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RESUMEN 
Tratamos en este trabajo problemas de negociación simultánea sobre varios asuntos, 
que formalizamos como productos cartesianos de problemas de negociación clásicos. 
Tanto en el caso en que las preferencias de los agentes son de tipo maximin como de 
tipo leximin, caracterizamos la clase de soluciones eficientes que cumplen una 
condición de separabilidad consistente en que la negociación simultánea proporciona 
resultados equivalentes a la negociación separada de cada uno de los asuntos. Estas 
soluciones del problema de negociación global se construyen a partir de soluciones 
clásicas en la clase de soluciones de camino monótono.  
 
Palabras clave: Negociación simultánea, preferencias maximin, preferencias leximin. 
 
ABSTRACT 
Global bargaining problems over a finite number of different issues, are formalized as 
cartesian products of classical bargaining problems. For maximin and leximin 
bargainers we characterize global bargaining solutions that are efficient and satisfy the 
requirement that bargaining separately or globally leads to equivalent outcomes. Global 
solutions in this class are constructed from the family of monotone path solutions for 
classical bargaining problems. 
 
Keywords:  Global bargaining, maximin preferences, leximin preferences.  
JEL classification: C7, C78. 
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1 Introduction

We address bargaining problems where a finite number of different issues must
be resolved to reach an agreement. The following examples illustrate the situa-
tions we wish to address:

1. The bargainers must share a basket of ingredients to produce paella; each
agent follows a different recipe, but all require a mix all ingredients in
exactly the right proportions, and they all wish to cook as much paella as
possible.

2. Bargaining at the World Trade Organization, when each representative is
an egalitarian government bargaining on behalf of her country. Within
each country, the resolution of each issues benefits disjoint subsets of the
population, and transfers between these groups are not possible.

3. Bargaining under uncertainty without expected utility. There are m states
of the world and agents bargain a contingent agreement for each state of
the world at the ex-ante stage.

The literature addressing multiple issue bargaining has focussed mostly on
environments where the agents preferences over benefit bundles are given by a
utility function; then a global bargaining problem can be reduced to a classical
bargaining problem where feasible agreements are allocations of utilities for each
player. In this case, addressing the global problem is tantamount to uncovering
the structure of the feasible set of utilities from that of single issue bargaining
problems, and to discover the links between the classical solutions applied sep-
arately to the issues and classical solutions applied to the set of global feasible
utilities. Most of the literature takes this approach, usually under the additional
assumption that utilities are additive across issues.1

In contrast, we are mostly interested in solutions that apply directly to the
global bargaining situation, either because detailed information about prefer-
ences is limited or manipulable; or because the preferences of the bargainers do
not admit a utility representation that allows to bargain over a set of feasible
utility allocations.

Bossert et al (1996) and Bossert and Peters (2001), that stress the motiva-
tion of bargaining under uncertainty, precede us in addressing global bargaining
problems as cartesian products of classical bargaining problems.2 In Bossert
et al (1996) a class of strictly monotone path solutions is characterized by im-
posing maximin ex-ante efficiency. Bossert and Peters (2001) consider efficient
solutions when agents have minimax regret preferences; in bilateral problems
the class of monotone utopia-path solutions is characterized, but for more agents
only dictatorial solutions remain.

1See Kalai (1977), Myerson (1981), Binmore (1984), Gupta (1989) and Ponsat́i and Watson
(1997).

2See also Bossert and Peters (2000).
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A related class of problems is addressed in Hinojosa et al.(2005) and Mármol
et al.(2005), where different families of solutions exhibiting a maximin efficiency
propriety for multi-criteria bargaining models are proposed and explored. The
main difference with our approach is that the bargaining sets do not admit a
representation as a cartesian product of separate problems.

Our analysis of multiple issue bargaining problems begins with focus on
environments with minimax preferences. We point out that the global solutions
that assure efficient outcomes have a straightforward characterization in terms
of efficiency on the intersection of the issue bargaining sets. Furthermore, we
show that requiring equivalence in ”minimax result”, regardless of whether the
issues are addressed separately or globally, characterizes the family of monotonic
solutions.

