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RESUMEN 

Una lógica es paraconsistente si admite teorías inconsistentes pero no triviales. 
Dada la definición usual de inconsistencia, la noción de paraconsistencia parece de-
pender de la interpretación dada al signo ‘¬’. Como la lógica paraconsistente pone en 
cuestión propiedades de la negación consideradas básicas en otros contextos, cabe du-
dar que un operador sin esas propiedades sea realmente un negador. La conclusión es 
que no puede haber genuinas lógicas paraconsistentes. Esta objeción puede responder-
se desde una perspectiva (sub)estructural siempre que puedan construirse cálculos de 
secuentes paraconsistentes con reglas estructurales ligeramente distintas de las de la 
lógica clásica. 
 
ABSTRACT 

A logic is paraconsistent if it allows for non-trivial inconsistent theories. Given 
the usual definition of inconsistency, the notion of paraconsistent logic seems to rely 
upon the interpretation of the sign ‘¬’. As paraconsistent logic challenges properties 
of negation taken to be basic in other contexts, it is disputable that an operator lacking 
those properties will count as real negation. The conclusion is that there cannot be 
truly paraconsistent logics. This objection can be met from a substructural perspective 
since paraconsistent sequent calculi can be built with the same operational rules as 
classical logic but with slightly different structural rules. 

 
 

I. INTRODUCTION 
 

According to the most extended definition, a paraconsistent logic is a 
logic, which allows for non-trivial inconsistent theories. Let L be a logic 
whose consequence relation will be denoted by L. A L-theory is, of course, 
a set of formulae closed under L ; a theory is trivial if it is just the set of all 
formulae of the corresponding language. The difficulties arise when, having 
defined triviality, one tries to define inconsistency. It is usually said that a set 
of formulae X is inconsistent if and only if there is at least one formula A 
such that both X L A and X L ¬A. 

Thus, the notion of inconsistency and hence the definition of paracon-
sistent logic seem to rely upon the interpretation given to the sign ‘¬’. At this 
point there are two different strategies. The first [Arruda (1980)] relativizes 
the notion of inconsistency as follows: 
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Let  be some unary operator; a set of formulae X is -inconsistent if 

and only if there is at least one formula A such that both X L A and  

X L A. 
 

This characterisation is at once too wide and too narrow. On one hand, there 

would be -inconsistent theories, where  is the possibility operator, with the 

amazing consequence that any modal logic extending KT yields only -

inconsistent theories
1
. On the other hand, the existence of such binary opera-

tors as Sheffer stroke or joint negation shows that there is no privileged link 

between inconsistency and unary operators. If a theory entails both A and 

A|A, it is as inconsistent as another entailing A and ¬A. Finally, no advance 

has been done, since the question “Can there be paraconsistent logics?” can 

be rephrased now as “Can there be ¬-paraconsistent logics?” 

The alternative is to use the concept of negation operator: 
 

Let  be some unary negation operator; a set of formulae X is -incon-

sistent if and only if there is at least one formula A such that both X L A 

and X L A. 

 

The question becomes then what is a negation operator. Notice that this is a 

partial definition because it applies only to unary negation operators, leaving 

open the question whether there are negation operators of arity >1 (as Sheffer 

stroke). In any case, the immediate objection is that whatever negation sym-

bol is used, it is more plausible to suppose that it is not a real negation than to 

accept the paraconsistent reading. This is just Slater’s (1995) objection. What 

is at stake is whether one can identify a negation operator without appeal to 

principles like the pseudo-Scotus, i.e. A,¬A L B, rejected by any paraconsis-

tent logic. To argue for the need to distinguish a Boolean negation from a De 

Morgan negation, and so on, is not very convincing and what is worse, you are 

then threatened with Quine’s thesis change of logic is change of subject matter. 
 

departure from the law of excluded middle would count as evidence of revised 

usage of ‘or’ or ‘not’ […]. For the deviating logician the words ‘or’ and ‘not’ 

are unfamiliar or defamiliarised. [Quine (1960) p.396]. 

Alternative logics are inseparable from mere change in usage of logical words. 

[Quine op.cit., p.389]. 

 

To sum up, to define paraconsistent logic you have to define first nega-

tion. As paraconsistent logic challenges inferential properties of negation taken 

to be basic in other contexts, it is always disputable that an operator lacking 

those properties will count as real negation. The intended conclusion is that 

there cannot be any truly paraconsistent logics.
2
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II. LOGIC OF FORMULAE VS. LOGIC OF INFERENCES 
 

The argument against paraconsistent logic (and in general arguments 
based on the thesis “change of logic is change of subject matter”) rests on the 
assumption that every logic is characterised by the set of its logical constants 
and hence differences between logics have to be explained as differences con-
cerning their logical constants. This assumption fits into a conception of logic 
grounded on the concept of thesis (theorem, valid formula, logical truth, etc.) 
rather than on the concept of deduction. This conception of logic starts with 
Frege and it is opposed, not only with the pre-Fregean tradition (as W. and M. 
Kneale show) but also with the conception of logic starting with Gentzen and 
continued in present times by such authors as Belnap, Do en and Girard. 

