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1. Introduction

Usually, in homotopy theory with cofibrations, cofibrant objects and a sus-
pension functor are necessary to obtain homotopy groups and exact sequences
of them. In this sense H.J. Baues defines in his book “Algebraic Homotopy”
[1] the concept of “Category with a Natural Cylinder”. His definition requires
the existence of initial object, conservation of it by cylinder functor and that
objects be cofibrant. The latter is a necessary condition for the “Relative
Cylinder Axiom”.

The homotopy theory obtained here is called “generalized” since initial and
cofibrant objects are not necessary axioms to build the homotopy groups and
exact sequences of them. Also, the term “generalized” can be understood in
the sense of the Generalized Homology theories since the homotopy groups are
based on any morphism not necessary the zero morphism, obtaining different
groups according to the base morphism.

The concept of Generalized Homotopy in categories with a natural cylin-
der is obtained by suppressing the above mentioned conditions, as the relative
cylinder axiom can be described in another way without using cofibrant ob-
jects.

The interchange axiom originates transformations as described by Kamps
and Porter [4], similar to the product of the double into the simple cylinder
of a topological space. This homotopy theory replaces the interchange axiom
by products of this type.
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279
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Baues in [2] uses several base points to obtain proper homotopy theories:
“Spaces under a tree correspond to pointed spaces in ordinary topology”. This
idea of point can be generalized for any object. Pointed objects are necessary
to obtain homotopy groups. Thus, this theory is more general.

Exact sequences of generalized homotopy groups are built. Moreover, clas-
sic homotopy groups based on the zero morphism and exact sequences of them
are a particular case of the generalized homotopy groups and their sequences.

2. Category with a generalized natural cylinder

In a category with a natural cylinder as described by Baues, is possible
to obtain transformations χ0 and χ1 verifying the same properties on the
faces of the cylinder that products in the topological cylinder: χ0(x, t, s) =
(x, 1− (1− t)(1−s)) and χ1(x, t, s) = (x, ts). On the other hand the push out
diagram given by Baues in the relative cylinder axiom (I4) can be also defined
without using the initial object. So, the following definition generalizes the
concept of natural cylinder for a category:

Definition 1. A generalized I-Category is a category C with a class of
morphisms called cofibrations, a functor I : C → C, which will be called the
cylinder functor, together with natural transformations i0, i1 : 1C → I and
p : I → 1C verifying the axioms GI1, GI2, GI3, GI4 and GI5:

(GI1) Cylinder Axiom. piε = 1C, ε ∈ {0, 1}.

(GI2) Push out Axiom. For any pair of morphisms X
f
← B

i
½ A, where

i is a cofibration, there exists the push out square

B

f

²²

// i
// A

f

²²

X // ī
// X ∪B A

(1)

and ī is also a cofibration. Any push out square (1) is carried by the cylinder
functor I into a push out square.

(GI3) Cofibration Axiom. For every object X, 1X , i0X and i1X are
cofibrations, the composition of cofibrations is a cofibration and every cofi-
bration i : B ½ A has the Homotopy Extension Property (HEP), namely: if

(B
iε→ IB

H
→ X) = (B

i
½ A

f
→ X), with ε ∈ {0, 1}, is a commutative square,

then there exists a morphism F : IA→ X making commutative the following
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diagram

B

iε
²²

i
// A

iε
²²

f

»»
11

11
11

11
11

11
11

1

IB
Ii

//

H
**UUUUUUUUUUUUUUUUUUUUU IA

F

!!

X

that is, with FIi = H and Fiε = f .

(GI4) Relative Cylinder Axiom. For any cofibration i : B ½ A, the
induced morphism

i1 = {Ii, i0, i1} : IB ∪B A ∪B A→ IA

is also a cofibration.

(GI5) Products Axiom. There are natural transformations χ0, χ1 : II →
I verifying

χε(Iiν) = χεiν =

{
1 , ν = ε

iνp , ν 6= ε
and pχε = p2;

with ν, ε ∈ {0, 1}.

IB ∪B A ∪B A is also obtained interchanging in the definition iε by iν ,
hence {Ii, i1} is also cofibration.

