t) + δ)δ < ε. Assume that |f(s) −
f(t)| < δ, for each s ∈ V . Then, for every s ∈ V , ds((fσ)(s), (fx)̂ (s)) =
ds((fσ)(s), (fx̂)(s)) = ds(f(s)σ(s), f(s)x̂(s)) = f(s)ds(σ(s), x̂(s)) < (f(t) +
δ)δ < ε. Thus (fσ)(s) ∈ Tε((fx)̂ �W ), whenever s ∈ V , since by Lemma 1
the family {Tε((fx)̂ �W ) : ε > 0 and W ∈ V(t)} is a fundamental system of
neighborhoods for (fx)̂ (t), it follows that fσ is continuous at t. �

Theorem 3. Let T be a compact and completely regular space (non necessarily
Hausdorff), then Σ = Γ(p), that is, every global section, of the Bundle of Upper
Semicontinuous Functions (E, p, T ), is the image by the Gelfand Map ̂ of a
bounded upper semicontinuous function defined in T .

Proof. Let σ ∈ Γ(p). An upper semicontinuous function x ∈ X, such that
x̂ = σ, ought to be found. For each t ∈ T , there exists xt ∈ X such that
σ(t) = x̂t(t). Define x : T −→ R by x(t) = xt(t), for each t ∈ T . This function
is well defined since two upper semicontinuous functions equivalent module ≡t

coincide at the point t. We claim that x is upper semicontinuous. Let ε > 0, by
the upper semicontinuity of xt at t, there exists an open neighborhood V ∈ V(t)
of t such that xt(s) < xt(t) + ε/2, for each s ∈ V , and by the continuity of
the section σ at t, there exists an open neighborhood Q ∈ V(t) such that
σ(s) ∈ Tε/2(x̂t), for each s ∈ Q, that is, ds(σ(s), x̂t(s)) < ε/2, for each s ∈ Q.
Let P = Q ∩ V and s ∈ P , then

|xs(s)− xt(s)| 6 inf
W∈V(s)

sup
r∈W

|xs(r)− xt(r)| = ds(σ(s), x̂t(s)) < ε/2,

consequently xs(s) − xt(t) < ε/2, it follows that, for each s ∈ P , xs(s) <

xt(t) + ε, hence, for each s ∈ P , x(s) < x(t) + ε. This shows that the function
x is upper semicontinuous. It remains to prove that the function x is bounded.
An identical argument does it. Again by the continuity of σ at t, we can
find an open neighborhood Ut ∈ V(t) of t such that, s ∈ Ut implies that
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|xs(s)−xt(s)| < 1, it follows that for each s ∈ Ut, |xs(s)| < 1+|xt(s)| 6 1+Mt,

where Mt is an upper bound of |xt|. By compactess of T , find Ut1 , Ut2 , . . . , Utp ,
open subsets covering T , it follows that, for each s ∈ T , |xs(s)| < 1+max{Mtk

:
k + 1, 2, . . . , p}, that is, x is a bounded upper semicontinuous function. Thus
x̂ = σ and Σ = Γ(p). �

4. properties of the fibers of the Bundle of Upper

Semicontinuous Functions

We now take up the study of the properties of the fibers of the Bundle of Upper
Semicontinuous Functions. They will be shown to be complete and connected
spaces. We begin by recalling a well known property of the spaces of upper
semicontinuous function, namely:

Proposition 7. The spaces X of all bounded upper semicontinuous functions
defined in the space T and Xt of all bounded functious defined in T that are
upper semicontinuous at the point t ∈ T , with the corresponding sup metrics,
are complete metric spaces.

Proof. It is a consequence of the following lemma. �

Lemma 3. Let (xn)n∈N be a sequence of elements of Xt, converging uniformly
to a function x, in an open neighborhood Q of the point t, then x is upper
semicontinuous at t.

Proof. Let a ∈ R and suppose that x(t) < a. Choose ε > 0, such that x(t) <

a−2ε, then there exists p ∈ N such that, |xn(s)−x(s)| < ε, if s ∈ Q and n ≥ p.
In particular, xn(t) < x(t) + ε < a − 2ε + ε = a − ε, for all n ≥ p, it follows
that, for every n ≥ p, there exists Qn ∈ V(t), Qn ⊂ Q, such that xn(s) < a− ε,
for each s ∈ Qn. In particular, xp(s) < a− ε, for every s ∈ Qp ⊂ Q. It follows
that x(s) = x(s) − xp(s) + xp(s) < ε + (a − ε) = a, for each s ∈ Qp, therefore
the function x is upper semicontinuous at t. �

The next lemma plays a crucial role in establishing the completeness of the
the fibers of the Bundle of Upper Semicontinuous Functions.