If Hilbert-style proof theory expresses the idea that logic is the science 
of logical truths, Gentzen-style proof theory expresses the rival thesis that 
logic is the science of formal deductions. In a Gentzen-style consecution cal-
culus there are two different kinds of rules: structural rules and operational 
(or logical) rules. The first can be described independently of the constants of 
the object language and state structural properties of derivability (reflexivity, 
transitivity, etc.) Operational rules, on the other side, represent the different 
operations applicable to consecutions in the object language. Against the 
claim that the basic rules are operational rules, the approach favoured by 
Do en and linear logicians claims that the basic features of a logical system 
are determined by structural rules. 

 
In fact, contrary to popular belief, these rules are the most important of the 
whole calculus, for, without having written a single logical symbol, we have 
practically determined the future behaviour of the logical constants. [Girard, 
Lafont & Taylor (1989) p. 30] 

 

My thesis is that paraconsistent logics can be built with the same operational 
rules as classical logic (and hence with the same logical constants) but with 
slightly different structural rules; in Do en’s terminology, that there are sub-
structural paraconsistent logics. 
 
 

III. A GENTZEN-STYLE PARACONSISTENT CALCULUS 
 
Let us consider the usual derivation of the pseudo-Scotus in a standard 
Gentzenization of classical logic: 
 

p  p axiom 
p,¬p  ¬  
p,¬p  q  weakening 
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This derivation depends on the identity axiom, the interpretation of the 
sign ‘¬’ as given by the rule ¬  and a principle about the syntactic nature of 
objects in a consecution, right-weakening. Therefore it seems possible to re-
ject the pseudo-Scotus keeping the meaning of logical constants restricting 
either the identity axiom A  A or the right-weakening rule. So far as the 
identity axiom states an essential property of consequence (viz., reflexivity), 
the key to achieve paraconsistency seems to lie in the weakening rules. It is 
often thought that weakening is related to monotonicity (an essential property 
of any consequence relation) in the same way as the identity axiom is related 
with reflexivity; but as we shall see, this is untrue. 

As I have said, in a substructural approach structural rules and derivations 
(those, which can be described independently of logical constants,) are taken to 
be basic for the identity of a logic or a logical system. If a consecution is a tri-
ple X  Y where X and Y are finite sequences of formulae, the axioms and 
structural rules of paraconsistent propositional logics are the following. 
 

Axioms: 
A  A, for any sentence letter A 

 

Structural rules: 
 

Permutation P  X,A,B,Y  Z   P X  Y,A,B,Z 
  X,B,A,Y  Z   X  Y,B,A,Z 
      

Contraction W  X,A,A  Y   W X  A,A,Y 
  X,A  Y   X  A,Y 
      

Mingle M  X,A  Y   M X  A,Y 
  X,A,A  Y   X  A,A,Y 
      

Combination  X  Y    
  X,A  A,Y    

 
These rules enable us to define two distinct paraconsistent logical systems. The 
basic system NWPL (Non Weakenable Paraconsistent Logic) is given by the 
identity axiom and the rules of permutation, contraction and mingle; the addi-
tion of the combination rule yields a second paraconsistent system NWPLC. 

The main difference with respect to classical logic concern the weaken-
ing rules, which in classical logic allow the introduction of any formula on 
the right and the left of a consecution. 

 
K  X  Y   K X  Y 
 X,A  Y   X  A,Y 
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In the present case, these rules have been replaced by the mingle rules, i.e., the 
reverse of the contraction rules, and, only for NWPLC, the combination rule. 
The last rule has some interest on its own for it specifies independently of any 
logical symbol how to combine two derivations into a single derivation. 