Our main results relate to environments where the bargainers preferences
are leximin. We characterize the set of efficient outcomes for these situations,
and we propose a family of global solutions that attains efficient outcomes.
This family is constructed by applying a classical solution to a sequence of
classical bargaining problems: First the intersection of all the issue problems is
considered, and (at least) one issue is resolved; subsequently the disagreement
point and the bargaining set to address next is revised, and so on until a global
agreement is obtained. We show that to attain the same outcome whether the
issues are addressed separately or globally via this step by step procedure it is
necessary and sufficient to use a monotonic classical solution.

The rest of the paper is organized as follows. We lay out the set up and
discuss preliminary observations in Section 2. Solutions for global bargaining
under maximin preferences are addressed in Sections 3. Sections and 4 and 5
address environments with leximin bargainers.

2 Multiple issue bargaining

A group of n agents, i = 1, 2, . . . , n bargain over m different issues j = 1, . . . , m.
Denote by N = {1, . . . , n} the set of agents, and by M = {1, . . . ,m} the set
of issues. The issue bargaining problems are classical bargaining problems; they
are represented by pairs (Sj , dj), where Sj ⊂ <n is the set of feasible benefits
that can be allocated to the agents by mutual agreement on issue j and dj ∈ <n

is the allocation of benefits in case of disagreement on that issue. 3 The sets
Sj are compact, strictly comprehensive4 and s > dj for some s ∈ Sj . Denote
the set of efficient allocations by e(Sj) weakly efficient allocations by we(Sj),5

and the class of classical bargaining problems by B. A classical solution is a
3The following notation will be used: x, y ∈ <n: x > y means that xj > yj , for j = 1, . . . , n;

x ≥ y means that xj ≥ yj , for j = 1, . . . , n and x 6= y; and x = y means that xj ≥ yj , for
j = 1, . . . , n. For a matrix X ∈ <m×n we will denote by Xj the jth row, and by Xi the
ith column. We will also denote the dominance relations between matrices X, Y ∈ <m×n, as
follows: X = Y if xi

j ≥ yi
j , ∀ i, j; X ≥ Y if X = Y and X 6= Y ; X > Y if xi

j > yi
j , ∀ i, j.

4Comprehensiveness suffices for many results, but we keep the stronger assumption
throughout the paper for expositional simplicity.

5e(Sj) = {s ∈ Sj ,@s′ ∈ Sj , s′ ≥ s}, we(Sj) = {s ∈ Sj ,@s′ ∈ Sj , s′ > s}
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function ϕ : B → <n such that ϕ(Sj) ∈ e(Sj). We further assume that agents
can measure the benefit they obtain in each issue, and compare it to the benefits
in the other issues.

A global bargaining problem is a pair (S, d), where S = S1 × S2 × ...× Sm is
the set of feasible outcomes, each outcome allocating feasible benefits on every
issue, while d ∈ <m×n is the status quo, the allocation of benefits in case of
disagreement over all issues. Thus, a global agreement is represented by an
element of S, an m× n matrix:

X =




x1
1 x2

1 . . . xn
1

x1
2 x2

2 . . . xn
2

...
...

. . .
...

x1
m x2

m . . . xn
m




The ith column of matrix X, Xi = (xi
1, x

i
2, . . . , x

i
m)t ∈ <m, represents the

benefits for player i, in each of the m issues. The jth row of matrix X, Xj =
(x1

j , x
2
j , . . . , x

n
j ) ∈ Sj ⊂ <n represents an allocation of issue j benefits to each of

the players.
Let GB denote the class of global bargaining games. We wish to explore

solutions, criteria to select outcomes for each (S, d) ∈ GB, and discuss their
properties and performance. Formally a solution is a correspondence, F : GB →
<m×n such that F (S) ⊆ S, that selects a non-empty subset of feasible outcomes
(possibly a singleton) for each global bargaining problem. For simplicity and
without loss of generality we fix the disagreement point at the origin, and let
Sj ⊂ <n

+, so that global bargaining problems are represented by S =
∏

j∈M Sj ,
and denote the class of such bargaining games by GB0.