Lemma 4. Let (E, p, T ) be the Bundle of Upper Semicontinuous Functions
and assume that its base space T is completely regular. Let ε > 0 and let [x]t,
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[y]t ∈ Et be such that dt([x]t, [y]t) < ε, then there exists a function v ∈ X such
that v ∈ [y]t and d(x, v) < ε.

Proof. Let x, y ∈ X, ε > 0. Suppose that dt([x]t, [y]t) < ε. Since dt([x]t, [y]t) =
|x− y|(t) = lim sups→t |x(s) − y(s)|, there exists an open neighborhood V ∈
V(t), of the point t, such that sups∈V |x(s)− y(s)| < ε. Since T is assumed to
be completly regular, there exists a continuous function f : T −→ [0, 1] such
that f(t) = 1 and f(r) = 0, for every r /∈ V . Let v = (1− f)x + fy, then v is
upper semicontinuous and sups∈T |x(s) − v(s)| = sups∈T |f(s)(x(s) − y(s))| =
sups∈V |f(s)(x(s)− y(s))| 6 sups∈V |x(s)− y(s)| < ε, then d(x, v) < ε. On the
other hand, v(t) = x(t)−f(t)x(t)+f(t)y(t) = y(t) and by the continuity of f at
t, given δ > 0, there exists W ∈ V(t) such that if s ∈ W then |1− f(s)| < δ/ε.
Let s ∈ V ∩W , then

|v(s)− y(s)| = |x(s)− f(s)x(s) + f(s)y(s)− y(s)|

= |(1− f(s))(x(s)− (1− f(s))y(s)|

= |1− f(s)||x(s)− y(s)| < δ.

This proves the continuity of v − y at the point t. By Proposition 1, it follows
that v ∈ [y]t.

�

Theorem 4. Let T be a completely regular space and t ∈ T , then the fiber
Et, of the Bundle of Upper Semicontinuous Functions (E, p, T ), is a complete
metric space.

Proof. Let ([xn]t)n be a Cauchy sequence in Et, then there exists a subse-

quence ([yn]t)n of ([xn]t)n such that dt([yn]t, [yn+1]t) <
1
2n

, for every n ∈ N.

Let z1 = y1, since dt([y1]t, [y2]t) <
1
2
, the preceding lemma secures the exis-

tence of a representative z2 ∈ X of [y2]t, such that d(z1, z2) = d(y1, z2) <
1
2
.

Since dt([z2]t, [y3]t) = dt([y2], [y3]t) <
1
22

, there exists a representative z3 ∈ X

of [y3]t, such that d(z2, z3) <
1
22

. The procedure is continued by assuming

that z1, z2, ..., zn−1, zn ∈ X are representatives of [y1]t, [y2]t, ..., [yn−1]t, [yn]t
respectively, such that d(zk, zk+1) <

1
2k

, for k = 1, 2, .., n− 1, then there exists
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a zn+1 ∈ X such that zn+1 ∈ [yn+1]t and d(zn, zn+1) <
1
2n

. If m > n, then

d(zn, zm) 6
m−1∑
k=n

d(zk, zk+1) 6
m−1∑
k=n

1
2k

6
1
2n

∞∑
k=0

1
2k

=
1

2n−1
.

Since X is a complete metric space, there exists z ∈ X such that (zn)n tends
to z, as n tends to infinity. Since dt([yn]t, [z]t) 6 d(zn, z), then [yn]t → [z]t in
Et. This proves that Et is a complete metric space. �

This completeness property of the fibers is an indication that the bundle
(E, p, T ) is a suitable candidate to be the real numbers object in the category
of metric bundles, thus, in a certain sense, it could be viewed as some sort of
semicontinuous continuum. It also enjoys other desirable properties that are
next examined.

Proposition 8. For every t ∈ T , the fiber Et of the Bundle of Upper Semi-
continuous Functions (E, p, T ) is arcwise connected.