We have to specify yet the operational rules. Depending on the ac-
cepted structural rules it is possible to state different sets of rules for the same 
logical constant. So, if weakening and contraction are available, you can use 
as disjunction introduction rules either the pair 

 
X  A,Y  X  B,Y 
X  AvB,Y  X  AvB,Y 

 
or the single rule 
 

X  A,B,Y 
X  AvB,Y 

 

However when weakening and contraction are dropped, as in linear 
logic, classical disjunction splits into tensor sum, with the rules 
 

X  A,B,Y  W,A  X  Y,B  Z 
X  A+B,Y   W,Y,A+B  X,Z  

 

and a direct sum, with the rules 
 
X  A,Y  X  B,Y  X,A  Y,  X,B  Y 
X  A B,Y  X  A B,Y   X,A B  Y  
 
Dually, we shall have a tensor product (or cumulative conjunction), 
 

X,A,B  Y  W A,X  Y  B,Z 
X,A B  Y   W,Y  A B,X,Z  

 
and a direct product (or alternative conjunction) 
 
X,A  Y  X,B  Y  X  A,Y,  X  B,Y 
X,A&B  Y  X,A&B  Y   X  A&B,Y  
 

What happens with negation and (material) conditional? Since negation 
is an unary operator, its rules of left-introduction and right-introduction have 
a single premise and so remain unaffected by the presence or absence of 
weakening and contraction. The standard rules for negation are: 

¬ X,A  Y  ¬  X  A,Y 
 X  ¬A,Y   X,¬A  Y 
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It could be argued then, and this is somehow surprising, that negation is 

less ambiguous than conjunction or disjunction. At first sight it seems that in 

the case of material conditional it is not possible either to distinguish between 

a direct conditional and a tensor conditional. The single-premise rules for con-

junction and disjunction require the presence of only one of the immediate 

subformulae of the formula to be introduced and thus they allow two different 

versions (one for each subformula) while the single-premise rule for material 

conditional uses both immediate subformulae to built the inferred formula: 

 

X,A  B,Y 

X  A  B,Y 

 

This creates an illusion that conditional, unlike conjunction or disjunction, 

expresses a deductive connection between its antecedent and its consequent. It is 

just an illusion of relevance for, given contraction and weakening, the pair can 

replace the usual rule for conditional right-introduction without loss 

 

X,A  Y  X  B,Y 

X  A  B,Y  X  A  B,Y 

 

Therefore, you are entitled to distinguish a tensor conditional A B =def .¬A+B 

and a direct conditional A B =def. ¬A B. 

Letting aside exponentials
3
, we have still to characterise the zeroary op-

erators 1, , T and 0 (called ‘units’ in linear logic). 

 

X  Y   1 

X,1  Y   

   

X  Y   

X  ,Y   

   

0  X  X  T 

 

The operators 1, , T y 0 are the neutral elements with respect to , +, & y 

, respectively. 
 

 

IV. WEAKENING AND MONOTONICITY 

 

A consecution calculus, as any other deductive system, does not give a 

direct definition of a consequence relation. It does not make sense to say that 
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that Y follows from X if and only if the consecution X  Y is provable in the 
corresponding consecution calculus. Consecutions are pairs of finite se-
quences of formulae while consequence is a relation between sets of formu-
lae, finite or not, and formulae. Usually, starting from the notion of provable 
consecution, the definition of consequence runs: 

 
A formula A follows from a set X of formulae if and only if there is some 
finite sequence of elements of X such that X  Y is a provable consecution. 

 
Notice that this definition stipulates that consequence is a monotonic and fi-
nitary operation. This fact is notorious, since it is often thought that 
monotonicity is warranted by the weakening rules. Roughly the content of 
these rules is rather that whenever X is a finite set, A follows from X if and 
only the consecution X  A is provable. It should be noted by the way that 
the preceding definition lets aside questions concerning whether there may be 
many occurrences of the same formula in the sequence Y, questions obvi-
ously related with the content of weakening and contraction rules. 

The fact that paraconsistent logics NWPL and NWPLC lack weakening 
in its general form does not entail that these are non-monotonic logics. The 
lost monotony can be recovered defining consequence as follows: 

 

X NWPL A if and only if there is some finite sequence Y of formulae 
from X such that the consecution Y  A is provable in NWPL. 
 

X NWPLC A if and only if there is some finite sequence Y of formulae 
from X such that the consecution Y  A is provable in NWPLC. 

 
To keep away monotonicity from weakening has a relevantist flavour. On the 
described account of logical consequence, to say that A follows from X is to 
say that there is an valid argument with premises B1,…,Bn in X and conclu-
sion A, where premise means “premise effectively used” in the argument. 

As it is well known, monotonicity and finitaryness are two of the three 
properties of Tarskian consequence operations. Given a language L and an op-

eration C on the set p(F) of sets of formulae of L, we say that C is a Tarskian 

consequence operation in L if and only if the following conditions are satisfied: 
 

(T1)  X  C(X)                                                                      (reflexivity). 
(T2)  If X  Y then C(X)  C(Y)                                     (monotonicity). 
(T3)  C(C(X))  C(X)                                                          (transitivity). 