If we think of a global problem as m separate bargaining problems then
a classical solution applied to each one of the issues will generate a solution
to the global problem. However, in global bargaining each player can give
up something in one issue to get more in another while such trade-offs are
precluded when the issues are discussed separately. The global problem may
also be approached as a bargaining problem among n ×m agents; but in this
case global payoffs - attained by the combination benefits over the m-issues -
are also ignored.6 It is, therefore, worthwhile to explore global solutions that
genuinely address the issues jointly taking into account the interrelations in
the benefits of different issues over the total payoffs of the agents, considering
properties that seem appropriate to resolve global problems and exploring the
links to classical solutions and their properties.

2.1 Pareto Optimality

A precise notion of efficiency for global problems requires a specification of the
agents’ preferences over bundles of issue benefits.

Prior to examining more detailed specifications for the individual prefer-
ences, let us consider the sets of outcomes that are undominated in the natural

6See Bergstresser and Yu (1977).
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dominance relations X ≥ Y and X > Y . That is, the dominance relations based
only on the assumption that individual preferences are monotone. We will refer
to such undominated outcomes as Pareto optimal.
Pareto Optimality(PO): X ∈ S ⊆ <m×n is Pareto optimal in S, if @Y ∈ S,
such that Y ≥ X.

Note that because S = S1 × . . .× Sm, a global solution is Pareto optimal if
and only if it allocates the benefits of each issue efficiently. Thus the following
obviously holds.

Proposition 1 For S = S1× ...×Sm, and X ∈ S, the following assertions are
equivalent

a) X is Pareto optimal in S.
b) Xj is efficient in Sj for all j ∈ M .

We may also want to consider weak Pareto optimality (WPO) defined as
follows: X ∈ S ⊆ <m×n is weakly Pareto optimal in S, if @Y ∈ S, such that
Y > X. The analogous equivalence to Proposition 1 holds for weak Pareto
Optimality by replacing condition b) by Xj is weakly efficient in Sj for some
j ∈ M . Nevertheless, for the class of strictly comprehensive problems we are
addressing, as e(Sj) = we(Sj), a global outcome is weakly Pareto optimal if and
only if it allocates efficiently the benefits of at least one issue.

2.2 Monotonicity

The property of monotonicity plays a crucial role in the characterization of an
important family of classical solutions, and will turn out very useful in our
approach to global solutions:
Monotonicity(MON): A solution ϕ is monotonic if and only if ϕ(T ′, d′) 5
ϕ(T, d) for all (T ′, d′), (T, d) ∈ B, with d = d′ and T ′ ⊆ T .

Thomson and Myerson(1980) propose a general family of solutions with
monotonicity proprieties defined as follows.7 A monotone path (in <n

+), G,
is defined as the image of a function ψ : <+ → <n

+ where ψ(0) = 0, ψi is
continuous and nondecreasing for all i ∈ N , and

∑n
i=1 ψi is increasing. The

monotone path solution relative to the monotone path G, ϕG, is defined as
ϕG(T, d) = G ∩ e(T ).

Note that with the present definition monotone path solutions are well de-
fined on the class of convex, compact and strictly comprehensive problems pro-
vided that T ⊆ <n

+ and d = 0. Note also that the results the solution yield do
not depend on the disagreement point, but when the disagreement point is on
the path, the solution is always individually rational.

Monotonicity characterizes the family of monotone path solutions, see Thom-
son and Myerson(1980). For completeness we sketch a proof of this characteri-
zation.