Proof. Given [x]t, [y]t ∈ Et, the map ϕ : [0, 1] −→ Et, such that ϕ(ξ) =
ξ[x]t + (1− ξ)[y]t is continuous, indeed,

dt(ϕ(ξ), ϕ(ξo)) = dt(ξ[x]t + (1− ξ)[y]t, ξo[x]t + (1− ξo)[y]t) 6

dt(ξ[x]t+(1−ξ)[y]t, ξo[x]t+(1−ξ)[y]t)+dt(ξo[x]t+(1−ξ)[y]t, ξo[x]t+(1−ξo)[y]t) =

dt([ξx + (1− ξ)y]t, [ξox + (1− ξ)y]t) + dt([ξox + (1− ξ)y]t, [ξox + (1− ξo)y]t) =

|(ξx + (1− ξ)y)− (ξox + (1− ξ)y)|(t)+|(ξox + (1− ξ)y)− (ξox + (1− ξo)y)|(t)

= |(ξ − ξo)x|(t) + |(ξ − ξo)y|(t) = |ξ − ξo|(|x|(t) + |y|(t)).

�

Remark 2. Let Kt := {[α]t : α ∈ R} ⊂ Et be the subset of equivalence classes
of constant functions. Note that Kt coincides with the subset of equivalent
classes of continuous functions at t, in fact, if x : T −→ R is a continuous
function in t, then [x]t = [x(t)]t and therefore [x]t ∈ Kt. Since the function
f : R −→ Kt ⊆ Et defined by f(α) = [α]t is an isometry, then Kt is a connected
subspace of Et.

The local compactness property of the Real Line does not have a a corre-
sponding counterpart in fibers of the Bundle of Upper Semicontinuous Func-
tions, as is shown in the following counterexample.
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Example 1. Take T = [0, 1] and t = 0. For each m ∈ N, the sequence
(amk)k∈N, defined by

amk =
1

k + 1
+

1
2m

(
1
k
− 1

k + 1

)
=

1
2mk

+
2m − 1

2m(k + 1)
,

tends to zero, when k →∞.
For each m ∈ N, let Am = {amk : k ∈ N} ∪ {0} and let χAm

be the
characteristic function of Am.

Let ε > 0 and Vε = {[x]t ∈ Et : dt([0]t, [x]t) 6 ε} be the closed ball of radius
ε around [0]t (class of the function 0, module ≡t) in the fiber Et above t = 0,
then

[ ε

2
χAm

]
0
∈ Vε, for every m ∈ N. Since An ∩ Am = {0}, when n 6= m, it

follows that dt

([ ε

2
χAn

]
t
,
[ ε

2
χAm

]
t

)
=

ε

2
, thus

([ ε

2
χAn

]
0

)
n∈N

is a sequence in

Vε that doesn’t have a convergent subsequence, hence Vε is not a compact set
for any ε > 0, therefore Et is not a locally compact space.

On the other hand, the fibers Et, of the Bundle of Upper Semicontinuous
Functions, can be equipped with a partial order relation:

Definition 9. Let [x]t, [y]t ∈ Et. If for every ε > 0, there exists an open
neighborhood V ∈ V(t) such that x(s) 6 y(s) + ε, for each s ∈ V , we say that
“[x]t is less or equal to [y]t”, in symbols, [x]t 6t [y]t. By [x]t <t [y]t, is meant,
[x]t 6t [y]t but [x]t 6= [y]t.

Proposition 9. The fiber Et, endowed with the relation 6t, defined above, is
a partially ordered set.

Proof. The relation [x]t 6t [y]t does not depend on the representatives of the
classes, in fact, take u, v ∈ X, such that x ≡t u, y ≡t v and let ε > 0, then
there exists Q ∈ V(t) such that x(s) 6 y(s)+ε, for every s ∈ Q, and there exist
functions h, k : T −→ R, continuous at the point t, such that h(t) = k(t) = 0,
x − u = h and y − v = k, then u(s) = x(s) − h(s) 6 y(s) − h(s) + ε =
v(s)−h(s)+k(s)+ε 6 v(s)+3ε, if s ∈ P , for a small enough open neighborhood
P of t, thus the relation 6t is a well defined relation in Et. Reflexivity and
transitivity of 6t follow from the definition. Assume that [x]t 6t [y]t and
[y]t 6t [x]t and let ε > 0, then there exists an open neighborhoods V of t such
that x(s) 6 y(s)+ ε and y(s) 6 x(s)+ ε, for every s ∈ V , thus |x(s)−y(s)| 6 ε,
for every s ∈ V , hence x − y is continuous at t and x(t) = y(t), therefore
[x]t = [y]t. Hence 6t is a partial order in Et. �
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Remark 3. In general 6t is not a total order in Et, for instance, let T = [−1, 1]
and t = 0, then the class of the function ϑ : T −→ R, such that ϑ(s) = −1, if
s < 0, and ϑ(s) = 1, if 0 6 s, and the class of the constant function 0 are not
comparable.