 
If moreover for all X, 

 

(F) C(X) = {C(Y):Y is a finite subset of X}, 
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C is said to be finitary. Likewise, if 
 
(S) e(C(X)) = C(e(X)), 
 

for every homomorfism e from F to F, C will be called structural. A finitary 
and structural Tarskian consequence operation is called an standard conse-
quence operation. These definitions are from Wójcicki (1980), although what 
I call a ‘Tarskian consequence’ is for him simply consequence. It is worth 
noting that Tarski (1930) includes among his axioms for consequence opera-
tions an axiom of trivialization: there is a formula A such that C(A) = F.  

Let A C(X) if and only if X NWPL A; then the consequence operation 
C of NWPL is standard: 

 
(1)  By A1 and the definition of NWPL, C is reflexive. 
(2)  By the definition of NWPL, C is monotonic. 
(3)  The admissibility of the Cut rule, 
 

X  A, Y Z;A W 
           X, Z  Y,W 

 
proved in the usual manner shows that C is transitive (cfr. §.7 below). 
(4)  Again by the definition of NWPL, C is finitary. 
(5)  Structurality follows from the formulation of the axioms and rules   

of NWPL using schemata of formulae instead of formulae. 
 

Mutatis mutandis, the same holds for NWPLC. 
 
 

V. THE SUFFICIENCY IDEA 
 

In recent developments in Gentzen-style proof theory there is some op-
position between the thesis of the primacy of structural rules and derivations 
and the principle called by Belnap “the sufficiency idea”. The thesis of the 
primacy of structural rules emphasises the role of the context in the assess-
ment of the validity of inferences. On the other hand, Gentzen’s sufficiency 
principle, as explained by Prawitz, states that the meaning of a logical con-
stant is given by rules dealing only with this constant. 

Belnap [(1982) p.382] tries to reconcile both thesis invoking Wittgenstein 
notion of family resemblance. Letting aside some complications, the idea, in 
the case of negation, is that ‘negation’ is not the name of a logical constant, 
but a generic name for the members of a family of logical constants sharing 
the same rules of left and right-introduction. When these fixed structural rules 
are combined with different sets of structural rules, different negations arise. 
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So operational rules will be invariant while structural rules vary from a logi-
cal system to another. 

What are the proper rules for negation? The rules ¬  and ¬.are inap-
propriate for they involve contextual elements, say, the position of the dis-
played formula in the antecedent/consequent sequence. This is clear when 
one compares those rules with these: 

 
¬  X,X’  Y,A,Y’  ¬ X,A,X’  Y,Y’ 
 X,¬A,X’  Y,Y’   X,X’  Y,¬A,Y’ 

 
This phenomenon can be interpreted in two ways. The first, in the line of the 
distinction between tensor and direct variants of a binary operator made in 
linear logic, says that when permutation is not presupposed, negation splits 
into a “positional negation” and a “permutable negation”. The second, in the 
line of Belnap’s display logic and Sambin, et al. basic logic, tries to purify 
those rules from any contextual element. 

A (radical) move to avoid interference of the context in the definition of 
logical constants is to remove context and this can be done stating visible op-
erational rules. According with Sambin, Batilotti and Faggian [(2000), p. 981], 

 
A rule satisfies visibility if it operates on a formula (or two formulae) only if it 
is (they are) the only formula(e), either in the antecedent of in the succedent of 
a sequent. 

 
In fact they use a more restricted notion of visible rule, since they require also 
that the formula resulting from the application of the rule be isolated in the 
corresponding side of the inferred consecution. Thus, the visible rules for 
tensor product are: 
 

A,B  Y  X  A  Y  B 
A B  Y   X,Y  A B  

 
and those for direct product: 
 

A  Y  B  Y  X  A  X  B 
A&B  Y  A&B  Y  X  A&B  

 
How are then the visible rules for negation? If as Sambin et al. do (not 

as they say) visibility is required both in the premises and the conclusion of 
the rules, the only possible rules are: 

 

¬ (v)  A  ¬(v) A  
 ¬A     ¬A 
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With A as the sole formula in the premise-consecution and ¬A as the sole 

formula in the conclusion-consecution. Consider next the following deriva-

tion in NWPL: 
 

A  A Axiom 

 ¬A,A ¬ 

 ¬A+A + 
 

According with the Wittgenstenian account of logical constants espoused by 

Belnap, there should be some combination of basic negation rules with ap-

propriate structural ones allowing us to put this derivation in a suitable form. 

The difficulty is that using the rule (v) ¬ to get 
 

 ¬A,A ¬ 

 ¬A+A + 
 

You have to derive first A . But a logical system in which A  is provable for 

any formula A, would be, no doubt , quite bizarre. 
 