7Thomson and Myerson(1980) use a version of the monotonicity property which is slightly
stronger than ours to characterize strictly monotone path solutions.
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Proposition 2 A solution ϕ in B0 is monotonic if and only if ϕ is a monotone
path solution.

Proof. Necessity is straightforward. It is easy to see that if ϕ is a monotone
path solution then it verifies the monotonicity axiom.

To prove sufficiency, let ϕ be efficient and monotonic. For each t > 0 consider
Tt ⊂ <n, Tt = {y ∈ <n, y ≥ 0,

∑n
i=1 yi ≤ t}. Define ψ(0) = 0 and ψ(t) = ϕ(Tt).

Clearly, the image of ψ is a monotone path and ϕ the corresponding monotone
path solution.

3 Maximin Bargaining

To begin, we consider situations as that of the Paella example, where the pref-
erences of the bargainers over benefit bundles are determined by the minimum
benefit achieved across all the issues.8

For these situations the global bargaining problem is very easily addressed as
a classical problem via the intersection of the bargaining sets over all the issues.
Formally, agent i, has preferences such that X <i

min Y if and only if zi(X) ≥
zi(Y ), where zi(X) = min1≤j≤m{xi

j}. Presently, global bargaining problems are
reduced to a classical problem whose bargaining set is the intersection of the
bargaining sets for all the issues. Note that compactness and comprehensiveness
are closed under intersection. The function z : <m×n → <n maps the multiple
issue bargaining set S into a set z(S) ⊂ <n,

z(S) = {(z1, . . . , zn) ∈ <n, zi = minj{xi
j} for some X ∈ S}.

Note that a minimum payoff vector z ∈ z(S) can be obtained from different
feasible outcomes in S. It is immediate that the comprehensiveness of Sj implies
that z(S) = ∩m

j=1Sj .
Figure 1 displays the set z(S) for a two person and three issue bargaining

problem.
Let z(X) = (z1(X), z2(X), . . . , zn(X)). Consider the order relation in <m×n,

X,Y ∈ <m×n, X <min Y , if z(X) ≥ z(Y ). The set of efficient outcomes under
the maximin criterion is now straightforward:9

Maximin Efficiency (MEF): An outcome X ∈ S ⊆ <m×n is maximin efficient
if @Y ∈ S, such that Y <min X.

It is easy to see that maximin efficiency implies weak Pareto-optimality. In
general, it does not imply Pareto optimality.

The following is now immediate:

Lemma 3 X ∈ S is MEF if and only if z(X) ∈ e(∩Sj).

8This is also the set up of Bossert et al (1996).
9This notion of efficiency is a strong version of ”efficiency under uncertainty” in Bossert et

al.(1996).
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z(S)

agent 1

agent 2

Figure 1: The set of minimal benefits

The following lemma observes that under strict comprehensiveness of the
sets Sj , if y ∈ <n lies on the efficient frontier of ∩m

j=1Sj , there exists at least one
issue j for which y lies on the efficient frontier of the corresponding bargaining
set Sj .

Lemma 4 If y ∈ <n, y ∈ e(∩m
j=1Sj), then y ∈ e(Sj) for at least one issue.

Proof. Let y ∈ e(∩m
j=1Sj) and suppose that for each j, there exists yj ∈ Sj

such that yj ≥ y. It follows from the strict comprehensiveness of Sj that for
all j, ∃zj ∈ Sj with zj > y. Now, for each i ∈ N , denote εi = minj{zi

j − yi}
and consider yi = yi + εi. y ≤ zj for all j and therefore, as a consequence of
the comprehensiveness of Sj , yi ∈ Sj for all j. It follows that yi ∈ ∩m

j=1Sj and
yi > yi, which is a contradiction to y ∈ e(∩m

j=1Sj).
It is worth pointing out that the full strength of strict comprehensiveness

is necessary for this result to hold as can be seen in Figure 2. Nevertheless,
if the assumption is relaxed to comprehensiveness an analogous result can be
established obtaining weak Pareto-optimality.

The following result characterizes maxmin efficient outcomes.

