The Set of First-Order Differential Equations with Periodic or Bounded Solutions

Jose L. Bravo ${ }^{1}$, Manuel Fernández ${ }^{1, *}$, Antonio Tineo ${ }^{2, * *}$
${ }^{1}$ Departamento de Matemáticas, Universidad de Extremadura, 06071-Badajoz, Spain
${ }^{2}$ Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, 5101-Mérida, Venezuela
e-mail: joseluisb@wanadoo.es, ghierro@unex.es, atineo@ciens.ula.ve

(Research announcement presented by Jesús M.F. Castillo)

AMS Subject Class. (2000): 34D05
Received January 11, 2001

The objective of this note is the announcement of two results of AmbrosettiProdi type concerning the existence of periodic (respectively bounded) solutions of the first order differential equation $x^{\prime}=f(t, x)$

1. Periodic solutions

Let us fix a real number $T>0$ and define \mathcal{C} as the set of all continuous functions $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that:
$\left.A_{1}\right) f(t, x)$ is T-periodic in t.
$\left.A_{2}\right) f(t, x)$ is locally Lipschitz continuous in x.
$\left.A_{3}\right) f(t, x)$ is concave in x and there exists $t_{0}=t_{0}(f) \in \mathbb{R}$ such that $f\left(t_{0}, x\right)$ is strictly concave in x.
$\left.A_{4}\right) \lim _{|x| \rightarrow \infty} f(t, x)=-\infty$ uniformly on $t \in \mathbb{R}$.
In \mathcal{C} we shall consider the topology of uniform convergence on compact sets. We also define \mathcal{C}_{0} as the subset of \mathcal{C} consisting of all points f such that the equation

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{1}
\end{equation*}
$$

has a unique T-periodic solution.

[^0]Theorem 1. The map $H: \mathcal{C}_{0} \times \mathbb{R} \rightarrow \mathcal{C}, H(g, a)=g+a$, is a homeomorphism onto \mathcal{C}. Moreover, if $f \in H\left(\mathcal{C}_{0} \times(-\infty, 0)\right)$ (resp. $\left.f \in H\left(\mathcal{C}_{0} \times(0, \infty)\right)\right)$ then, Eq. (1) has exactly two (resp. zero) T-periodic solutions.

To prove Theorem 1 we first use the arguments in [1] to obtain for every $f \in \mathcal{C}$ the existence of a (unique) real number $\lambda_{0}=\lambda_{0}(f)$ such that equation

$$
\begin{equation*}
x^{\prime}=f(t, x)+\lambda \tag{2}
\end{equation*}
$$

has exactly zero, one or two T-periodic solutions according to $\lambda<\lambda_{0}, \lambda=\lambda_{0}$ or $\lambda>\lambda_{0}$. Thus we prove that $\lambda_{0}(f)$ depends continuously on f, with respect to the topology of the uniform convergence on compact sets.

Theorem 2. Let $X \subset \mathcal{C}$ be an affine manifold such that $X+\mathbb{R}=X$. Then $X_{0}:=X \cap \mathcal{C}_{0}$ is the graph of a continuous function $\mu: F \rightarrow \mathbb{R}$, defined on a closed hyperplane F of X.

2. Bounded separated solutions

Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. We say that f is s-concave in x if given $R, \epsilon>0$, there exists a continuous function $b: \mathbb{R} \rightarrow[0, \infty)$ such that $A_{L}(b)>0$ and

$$
\begin{equation*}
f(t,(1-\lambda) x+\lambda y) \geq(1-\lambda) f(t, x)+\lambda f(t, y)+\lambda(1-\lambda) b(t) \tag{3}
\end{equation*}
$$

if $|x-y| \geq \epsilon,|x|,|y| \leq R, \lambda \in[0,1]$, and $t \in \mathbb{R}$.
Here $A_{L}(b)$ denotes the lower average of b in the sense of [2]. That is,

$$
\begin{equation*}
A_{L}(b)=\lim _{r \rightarrow+\infty} \inf \left\{\frac{1}{t-s} \int_{s}^{t} b(\tau) d \tau: t-s \geq r\right\} . \tag{4}
\end{equation*}
$$

We say that f is locally equicontinuous in x if for each compact set K of \mathbb{R} and each $\epsilon>0$ there exists $\delta>0$ such that

$$
|f(t, x)-f(t, y)| \leq \epsilon \quad \text { if } t \in \mathbb{R}, x, y \in K,|x-y| \leq \delta
$$

We define \mathcal{D} as the subset of all continuous functions $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that:
$\left.H_{1}\right) f$ is locally equicontinuous in x and bounded on $\mathbb{R} \times K$ for any compact subset K of \mathbb{R}.
$\left.H_{2}\right) f(t, x)$ is locally Lipschitz continuous in x.
$\left.H_{3}\right) f(t, x)$ is s-concave in x.
$\left.H_{4}\right) \lim _{|x| \rightarrow \infty} f(t, x)=-\infty$ uniformly on $t \in \mathbb{R}$.
We define \mathcal{D}_{+}(resp. \mathcal{D}_{-}) as the subset of \mathcal{D} consisting of all points f such that the equation

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{5}
\end{equation*}
$$

has two (resp. zero) bounded solutions $u_{0}<u_{1}$ and $\inf \left(u_{1}-u_{0}\right)>0$. We also define \mathcal{D}_{0} as the subset of \mathcal{D} consisting of all points f such that Eq. (5) has a bounded solution and $\inf (|u-v|)=0$ if u, v are bounded solutions of this equation.

Theorem 3. Theorems 1 and 2 remain true if we replace \mathcal{C} by \mathcal{D}.
The proof uses theorem 3.7 of [3] that with this notation can be stated as follows:

Let $f \in \mathcal{D}$. Then there exists $\lambda_{0}=\lambda_{0}(f)$ such that $f+\lambda \in \mathcal{D}_{+}$for all $\lambda>\lambda_{0}, f+\lambda_{0} \in \mathcal{D}_{0}$ and $f+\lambda \in \mathcal{D}_{-}$for all $\lambda<\lambda_{0}$.

References

[1] Mawhin, J. First order ordinary differential equations with several periodic solutions, J. Appl. Math. Phys., 38 (1987), 257-265.
[2] Tineo, A., An iterative scheme for the N-competing species problem, J. Differential Equations, 116 (1995), 1-15.
[3] Tineo, A. First order ordinary differential equations with several bounded separate solutions, J. Math. Anal. Appl., 225 , (1998), 359-372.

[^0]: *Partially supported by D.G.E.S. PB96-1462
 **Partially supported by CDCHT, Universidad de los Andes