 

VI. DISPLAY LOGIC 
 

Belnap’s display logic tries to isolate the properties of the logical con-

stants (as expressed by operational rules) from contextual properties (as ex-

pressed by structural rules). This is done by means of consecution calculi 

having the display property. A consecution calculus has the display property 

if and only if for any consecution and any antecedent (consequent) constitu-

ent there is a tightly equivalent consecution in which that constituent is “dis-

played” as the antecedent (consequent) standing alone. 

To build consecution calculi with the display property an enriched 

structural language is needed. The idea is that in a consecution calculus there 

are two kinds of connectives: logical connectives, which take formulae into 

formulae, and structure connectives, which take structures into structures (as 

the comma of the standard consecution calculi). The notion of a structure is 

defined recursively as follows: 
 

(1)  Any formula is a structure; 

(2)  If X is a structure then *(X) is a structure, 

(3)  If X and Y are structures, (X,Y) is a structure. 
 

The key feature to realise the display property is the use of two structure con-

nectives: the binary ‘,’combining two structures, and the unary ‘*’, permit-

ting one to flip from one side of the turnstile to the other. Roughly, the idea is 
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that you can move a structure from the antecedent to the consequent or vice 

versa marking it with ‘*’. 

Structure connectives are for structures what logical connectives are for 

formulae; if operational rules have to do with the behaviour of logical constants, 

structural rules determine the behaviour of structure connectives. In other words, 

structural rules deal with structures, operational rules deal with formulae. 

The structure connective is also used in negation rules, which become: 
 

¬ (v) *A  Y  ¬(v) X  *A 

 ¬A  Y   X  ¬A 
 

Therefore, you get visible rules allowing for the occurrence in the consecu-

tions of formulae other than the displayed formula. Now the demonstration of 

¬ A+A goes: 
 

A  A Axiom 

*A  *A DE 

*A  ¬A ¬ 

 ¬A,A DE 

 ¬A+A + 
 

In a consecution calculus in a metalanguage with two punctuation 

marks there will be two groups of structural rules: structural rules for ',' and 

display equivalences for ‘*’. 

To different definitions of display equivalence have been proposed: the 

display schemes P and A
4
. Let us review first Belnap’s definition, the P scheme. 

 

Display equivalence is the smallest equivalence relation that makes 

equivalent all consecutions listed on the same column below. 
 

X,Y Z 

X  *Y,Z 

X  Y,Z 

X,*Y  Z 

X  Z,Y 

X  Y 

*Y  *X 

**X  Y 
 

The second column makes equivalents X  Y,Z and X  Z,Y, thus introducing a 

property of ‘,’ independent from ‘*’ –– right-permutation. This is a disadvantage. 

We need display equivalences to separate properties of the inferential context 

from properties of the logical constants; but we have see that Belnap’s postulates 

are suitable to that end only when permutation on the consequent is assumed. In 

fact the P and A schemes are equivalent given right and left permutation. 

The A scheme, coming from Wansing, is free from this limitation. 

Wansing definition of display equivalence runs: 
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Display equivalence is the smallest equivalence relation that makes 
equivalent all consecutions listed on the same column below. 
 

X,Y  Z 
X  Z,*Y 
Y  *X,Z 

X  Y,Z 
X,*Z  Y 
*Y,X  Z 

X  Y 
*Y  *X 
X  **Y 

 

These remarks answer partially a question by Belnap [(1996) p.91]: “What 
are good questions to ask about the relations between the P and the A 
schemes? Surely the two schemes don’t just sit there. Are they good for dif-
ferent things, or can either do the work of the other, or…?.” 

To put NWPLC in display clothes, besides using the A scheme, op-
erational rules have to be adapted to the new consecutions made from struc-
tures instead of finite sequences. As for structural rules, to deal with 
structures requires additional rules of association and commutation. 

 
 

NWPL
+ 

 

Axioms   
A1 p  p, For any sentence letter p 
Structural rules 
A  (X,Y),Z  W  A X  (Y,Z),W  C  X,(Y,Z)  W  C X  Y,(Z,W)  
 X,(Y,Z)  W   X  Y,(Z,W)   (X,Y),Z  W   X  (Y,Z),W 
           
P  X ,Y  Z  P X  Y,Z  W  X,X  Y  W X  Y,Y 
 Y,X  Z   X  Z,Y   X  Y   X  Y 
           
D  X  Y  D X  Y  Comb X  Y    
 X,X  Y   X  Y,Y   X,Z  Z,Y    
Display equivalences   
X,Y  Z 
X  Z,*Y 
Y  *X,Z 