Proposition 5 X ∈ S is MEF if and only if ∃k ∈ M such that Xk ∈ e(Sk)
and Xj = Xk for all j ∈ M .

Proof. If X ∈ S is MEF, it follows from lemmas 3 and 4 that z(X) ∈ e(Sk) for
some k ∈ M . Suppose that Xk 6= z(X), then, as Xk = z(X), Xk ≥ z(X) holds,
what contradicts the efficiency of z(X) in Sk.

Conversely, when Xj = Xk for all j ∈ M , then z(X) = Xk ∈ ef(∩m
j=1Sj)

holds, and therefore X ∈ S is maximin efficient.
To generate global solutions that satisfy MEF simply define the global so-

lution Fmin
ϕ as Fmin

ϕ (S)k = ϕ(z(S)) for all k ∈ M . Denote by F sep
ϕ the global

solution obtained from ϕ in each one of the issues. This is, for S = S1×. . .×Sm,
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Z(S)
S1

S2

Figure 2: Efficient solution in z(S)

F sep
ϕ (S) = (ϕ(S1), . . . , ϕ(Sm))t. We want to identify what classical solutions in-

duce the same maximin results under separate or global bargaining, i.e. what
ϕ satisfy the following property:
Separate-global maximin equivalence (SGMEQ): A solution ϕ satisfies
Separate-Global maximin equivalence when ϕ(z(S)) = z(F sep

ϕ (S)) for all S ∈
GB0.

The following result establishes the equivalence between MON and SGMEQ.

Proposition 6 Let ϕ be a classical solution in B0, ϕ verifies SGMEQ if and
only if satisfies MON.

Proof. Consider a classical solution ϕ that satisfies SGMEQ, and therefore, for
S1, . . . , Sm ∈ B0, ϕ(z(S)) = z((ϕ(S1), . . . , ϕ(Sm))t) holds, and assume ϕ does
not satisfy MON, i.e. there exist T1, T2 ⊆ <n

+ such that T1 ⊆ T2, and i ∈ N such
that ϕ(T1)i > ϕ(T2)i. Consider the global bargaining problem T = T1 × T2 ∈
GB0. In this case, z(T ) = T1 and it follows that ϕ(z(T )) = ϕ(T1). On the
other hand, zi((ϕ(T1), ϕ(T2))t) = min{ϕ(T1)i, ϕ(T2)i} = ϕ(T2)i < ϕ(T1)i =
ϕ(z(T ))i, contradicting SGMEQ.

Conversely, let ϕ satisfy MON and S ∈ GB0, as z(S) ⊆ Sj , j ∈ M , it
follows that for all i ∈ N , ϕi(z(S)) ≤ ϕi(Sj),for all j ∈ M and, therefore,
∀i ∈ N, ϕi(z(S)) ≤ minj{ϕi(Sj)} = zi(ϕ(S1), . . . , ϕ(Sm)).

If SGMEQ fails ∃i ∈ N such that ϕi(z(S)) < minj{ϕi(Sj)}. From the
efficiency of ϕ follows that ϕ(z(S)) is in the efficient frontier of at most a Sj , for
this j ∈ M , ϕ(Sj) is also efficient, and ϕi(z(S)) < ϕi(Sj), hence ∃k ∈ N such
that ϕk(z(S)) > ϕk(Sj), contradicting MON.

Now, using the equivalence established in Proposition 2, together with this
last result the following characterization of the monotone path solutions can be
established.
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Theorem 7 A solution ϕ in B0 verifies SGMEQ if and only if ϕ = ϕG, where
G is a monotone path.

4 The Leximin approach to Global Bargaining

We say that player i has leximin preferences over the global results, and denote
<i

lex, if for X,Y ∈ <m×n

X <i
lex Y ⇔ Xi >lex Y i

where >lex
10 denotes the leximin order in <m.

