The Set of First-Order Differential Equations with Periodic or Bounded Solutions

Jose L. Bravo¹, Manuel Fernández^{1,*}, Antonio Tineo^{2,**}

¹Departamento de Matemáticas, Universidad de Extremadura, 06071-Badajoz, Spain

²Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, 5101-Mérida, Venezuela

 $e\text{-mail: } joseluisb@wanadoo.es, \ ghierro@unex.es, \ atineo@ciens.ula.ve$

(Research announcement presented by Jesús M.F. Castillo)

AMS Subject Class. (2000): 34D05

Received January 11, 2001

The objective of this note is the announcement of two results of Ambrosetti-Prodi type concerning the existence of periodic (respectively bounded) solutions of the first order differential equation x' = f(t, x)

1. PERIODIC SOLUTIONS

Let us fix a real number T > 0 and define C as the set of all continuous functions $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that:

- A_1) f(t, x) is T-periodic in t.
- A_2) f(t, x) is locally Lipschitz continuous in x.
- A₃) f(t, x) is concave in x and there exists $t_0 = t_0(f) \in \mathbb{R}$ such that $f(t_0, x)$ is strictly concave in x.
- A_4) $\lim_{|x|\to\infty} f(t,x) = -\infty$ uniformly on $t \in \mathbb{R}$.

In \mathcal{C} we shall consider the topology of uniform convergence on compact sets. We also define \mathcal{C}_0 as the subset of \mathcal{C} consisting of all points f such that the equation

$$x' = f(t, x) \tag{1}$$

has a unique T-periodic solution.

^{*}Partially supported by D.G.E.S. PB96-1462

^{**}Partially supported by CDCHT, Universidad de los Andes

THEOREM 1. The map $H : \mathcal{C}_0 \times \mathbb{R} \to \mathcal{C}$, H(g, a) = g + a, is a homeomorphism onto \mathcal{C} . Moreover, if $f \in H(\mathcal{C}_0 \times (-\infty, 0))$ (resp. $f \in H(\mathcal{C}_0 \times (0, \infty))$) then, Eq. (1) has exactly two (resp. zero) *T*-periodic solutions.

To prove Theorem 1 we first use the arguments in [1] to obtain for every $f \in \mathcal{C}$ the existence of a (unique) real number $\lambda_0 = \lambda_0(f)$ such that equation

$$x' = f(t, x) + \lambda \tag{2}$$

has exactly zero, one or two *T*-periodic solutions according to $\lambda < \lambda_0$, $\lambda = \lambda_0$ or $\lambda > \lambda_0$. Thus we prove that $\lambda_0(f)$ depends continuously on f, with respect to the topology of the uniform convergence on compact sets.

THEOREM 2. Let $X \subset C$ be an affine manifold such that $X + \mathbb{R} = X$. Then $X_0 := X \cap C_0$ is the graph of a continuous function $\mu : F \to \mathbb{R}$, defined on a closed hyperplane F of X.

2. Bounded separated solutions

Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function. We say that f is *s*-concave in x if given $R, \epsilon > 0$, there exists a continuous function $b : \mathbb{R} \to [0, \infty)$ such that $A_L(b) > 0$ and

$$f(t, (1-\lambda)x + \lambda y) \ge (1-\lambda)f(t, x) + \lambda f(t, y) + \lambda(1-\lambda)b(t)$$
(3)

if $|x-y| \ge \epsilon$, $|x|, |y| \le R$, $\lambda \in [0,1]$, and $t \in \mathbb{R}$.

Here $A_L(b)$ denotes the lower average of b in the sense of [2]. That is,

$$A_L(b) = \lim_{r \to +\infty} \inf \left\{ \frac{1}{t-s} \int_s^t b(\tau) d\tau : t-s \ge r \right\}.$$
 (4)

We say that f is *locally equicontinuous in* x if for each compact set K of \mathbb{R} and each $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(t,x) - f(t,y)| \le \epsilon$$
 if $t \in \mathbb{R}, x, y \in K, |x-y| \le \delta$.

We define \mathcal{D} as the subset of all continuous functions $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that:

- H_1) f is locally equicontinuous in x and bounded on $\mathbb{R} \times K$ for any compact subset K of \mathbb{R} .
- H_2) f(t, x) is locally Lipschitz continuous in x.

- H_3) f(t, x) is s-concave in x.
- H_4) $\lim_{|x|\to\infty} f(t,x) = -\infty$ uniformly on $t \in \mathbb{R}$.

We define \mathcal{D}_+ (resp. \mathcal{D}_-) as the subset of \mathcal{D} consisting of all points f such that the equation

$$x' = f(t, x) \tag{5}$$

has two (resp. zero) bounded solutions $u_0 < u_1$ and $\inf(u_1 - u_0) > 0$. We also define \mathcal{D}_0 as the subset of \mathcal{D} consisting of all points f such that Eq. (5) has a bounded solution and $\inf(|u - v|) = 0$ if u, v are bounded solutions of this equation.

THEOREM 3. Theorems 1 and 2 remain true if we replace \mathcal{C} by \mathcal{D} .

The proof uses theorem 3.7 of [3] that with this notation can be stated as follows:

Let $f \in \mathcal{D}$. Then there exists $\lambda_0 = \lambda_0(f)$ such that $f + \lambda \in \mathcal{D}_+$ for all $\lambda > \lambda_0, f + \lambda_0 \in \mathcal{D}_0$ and $f + \lambda \in \mathcal{D}_-$ for all $\lambda < \lambda_0$.

References

- MAWHIN, J. First order ordinary differential equations with several periodic solutions, J. Appl. Math. Phys., 38 (1987), 257-265.
- [2] TINEO, A., An iterative scheme for the N-competing species problem, J. Differential Equations, 116 (1995), 1-15.
- [3] TINEO, A. First order ordinary differential equations with several bounded separate solutions, J. Math. Anal. Appl., 225, (1998), 359-372.