X  Y,Z 
X,*Z  Y 
*Y,X  Z 

X  Y 
*Y  *X 
X  **Y 

Operational rules   

   A,B  Y 
A B  Y  

   X  A   Y  B 
          X,Y  A B 

 

&       A  Y  
A&B  Y  

B  Y 
A&B  Y 

 &   X  A   X  B 
            X  A&B 

+    A  X   B  Y 
A+B  X,Y 

+   X  A,B 
       X  A+B 

 

   A  X   B  X 
A B X  

      X  A 
        X  A B  

   X  B   
X  A B  

¬    X  *A 
X  ¬A 

¬   *A  Y 
        ¬A  Y 
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VII. CUT ADMISSIBILITY 
 

An advantage of the display property is that it enables a very general 
proof of cut admissibility relying only in fundamental properties of structural 
and operational rules. The multiplicity of logical systems forces us to be careful 
on the several versions of the cut rule, equivalent for the case of classical logic 
but not for other systems. Here we consider the elimination rule in Belnap 
(1982), 

 
X  A  A  Y 
 X  Y  

 
called unitary cut in Gabbay (1994). 

We define first the notions of parameter and congruence. A rule can be 
understood as a family of inferences, in the same way as a formula schema 
can be seen as a set of formulae. Thus the inference 

 
p,q  p,q 
p q  p,q 

 
belongs to the family of inferences of the rule . The parameters of an in-
ference are those constituents (formulae or structures) occurring as parts of 
occurrences of structures assigned to structural variables in the statement of 
the corresponding rule. Hence in the previous inference the parameters are 
the occurrences of p and q in the consequents of the premise and the conclu-
sion. Likewise it is said that constituents occupying similar positions in oc-
currences of structures assigned to the same structure-variable are congruent 
in this inference. As congruence is obviously an equivalence relation, the 
congruence class of a constituent of an inference is the set of all constituents 
congruent to it. 

A substructure of a structure is negative if it is inside an odd number of 
*’s; otherwise it is positive. The presence of ‘*’ implies a revised definition 
of antecedent and consequent parts. As before, in a consecution X  Y, X is 
the antecedent and Y is the consequent. An antecedent part of a consecution 
is a positive substructure of its antecedent or a negative substructure of its 
consequent. A consequent part of a consecution is a positive substructure of 
its consequent or a negative substructure of its antecedent. 

It can be proved that cut is admissible in any logical system satisfying 
the following eight conditions. The proof can be found in Belnap (1982), §.4, 
and Restall (2000), §§. 6.2 and 6.3. It seems that the proof comes back to 
Curry (1963). 
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1. Every formula which is a constituent of some premise of an inference 

is a subformula of some formula in the conclusion of that inference. 

2. Congruent parameters are occurrences of the same structure. 

3. Each parameter is congruent to at most one constituent in the con-

clusion of the inference. 

4. Congruent parameters are either all antecedent or all consequent 

parts of their respective consecutions. 

5. If a formula is nonparametric in the conclusion of an inference, it is 

either the entire antecedent or the entire consequent of that conclu-

sion. 

6. Every rule is closed under simultaneous substitution of arbitrary 

structures for congruent formulas which are consequent parts. 

7. Let Inf be an inference falling under a rule R and let A be a paramet-

ric antecedent part of a consecution of Inf. Let also be X  A be the 

conclusion of an inference such that A is not a parameter. If Inf’ re-

sults from putting the structure X for all constituents of Inf in the 

congruence class of the antecedent part Y, Inf’ also falls under R. 

8. Let Inf and Inf’ be two inferences.with conclusions X  A and A  

Y respectively, with A nonparametric in both inferences. Then ei-

ther X  Y is identical to one of X  A or A  Y or can be obtained 

from the premises of Inf and Inf’ using the rules of the system to-

gether with the elimination rule with A as principal or cut formula. 
  

Systems NWPL and NWPLC satisfy these conditions save, due to du-

plication rules, the third. In the case of NWPLC duplication rules are elimi-

nable; given combination it can be shown: 
 

If there is a derivation  of X  Y in NWPLC and a derivation  of Z  W 

in NWPLC then there is a derivation  of X,Z  Y,W. Moreover, if  

and  are duplication free so is . 

 

Hence given a derivation in NWPLC of X  Y free from duplication, there is 

a duplication free derivation of X,X  Y,Y. Using then associativity, commu-

tativity, permutation and contraction one gets a derivation of X  Y. 