In contrast to the case of maximin preferences, leximin preferences can not be
represented by a utility function (see, for instance, Moulin (1988)) and therefore
it is not possible to reduce the global problem to a classical bargaining problem
on the utilities.

We now define a lexicographical ordering relation in <m×n based on the
successive minimum values attained by the agents.

Given X ∈ <m×n, consider the m× n matrix Z(X), constructed as follows.
For each column xi - the vector of benefits of player i- reorder its components in
increasing magnitude; this reordered vector is the ith column of matrix Z(X).
Thus, the first row of Z(X), z1(X), contains the lowest element of each column
of matrix X. The second row, z2(X), contains the second lowest element of
each column of matrix X. In general, the elements of zk(X) are the k-th lowest
element of each column of matrix X. We say that X <lex Y , if zk(X) ≥ zk(Y )
for the first row, k, such that zk(X) 6= zk(Y ).

<lex is a collective dominance relation that for n = 1 reduces to the leximin
order in <m, but it does not define a complete order in <m×n.

The following result states that, as in the case of m-dimensional vectors,
the dominance relation ≥ among matrices is stronger than this lexicographic
dominance relation.

Lemma 8 Let X,Y ∈ <m×n. If X ≥ Y , then X <lex Y .

Proof. Since X ≥ Y , it is clear that Z(X) ≥ Z(Y ), and therefore, for the first
row, k, such that zk(X) 6= zk(Y ), zk(X) ≥ zk(Y ) holds.

The relationship between the dominance relation <min induced by the first
minimum values and <lex induced by the successive minimums is established in
the following result which is easy to prove.

Lemma 9 Let X,Y ∈ <m×n. If X <min Y , then X <lex Y .

Denote by Âi
lex the asymmetric part of <i

lex.

Lemma 10 Let X, Y ∈ <m×n. If X ≥i
lex Y for all i ∈ N , and X Âi

lex Y for
some i ∈ N , then X <lex Y .

10For a ∈ <m, let r(a) ∈ <m be the vector obtained reordering components in a in increasing
order. For a, b ∈ <m, a >lex b if there is k = 0, . . . , m − 1 such that ri(a) = ri(b) for
i = 1, . . . , k, rk+1(a) > rk+1(b); a ≥lex b if a >lex b or r(a) = r(b).
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Note that if X <i
lex Y for all i, then X <lex Y (but the converse is not true).

The partial ordering in <m×n, <lex, permits us to establish the following
concept of efficiency, which is appropriate for global bargaining problems where
the agents preferences are leximin.
Leximin Efficiency(LEF): A feasible outcome X ∈ S ⊆ <m×n is leximin
efficient if there is not another Y ∈ S such that Y <lex X.

This concept of efficiency is stronger than MEF, which is based on a dom-
inance relation where only the first minimum is considered. Whereas MEF
implies weak Pareto optimality, LEF implies strong Pareto optimality as a con-
sequence of lemma 8.

The following result establishes a characterization of the outcomes which are
LEF.

Proposition 11 X ∈ S is LEF if and only if for all k ∈ M , Xk ∈ e(Sk), and
for all j, k ∈ M , either Xj = Xk or Xj 5 Xk.

Proof. Firstly, if for all k ∈ M , Xk ∈ e(Sk) and for all j, k ∈ M , either
Xj = Xk or Xj 5 Xk, let π be the issue index permutation such that Xπ(j) 5
Xπ(j+1), j = 1, . . . ,m−1. It follows that zk(X) = Xπ(k) for all k ∈ M . Suppose
to the contrary, that X is not LEF, then there exists Y ∈ S, such that for
some k, k = 1, . . . , m, zj(Y ) = zj(X) = Xπ(j) for all j = 1, . . . , k − 1, zk(Y ) ≥
zk(X) = Xπ(k). It follows from Lemma 4 and from the efficiency of Xk in Sk

that, as z1(Y ) ∈ ∩j∈MSj and z1(X) = Xπ(1) ∈ ef(∩j∈MSj), Yπ(1) = Xπ(1)

holds. Analogously, z2(Y ) = Xπ(2) ∈ ∩j 6=1Sπ(j) and necessarily, Xπ(2) = Yπ(2)

and for j = 1, . . . , k − 1 Xπ(j) = Yπ(j). For j = k, zk(Y ) ≥ zk(X) = Xπ(k) ∈
ef(∩j 6=1,...,k−1Sπ(j)), zk(Y ) ∈ ∩j 6=1,...,k−1Sπ(j), which is in contradiction with
the efficiency in the intersection.