Let x, y, z, w ∈ X be such that [x]t 6t [y]t and [z]t 6t [w]t, then, obviously,
[x + z]t 6t [y + w]t, also if α ≥ 0 is a non negative real number, then α[x]t 6t

α[y]t.

Given x, y ∈ X, by defining x 6 y, if and only if, for each s ∈ T , x(s) 6 y(s),
it readily follows that the canonical map, x 7−→ [x]t : Xt −→ E, is increasing.

Remark 4. Let a ∈ X be a bounded upper semicontinuous function in T and
let ε > 0. Denote by Sε([a]t) the open ball with center [a]t and radius ε, then
Sε([a]t) ⊂ ([a− ε]t, [a+ ε]t), in fact: dt([x]t, [a]t) < ε, if and only if, there exists
δ > 0 such that dt([x]t, [a]t) 6 ε−δ, if and only if, |x− a|(t) 6 ε−δ, if and only
if, infV ∈V(t) sups∈V |x(s)− a(s)| 6 ε− δ, hence there exists V ∈ V(t) such that
a(s)− ε + δ 6 x(s) 6 a(s) + ε− δ, for all s ∈ V , then [a− ε]t <t [a− ε + δ]t 6t

[x]t 6t [a + ε− δ]t <t [a + ε]t.
However, the converse inclusion does not hold in general, indeed, let T =
[−1, 1], t = 0 and ϑ : T −→ R be as in the previous remark, let a = 0 be
the constant function zero, and take ε = 1, then ([a − ε]t, [a + ε]t) * Sε([a]t),
because [ϑ]t ∈ ([a− ε]t, [a + ε]t), but [ϑ]t /∈ Sε([a]t), since dt([ϑ]t, [a]t) = 1.

Nevertheless by turning on closed balls and closed intervals, the identity of
the two sets is obtained.

Lemma 5. Let T be a topological space, (E, p, T ) be the Bundle of Upper
Semicontinuous Functions over T , a ∈ X be a bounded upper semicontinuous
function at a point t ∈ T and let ε > 0, then the closed ball, with center a

and radius ε, relative to the metric dt of the fiber Et, equals the closed interval
with endpoints [a− ε]t, [a + ε]t, in symbols: Sε

[
[a]t

]
=

[
[a− ε]t, [a + ε]t

]
Proof.

[x]t ∈ Sε

[
[a]t

]
⇐⇒ dt([x]t, [a]t) 6 ε ⇐⇒

|x− a| 6 ε ⇐⇒ inf
V ∈V(t)

sup
s∈V

|x(s)− a(s)| 6 ε ⇐⇒

(∀δ > 0)( inf
V ∈V(t)

sup
s∈V

|x(s)− a(s)| < ε + δ) ⇐⇒
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(∀δ > 0)(∃Vδ ∈ V(t))( sup
s∈Vδ

|x(s)− a(s)| 6 ε + δ) ⇐⇒

(∀δ > 0)(∃Vδ ∈ V(t))(∀s ∈ Vδ)(a(s)− ε− δ 6 x(s) 6 a(s) + ε + δ) ⇐⇒

[a− ε]t 6t [x]t 6t [a + ε]t ⇐⇒ [x]t ∈
[
[a− ε]t, [a + ε]t

]
.

Then Sε

[
[a]t

]
=

[
[a− ε]t, [a + ε]t

]
. �

Proposition 10. In the fibers of the Bundle of Upper Semicontinuous Func-
tions (E, p, T ) the order topology is strictly finer than the metric topology.

Proof. Let a ∈ X be a bounded upper semicontinuous function in T and ε > 0,
then the open ball Sε([a]t) is open in the order topology, indeed, let [b]t ∈
Sε([a]t) and let ζ > 0 be such that dt([a]t, [b]t) < ε−ζ, then

[
[b−ζ]t, [b+ζ]t

]
=

Sζ

[
[b]t

]
⊂ Sε([a]t), thus ([b − ζ]t, [b + ζ]t) ⊂ Sε([a]t). Hence , in the fiber Et,

the order topology is finer than the metric topology.
On the other hand, let T = [−1, 1] be the closed real interval with endpoints
−1, 1, let t = 0 and ϑ ∈ X be as in Remark 3, then it is apparent that [ϑ]t
belongs to the open interval ([−c]t, [c]t), where c ∈ X is the constant function 1,
but, for each ε > 0, Sε([ϑ]t) * ([−c]t, [c]t), that is, [ϑ]t is not an interior point
of ([−c]t, [c]t) for the metric dt, then ([−c]t, [c]t) is not an open subset with
respect to the metric topology, therefore, in each fiber Et, the order topology
is strictly finer than the metric topology. �

Lemma 6. Let a, b, c ∈ X such that [a]t 6t [b]t 6t [c]t, then |b− a|(t) 6

|c− a|(t).