Combination is not a rule of NWPL, unlike associativity, commutativity, 

permutation and contraction. Using the later, the duplication rules can be re-

placed by the rule of restricted combination 

 

X  Y  X  Y 

 X,X  Y,Y  

 

which is safe with respect the third condition. 
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VIII. PARACONSISTENCY REVISITED 

 
NWPLC is a system of paraconsistent logic so far as, for instance, it is 

not the case that p,¬p NWPLC q. However this is perhaps a necessary but not 
sufficient condition. Johansson’s minimal logic, as points out Da Costa, does 
not permit the derivation of every formula from a contradiction and yet could 
not be considered as genuinely paraconsistent for it allows the derivation of 
the negation of every formula from a contradiction. The idea is that a truly 
paraconsistent logic should not justify the derivation of a formula from a con-
tradiction appealing to the untenability of contradictions. 

A proof-theoretical account paraconsistent logics independent from 
the notion of a negation is implicit in the preceding discussion. The essence 
of paraconsistent logic is that right weakening is not an admissible rule. As it 
stands this definition counts minimal logic as a paraconsistent logic. To refine 
this definition in order to exclude such cases, we have first to make precise the 
concept of “version of a rule”. Once this is done, we can define a paraconsistent 
logic to be one admitting no version of the right weakening rule. 

Let us extend the notion of a substitution from formulae to structures 
as defined on p. 14. By a substitution for a language it is meant a homo-
morfism s from the set of its formulae into the set of its formulae; this notion 
is then extended to apply to structures adding the following two clauses: 

 
s(*(X)) = *s(X); 
s(X,Y) = (s(X),s(Y)). 

 
Notice that whenever A is a formula, s(A) is also a formula. A version of the 

right-weakening rule is a rule R having the form: 
 

X  Y 
X  Z,Y 

 
such that for any (structure) substitution s, 
 

X  Y 
X  s(Z),Y 

is a case of R. 
Although this definition is enough for the present purpose, it lacks 

the desirable generality for it “fixes” the introduced structure Z in the left-
most position of the consequent. 

Right duplication is not a version of right weakening since it does 
not allow for the introduction in the consequent of any structure with the 

same form as structure Y. Nor is the NWPLC derivable rule 
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X  Y 
X  X,Y 

 
(starting from the hypothesis X  Y combination and left contraction yield 
X  X,Y) for the same reason. Therefore NWPLC counts as a genuine para-
consistent logic according to our standard. On the contrary, Johansson’s 
minimal logic will not qualify as paraconsistent; the rule  
 

X  
X  ¬A 

 
is admissible in minimal logic and as s(¬A) = ¬s(A), it is indeed a version of 
the right weakening rule. 
 
 

IX. PROPERTIES OF THE TENSOR FRAGMENT 
 

The tensor fragment { ,+,¬} of NWPLC has a remarkable property, 
what I will call “downwards Scotianism”. A logic or a logical system S is 
downwards Scotian if and only if for every formula A and every subformula 
B of A both A,¬A S B and A,¬A S ¬B. In a paraconsistent downwards Sco-
tian logic contradictions are located –a recurrent idea in the paraconsistent 
literature- in a precise sense. Although the theory T generated by {A,¬A}, A 
being a formula of some language L, is not trivial for L, the restriction of T 

to the vocabulary of A is a trivial theory of this fragment of L. 
 

THEOREM. For any formula A of { ,+,¬} and any subformula B of A, 
A,¬A NWPLC B and A,¬A NWPLC ¬B. 

 

Proof. First we have to distinguish different occurrences of the same 
subformula in a given formula. This can be achieved using some kind of in-
dexing for occurrences of sentence letters in a formula. Thus, for instance, 
rewriting the formula (p q) + ¬(p q) as (p1 q1) + ¬(p2 q2). Once this has 
been done, the depth of an occurrence of a subformula B of A in this formula, 
in symbols p(B,A), is defined.  

 
1. p(B,A) = 0 if B = A. 
2. p(A,A B) = p(B,A B) = p(A,A+B) = p(B,A+B) = p(A,¬A) = 1. 

3. If p(A,B) = i and p(B,C) = j, p(A,C) = i+j, where A is an occur-
rence in B and B an occurrence in C. 
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EXAMPLES: 
 

• p(p1, (p1 q1) + ¬(p2 q2)) = p(p1, p1 q1) + p(p1 q1, (p1 q1) + 
¬(p2 q2)) = 1+ 1 = 2. 

• p(p2, (p1 q1) + ¬(p2 q2)) = p(p2, ¬(p2 q2)) + p(¬(p2 q2), (p1 q1) 

+ ¬(p2 q2)) = p(p2, p2 q2) + p(p2 q2,¬(p2 q2)) + 1 = 1 + 1 + 1 =3. 
 
The proof properly speaking begins establishing the theorem for p(B,A) = 0. 
 