Conversely, if X is LEF, it is easy to see that z1(X) ∈ ef(∩j∈MSj) and it
follows that there exist π(1), such that z1(X) = Xπ(1) ∈ e(Sπ(1)) and hence
Xj = Xπ(1), for all j ∈ M . If z2(X) = z1(X), then Xπ(2) = Xπ(1) ∈ e(Sπ(2)),
in other case z2(X) ∈ ∩j 6=π(1)Sj , and applying recursively the reasoning the
result follows.

The condition that characterizes global outcomes which are leximin efficient
means that LEF are results solving all the issues efficiently and such that the
outcomes corresponding to the different issues can be ordered with respect to
the dominance relation = in <n. That is to say, given two different issues, all
the agents jointly obtain either more or less with respect to them.

The relationships between the different concepts of efficiency considered so
far and their characterizations is summarized as:
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Leximin efficient

∀j ∈ M, Xj ∈ e(Sj)
∃π, Xπ(k) 5 Xπ(k+1), ∀k = 1, . . . ,m− 1

=⇒
Pareto optimal

∀j ∈ M, Xj ∈ e(Sj)

⇓ ⇓

Maximin efficient

∃j ∈ M, Xj ∈ e(Sj)
Xj 5 Xk, ∀k ∈ M

=⇒
Weakly Pareto optimal

∃j ∈ M, Xj ∈ e(Sj)

5 Global Bargaining that resolves issues step by
step

In what follows we propose a family of global solutions that select leximin effi-
cient outcomes.

Let S = S1 × . . .× Sn where each Sj is strictly comprehensive and consider
a classical solution, ϕ. We define a solution, Fϕ, for global bargaining problems
(S, 0) ∈ GB0, as follows:

Fϕ : GB0 → <m×n, with Fϕ(S) = X∗ ∈ S where X∗ ∈ S is obtained by the
following procedure.
Algorithm 4.1
Step 0: Let d(0) = 0, I(0) = {M}, k = 1.
Step k:

For j ∈ {j ∈ I(k − 1), ϕ(∩j∈I(k−1)Sj , d(k − 1)) ∈ e(Sj)},
X∗

j = ϕ(∩j∈I(k−1)Sj , d(k − 1)).
I(k) = I(k − 1) \ {j ∈ M, ϕ(∩j∈I(k−1)Sj , d(k − 1)) ∈ e(Sj)}.
• If I(k) = {∅}, then Fϕ(S) = X∗.

• If I(k) 6= {∅}, then

di(k) = ϕi(∩j∈I(k−1)Sj , d(k − 1)) for all i ∈ N .

k := k + 1.

The procedure uses a classical solution to select the agents’ benefits for
the issues sequentially. In each step, the classical solution is applied to the
set of minimum benefits of the issues that are still unresolved, fixing the level
of benefits for at least one issue. Then a new classical bargaining problem is
considered, whose disagreement point consists of the levels of benefit assigned
to the agents in the issue(s) fixed by the previous step.

It follows from Lemma 4 that at every step at least one issue is resolved and
therefore, the values of X∗ are selected at most in m steps. Note that if ϕ is
defined uniquely, then Fϕ is also defined uniquely. The procedure is illustrated
in the following figure.
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z(S)
x1

x3

x2

agent 1�

agent 2�

Figure 3: Step by step bargaining procedure.

Proposition 12 A global bargaining solution Fϕ selects a LEF outcome.