Proof. By contradiction, assume that |c− a|(t) < |b− a|(t). Take ε > 0 such
that |c− a|(t) < |b− a|(t)− ε, then

inf
V ∈V(t)

sup
s∈V

|c(s)− a(s)| < |b− a|(t)− ε, then

there exists Vo ∈ V(t) such that sup
s∈Vo

|c(s)− a(s)| < |b− a|(t)− ε =⇒

(∃Vo ∈ V(t))(∀s ∈ Vo)(|c(s)− a(s)| < |b− a|(t)− ε) =⇒

(∃Vo ∈ V(t))(∀s ∈ Vo)(|c(s)− a(s)| < inf
W∈V(t)

sup
r∈W

|b(r)− a(r)| − ε) =⇒

(∃Vo ∈ V(t))(∀s ∈ Vo)(∀W ∈ V(t))(|c(s)− a(s)| < sup
r∈W

|b(r)− a(r)| − ε) =⇒

(∃Vo ∈ V(t))(∀s ∈ Vo)(∀W ∈ V(t))(∃w ∈ W )
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(|c(s)− a(s)| < |b(w)− a(w)| − ε) =⇒

(∀W ∈ V(t))(∃w ∈ W )(|c(w)− a(w)| < |b(w)− a(w)| − ε) =⇒

(∀W ∈ V(t))(∃w ∈ W )(c(w)− a(w) < |b(w)− a(w)| − ε) =⇒

(∀W ∈ V(t))(∃w ∈ W )( either c(w) < b(w)− ε or b(w) + c(w) < 2a(w)− ε),

by taking W small enough, one contradicts [b]t 6 [c]t or [2a]t 6 [b + c]t. �

The following result deals with a partial completeness property of the fibers
of the Bundle of Upper Semicontinuous Functions

Proposition 11. Let A be a non empty linearly ordered subset of Et having
an upper bound [b]t ∈ Et, then A has a least upper bound in Et.

Proof. Let [a]t ∈ A. Define the closed interval [[ao]t, [bo]t] := [[a]t, [b]t], and

if
[
[
a + b

2
]t, [b]t

]
∩ A 6= ∅, define F1 = [[a1]t, [b1]t] := [[

a + b

2
]t, [b]t], or else,

F1 := [[a]t, [
a + b

2
]t]. If [[

a1 + b1

2
]t, [b1]t] ∩ A 6= ∅, take F2 = [[a2]t, [b2]t] :=

[[
a1 + b1

2
]t, [b1]t], or else, F2 := [[a1]t, [

a1 + b1

2
]t], and so on. The sequence of

diameters dt([an]t, [bn]t) =
1
2n

dt([a]t, [b]t) tends to zero, as n tends to infinity,

then
⋂
{Fn : n = 1, 2, . . . } reduces to a single point [x]t (obtained as the limit of

any sequence ([xn]t)n, satisfying the condition xn ∈ Fn, for all n, which secures
that the sequence is a Cauchy sequence and also that x ∈ Fn = Fn, for each n.)
Since for each n, [bn] is an upper bound of A, so is [x]t, indeed, assume that is
not the case, then there is [ã]t ∈ A, such that [x]t <t [ã]t, then dt([x]t, [ã]t) > 0,
take ε̃ = dt([x]t, [ã]t) > 0 and ñ such that dt([bñ]t, [x]t) < ε̃, by the preceding
lemma, [x]t <t [ã]t 6t [bm]t implies that dt([bm]t, [x]t) ≥ dt([ã], [x]), for each
m, which is a contradiction. Furthermore, for each ε > 0, there exists Fn ⊂
([x− ε]t, [x + ε]t), therefore [x]t = supA. �
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18 R. GARCÍA, E. REYES AND J. VARELA

[4] C. M. Neira, Sobre Campos de Espacios Uniformes, Tesis de Doctorado, Universidad

Nacional de Colombia, Bogotá, 2000.
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Personal note of the third author. No doubt Jairo Charris was one of the best
Colombian mathematicians of the 20th century. His legacy is vast and precious.
We remember him not only for his talent, diligence and passion but also for his
noble character. He was extremely generous, compassionate and tolerant, still
he did abhor those “flagrant inconsistencies” and the abuse of power.
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