A  A  A  A 
A  A,A D  A,A  A D  
A,*A  A DE  A  A,*A DE 
*A  *A,A DE  *A,A  *A DE 
¬A  *A,A ¬   *A,A  ¬A ¬ 
A,¬A  A DE  *A  ¬A,*A DE 

¬A  ¬A,*A ¬     
¬A,A  ¬A DE 

 
Then we do the same for p(B,A) = 1. 
 

A  A B B  A  A  

A,B  A B   A,B  A,B                 Combination 

(A,B),A  A,A B Combination A,B  A B  

A,(A,B)  A,A B P   A  A B,*B DE 

(A,A),B  A,A B C   A,A  A B,*B D  

(A,A)  (A,A B),* B DE  (A,A),B  A B DE 

A  (A,A B),*B W   A,(A,B)  A B A  

A,B  A,A B PE  A,B  *A,A B DE 

A B  A,A B   A B  *A,A B  

A B,*A B  A DE  A B,*(A B)  *A DE 

*A B  *A B,A DE  A B,*(A B)  ¬A ¬ 

¬A B  *A B,A ¬   *(A B)  *(A B),¬A DE 

A B,¬A B  A DE  ¬(A B)  *(A B),¬A ¬  

   A B,¬(A B)  ¬A  
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A  A B B  A  A  

A+B  A,B +   A,A  A                    D  

A+B,*B  A DE  B  B             

A+B,*B  A,A D  A  *A,A DE 

A,(A+B,*B)  A DE  A+B  (*A,A),B +  

(*A,A+B),*B  A C   A+B  *A,(A,B) A 

*A,A+B  A,B DE  A,A+B  A,B DE 

   A,A+B  A+B + 

*A,A+B  A+B +  A+B  *A,A+B DE 

A+B  A,A+B DE  A+B,*(A+B)  *A DE 

A+B,*(A+B)  A DE  A+B,*(A+B)  ¬A ¬ 

*(A+B)  *(A+B),A DE   *(A+B)  *(A+B),¬A DE 

¬(A+B)  *(A+B),A ¬   ¬(A+B)  *(A+B),¬A ¬  

A+B,¬(A+B)  A DE  A+B,¬(A+B)  ¬A DE 

     

A  A   A  A  

*A  *A DE  *A  *A DE 

¬A  *A ¬   ¬A  *A ¬  

¬A  ¬A ¬  ¬A  ¬A ¬ 

¬A  ¬A,¬A D  ¬A,¬A  ¬A D  

*¬A,¬A  ¬A DE  ¬A  *¬A,¬A DE 

*¬A  ¬A, *¬A DE  ¬A,*¬A  *¬A DE 

¬¬A  ¬A,*¬A ¬   ¬A,*¬A  ¬¬A ¬ 

¬¬A,¬A  ¬A DE  ¬¬A  *¬A,¬¬A ¬  

   ¬A,¬¬A  ¬¬A DE 

 

Finally let us consider the case p(B,A) > 1, i.e., when B is not an immediate 

subformula of A. The key is the admissibility of the cut rule for NWPLC. 

Using induction, if p(B,A)=n+1, there is some C such that p(B,C)+ p(C,A) 

= n+1 and hence p(B,C),p(C,A) < n+1. In this case, by induction hypothesis, con-

secutions  A ;¬A  C, A ;¬A  ¬C, C ;¬C  B y C ;¬C  ¬B are derivable. 
 

   C,¬C  B hypothesis 

 A,¬A  C  C  B,*¬C hypothesis & DE 

 A,¬A  B,*¬C Cut 

 (A,¬A),¬C  B DE 

A ;¬A  ¬C  ¬C  *(A,¬A),B hypothesis & DE 
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 A ;¬A├ *(A,¬A),B  Cut 
 (A,¬A),(A,¬A)├ B  DE 
 (A,¬A)├ B  C├ 

 
The derivation of A,¬A├ ¬B is similar. 
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NOTES 
 

* This work was supported by the Spanish Ministerio de Ciencia y Tecnología, 
research project BFF2003-08998-CD03-03 “La geometría de la demostración”.  

1 KT is obtained adding to a suitable axiomatization of classical propositional 
logic the axiom schemes K K (A ⊃ B) ⊃ ( A ⊃ B) and T A ⊃ ◊A, and the neces-
sitation  rule ├A →├ A. 

2 Bryson Brown claims that preservationist paraconsistent logics are not subject 
to this objection. 

3 These are the unary connectives ! (of course) and ? (why not). 
4 See Belnap (1996). The P scheme comes from Belnap (1982) while the A 

scheme is due to Wansing (1994). 
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