Proof. The result follows from the construction of Fϕ and the characterization
of LEF outcomes established in Proposition 11.

In general, the solution to the global problem induced by a solution ϕ, Fϕ

does not coincide with the vector of solution obtained if bargaining takes place
separately in each issue. If it does, we will say that ϕ verifies step by step
equivalence.
Step by step equivalence (SSEQ): A classical solution ϕ satisfies step by
step equivalence if and only if Fϕ(S) = F sep

ϕ (S).
This axiom has the flavour of Kalai’s step by step axiom (see Kalai, 1977).

However, while Kalai addresses a additive utility bargaining problems where the
bargaining set expands as new issues are added to the problem, our step by step
equivalence axiom concerns global bargaining problems where the outcomes
consist of the results obtained for each issue, which are valued in a leximin
preference domain.

The following result states that SSEQ also characterizes the family of mono-
tone path solutions. Figure 4 is an illustration.

Theorem 13 A classical solution ϕ in B0 satisfies SSEQ, i.e. Fϕ(S) = F sep
ϕ (S),

if and only if ϕ = ϕG, where G is a monotone path.

Proof. To proof that if ϕ = ϕG with G a monotone path, then Fϕ(S)k =
ϕ(Sk), first note that ϕG(T, 0) = ϕG(T, d) for all d ∈ G ∩ T . As Fϕ is lex-
imin efficient, there exists π such that Fϕ(S)π(k) 5 Fϕ(S)π(k+1), for all k =
1, . . . , m− 1. Fϕ(S)π(1) = ϕ(∩j∈MSj) ∈ e(Sπ(1)). Besides, ϕ(Sπ(1)) ∈ e(Sπ(1)),
and as a consequence of the monotonicity of ϕ, ϕ(∩j∈MSj) 5 ϕ(Sπ(1)), and
then necessarily ϕ(∩j∈MSj) = ϕ(Sπ(1)). In the second step of the construc-
tion of Fϕ, the disagreement point is ϕ(Sπ(1)) which is on the path. Now,
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agent 1

agent 2

G

Figure 4: Monotone path solution

Fϕ(S)π(2) = ϕ(∩j 6=π(1)Sj , ϕ(Sπ(1))) = ϕ(∩j 6=π(1)Sj , 0) ∈ e(Sπ(2)), and also
ϕ(Sπ(2)) ∈ e(Sπ(2)). It follows that ϕ(Sπ(2)) = Fϕ(S)π(2). Analogously the
same result is obtained for each issue.

Conversely, from the leximin efficiency of the solution Fϕ it follows that
there exists π such that ϕ(Sπ(k)) 5 ϕ(Sπ(k+1)) for k = 1, . . . , m − 1. For the
first issue solved, Fϕ(S)π(1) = ϕ(Sπ(1)) 5 ϕ(Sπ(k)) holds for all k, and therefore,
z(ϕ(S1), . . . , ϕ(Sm)) = Fϕ(S)π(1).

In addition ϕ(z(S)) = Fϕ(S)π(1), and from Theorem 7 it follows that ϕ is a
monotone path solution.

As a consequence of this last result, if classical solutions are restricted to
those that satisfy homogeneity, i.e. ϕ(γ(S)) = γϕ(S) ∀γ > 0, then solutions
verifying SSEQ are the proportional solutions. If symmetry is also required the
unique solution is the egalitarian.

It is worth pointing out that SSEQ is a separability condition analogous to
the separate/global equivalence condition in Ponsati and Watson(1997), where
global bargaining problems with additive utilities are addressed. In our set
up, symmetry, homogeneity and SSEQ characterize the egalitarian solution,
whereas, for additive utilities, symmetry and homogeneity and Ponsati and
Watson’s separate/global equivalence characterizes the symmetric utilitarian
solution. Binmore (1984) presents a similar result for the case of multiplicative
utilities, there a related separability condition characterizes the Nash solution.
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