Theorem 1. Given a cofibration i : B½ A, the following statements are
equivalent:

a) i verifies HEP.

b) {Ii, iε} : IB ∪B A→ IA are sections for ε ∈ {0, 1}.

The HEP will be the main tool used along this paper to obtain homotopies.
The relative cylinder for a cofibration is used to define homotopy:

Definition 2. Let i : B ½ A a cofibration, and let f0, f1 : A → X be
morphisms. We say that f0 is homotopic to f1 relative to the cofibration i,
if there exists a morphism F : IA → X making commutative the following
triangle
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IB ∪B A ∪B A

{f0ip,f0,f1}

²²

i1
// IA

X
uu

F

kkkkkkkkkkkkkkkkkk

in such a case we write F : f0 ' f1 rel i.

By the relative cylinder axiom, it is defined in = (in−1)1 with i0 = i. If

fi = jg then Infin = jn(Ing ∪ In−1f ∪ In−1f∪ (2n...... ∪In−1f). Moreover, if
fi = jg is a push out then so is the second commutative square.

For any cofibration i : B ½ A and morphism u : B → X, the homotopy
relation relative to i is an equivalence relation on the set Hom(A,X)u(i) =
{f ∈ Hom(A,X)/fi = u} compatible with the composition of morphisms:

[A,X]u(i) = Hom(A,X)u(i)/ '.

If F : f0 ' f1 rel i then hF : hf0 ' hf1 rel i.

If fi = jg and H : h0 ' h1 rel j then HIf : h0f ' h1f rel i.

If fi = jg is a push out diagram: h0 ' h1 rel j if and only if h0f '
h1f rel i.

Proposition 1. Given a cofibration i : B ½ A every morphism H :
IB → X induces a bijection H# : [A,X]Hiε(i) → [A,X]Hiν(i) defined by
H#([f ]) = [Fiν ], where F : IA→ X is any morphism such that FIi = H and
Fiε = f , which exists by (HEP) ; ε, ν ∈ {0, 1}, ε 6= ν.

3. Generalized Homotopy Groups

First one defines the homotopy groupoids of an object X relative to a
cofibration i : B½ A and further one obtains the homotopy groups based on
a morphism h : A→ X relative to the cofibration i.

Given a cofibration i : B ½ A, the sets Hi(f0, f1) = [IA,X]{f0ip,f0,f1}(i
1),

where f0, f1 : A→ X, and the push out diagram

IB ∪B A ∪B A

{ip,1}∪1

²²

i1
// IA

{ip,1}∪1=ω
²²

A ∪B A
i1={j0,j1}

// Ii
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are used to obtain the mentioned groupoid. By HEP there is ν ′ : II i → I i∪AI
i

such that ν ′i0 = j̃0 : I i → I i ∪A I
i (inclusion in the second component of the

union) and ν ′I{j0, j1} = ω ∪ j1p. Thus

ν∗ = (ν ′i1)
∗ : [I i ∪A I

i, X]{f0,f1}(j1∪j1) → [I i, X]{f0,f1}({j0,j1})

is a bijection for all object X and morphisms f0, f1 : A → X. Using ν∗, the
following theorem can be proved.

Theorem 2. Hi(X) is a groupoid whose objects are the elements of
Hom(A,X); morphisms from f0 to f1, the elements of Hi(f0, f1); identity
for f , [fp]; inverse of [F ] ∈ Hi(f0, f1), [{{f0, f1, F}, {f0, f0, f0p}}νω] and if
[F ] ∈ Hi(f0, f1), [G] ∈ Hi(f1, f2), the composed

[F ] ∗ [G] = [{{{f0, f1, F}, {f0, f0, f0p}}ν, {f1, f2, G}}νω].

Let us remark that, by Proposition 1, multiplication on the groupoid does
not depend on the choice of the morphism ν ′.

Definition 3. Given a cofibration i : B½ A and a morphism h : A→ X,
the nth-homotopy group, n ≥ 1, of X based on h relative to i, is defined by
πin(X,h) = Hin−1(hpn−1, hpn−1).

By the above definition πin(X,h) = πi
s

n−s(X,hp
s), and by the properties

given to the end of the section 2:

Every morphism f : X → Y induces a homomorphism of groups f∗ :
πin(X,h)→ πin(Y, fh).

Every commutative square fi = jg induces a homomorphism of groups
(Inf)∗ : πjn(X,h)→ πin(X,hf). If the commutative square is a push out
then (Inf)∗ is an isomorphism.

4. Exact sequences of generalized homotopy groups

Given a category C, the full subcategory Cof C of Pair C whose objects
are cofibrations, is used to define homotopy groups in the category of pairs.
f : Y ½ X will be the associated cofibration of the pair (X,Y ) along this
section.

Theorem 3. If C is a generalized I-Category then so is Cof C, with
(u, v) : (X,Y )→ (X ′, Y ′) cofibration if and only if v and {f ′, u} : Y ′ ∪Y X →
X ′ are cofibrations in C.
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Given a cofibration (u, v) : (X,Y ) → (X ′, Y ′), for any pair (X ′′, Y ′′), the
homotopy relation relative to (u, v) and the multiplication in the groupoid
H(u,v)(X

′′, Y ′′) are related with the respective ones in C:

If (F,G) : (f0, g0) ' (f1, g1) rel (u, v) then F : f0 ' f1 rel u and
G : g0 ' g1 rel v.

[F0, G0] ∗ [F1, G1] = [F0 ∗ F1, G0 ∗G1].

Given an object A in C the category of the objects pointed by A, C
∗A,

has triples (j,X, q) as objects, where j : A → X is cofibration with qj = 1;
and f : X → X ′ verifying fj = j′, q′f = q as morphisms from (j,X, q) to
(j′, X ′, q′).

Definition 4. The cone of a pointed object (j,X, q), CX, is defined by
the push out square

IA ∪A X ∪A X

{jp,jq,1}

²²

j1
// IX

{jp,jq,1}=ρ
²²

X
j1=k

// CX

In this way the associated cofibration to the pair (CX,X) is k.

Given a morphism f : (j,X, q)→ (j ′, X ′, q′), Cf = f ∪ If : CX → CX ′.

If f is cofibration then so is {Cf, k} since ρf 1
(1)
= {Cf, k}{fρ, kj ′q′, k} is a

push out diagram. Hence (Cf, f) : (CX,X)→ (CX ′, X ′) is also cofibration.

Given a cofibration i : B ½ A, then each in is actually a morphism in
C

∗A, in : (l0i
n−1
0 , IJ ∪J I

n−1A ∪J I
n−1A, pn−1r) → (in0 , I

nA, pn) with J =
domain in−1, l0 : In−1A→ IJ ∪J I

n−1A ∪J I
n−1A is the induced cofibration

in the first In−1A and r = {in−1p, 1, 1} : IJ ∪J I
n−1A ∪J I

n−1A→ In−1A.

Definition 5. The (n + 2)th-homotopy group relative to a cofibration
i : B ½ A of the pair (X,Y ) based on a morphism h : A → Y is defined by

πin+2((X,Y ), h) = π
(Cin,in)
1 ((X,Y ), ({fhpn, fhpn+1}, hpn)) for n ≥ 1.

Theorem 4. There is an isomorphism of groups

α : πin+2(X, fh)→ π
({Cin,k},1)
1 ((X,Y ), ({fhpn, fhpn+1}, hpn)).
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Theorem 5. The sequence

...
j2
→ πi4((X,Y ), h)

δ
→ πi3(Y, h)

f∗
→ πi3(X, fh)

j1
→

j1
→ πi3((X,Y ), h)

δ
→ πi2(Y, h)

f∗
→ πi2(X, fh).

is exact; where f∗([F ]) = [fF ], δ([F,G]) = [G] and jn([G]) = [G′, hpn+1] with
G′ the induced morphism by G in the push out generated by (1) for f = in:
Iρin+2 = {Cin, k}1(I{in+1ρ, kin0p

n, k} ∪ ρ ∪ ρ).

This sequence is denominated homotopy sequence associated to the pair
(X,Y ) based on the morphism h relative to the cofibration i. The exact
sequence associated to a pair given by Baues [1] in a category with a nat-
ural cylinder is a particular case of this one, taking the initial cofibration
∗A : ∗½ A.
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