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1. INTRODUCTION

Y-products and their subspaces have been studied since 1950s. Probably
the first important paper on this topic appeared in 1959. It was the paper
of Corson [10] containing several results on normality of ¥-products of com-
plete metric spaces. In the same year another paper, due to Glicksberg [19],
appeared. It dealed with Cech-Stone compactifications of products. Among
other things it contained a theorem saying that the Cech-Stone compactifi-
cation of a Y-product of compact spaces is the respective product. During
the next twenty years X-products and their generalizations were studied by
Russian mathematicians B. Efimov [15], A.P. Kombarov [38, 39, 40], V.I. Ma-
lyhin [41], A.V. Efimov and G.I. Certanov [14], S.P. Gul’ko [22]. We will not
deal with Y-product of general topological spaces but we pay attention to the
Y-product of real lines, which is the space

Y(T)={z €R : {y €T :z(y) #0} is countable}

equipped with the topology of pointwise convergence, inherited from the prod-
uct space R'. The class of compact spaces lying in X(I') for some I' became
interesting as, due to Amir and Lindenstrauss [2], it contains all Eberlein
compact spaces. A compact space is called Eberlein if it is homeomorphic to
a weakly compact subset of a Banach space. By the mentioned result of [2] a
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compact space is Eberlein if and only if it is homeomorphic to a subset of the
space

o) ={z €R" :Ve >0 {yel:|z(y)| > e} is finite}

for some set I'. Due to a result of Grothendieck [20] (which is in this special
case elementary) it does not matter whether we consider ¢(I') with the weak
topology or with the topology of pointwise convergence. In [6] Y. Benyamini,
M.E. Rudin and M. Wage showed that Eberlein compacta are stable with re-
spect to continuous images. In the same paper they gave a consistent example
of non-Eberlein compact space lying in X(T"). In the same year E. Michael
and M.E. Rudin [47] gave another somewhat simpler proof of the mentioned
stability result. Further, they introduced the notion of Corson compact space
for compact spaces lying in 3(I"). They claimed that Corson compact spaces
are stable with respect to continuous images, and that the proof is virtually
the same as their proof for Eberlein compacta. Such a proof can be called
similar, but some not completely trivial additional work is needed. In the
same year S.P. Gul’ko [22] independently obtained a stronger result on stabil-
ity of countably compact subsets of 3(I') to quotient mappings. Another two
proofs of stability of Corson compacta to continuous images were given by G.
Gruenhage [21]. It is done using some covering properties which characterize
Corson compact spaces, and also with the aid of certain games.

In 1980s many functional-analytic properties of Corson compact spaces
were established. This investigation had, roughly speaking, two directions.
The first one was studying which properties of Eberlein compacta and weakly
compactly generated spaces are still valid for Corson compacta and associated
Banach spaces. The second one was studying how large is the gap between
Eberlein compacta and Corson compacta. As for the latter, the first consis-
tent example of a non-Eberlein Corson compactum was given already in [6].
Absolute examples were given by K. Alster and R. Pol [1] and M. Talagrand
[60]. Further examples are in [61] and [5]. On the other hand, in [1] it is proved
that the space of continuous functions on a Corson compact space is Lindelof
in the pointwise topology. Later R. Pol [59] gave a characterization of Corson
compact spaces in terms of a Lindelof type property of the space of contin-
uous functions, see [3, Section IV.3]. For the weak topology, the situation is
different. Under continuum hypothesis there exists a Corson compactum with
the space of continuous functions not being weakly Lindeldf, see [5].

M. Valdivia in [63] started to study a class of Banach space defined by a
Corson type property. These were those Banach spaces for which there is a
linear, one-to-one weak™ continuous mapping of the dual into 3(T") for a set I'.
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This class was given name weakly Lindelof determined spaces by S. Argyros
and S. Mercourakis in [4]. It follows from [51] (for an easy proof see [18]) that
these are exactly the Banach spaces with Corson dual unit ball.

In [63] M. Valdivia constructed a projectional resolution of the identity op-
erator on every weakly Lindelof determined space. S. Argyros, S. Mercourakis
and S. Negrepontis [5] observed that some properties of Corson compact spaces
are shared by a larger class. In particular, they proved the existence of the
retractional resolution of the identity on every compact subset of R which
has a dense intersection with X(T"). This class was further studied by M. Val-
divia [64], [65]. R. Deville and G. Godefroy [11] introduced the name Valdivia
compact spaces for this class.

Valdivia compact spaces are closely related with Markushevich bases, see
[65]. An independent investigation in this area was done by A. Plichko, see
e.g. [54, 53, 55, 56].

Recently several results on structure of Valdivia compact spaces were ob-
tained by the author. They contain strong non-stability properties of the class
of Valdivia compacta [30, 32, 34]. Some positive stability results, together with
a characterization of Valdivia compacta generalizing R. Pol’s characterization
of Corson compacta, are given in [31]. Interferences of Valdivia compacta with
Asplund spaces are studied in [35].

The aim of this survey is to give an exposition on structure of Valdivia
and Corson compact spaces. We would like to include elementary facts and
mainly the recent results, as well as include basic open questions. The paper
is organized as follows.

The rest of the first chapter contains definitions of basic notions and the
development of several (more or less elementary, but very powerful) technical
tools which will be often used in the sequel.

The second chapter is devoted to the characterization of Valdivia compact
spaces and a related class of Banach spaces. This generalizes Pol’s characteri-
zation of Corson compact spaces and has several applications in the following
chapters.

The third chapter deals with topological properties of the class of Valdivia
compacta. It contains many stability and non-stability results.

In the fourth chapter we study some classes of Banach spaces associated
with Valdivia compacta. Some structural properties (resolutions of the iden-
tity, Markushevich bases) are included, as well as stability and non-stability
results.

The fifth chapter is devoted to C'(K) spaces. It contains results on duality



4 O.F.K. KALENDA

(i.e. on the relations of Valdivia properties of K and the space C(K)), as well
as stability and non-stability results on C'(K) spaces.

In the last chapter we collect some illustrative examples of Valdivia com-
pact spaces and Valdivia type Banach spaces.

We will use basic notions from topology and Banach space theory. All
topological spaces are assumed to be Hausdorff. For a background on topology
we refer to [16]. That on Banach spaces can be found in several classical books
or in the nice recent lecture notes [24].

The author is grateful to several colleagues for many discussions and com-
ments. Thanks are namely due to J. Castillo, M. Fabian, P. Holicky, A.N.
Plichko, D. Yost and V. Zizler.

1.1. ¥-sUBSETS, CORSON AND VALDIVIA COMPACTA — BASIC DEFINI-
TIONS In this section we give definitions of basic notions which will be used
throughout all the paper. We begin by recalling the following notation.

NOTATIONS. Let I' be an arbitrary set.
(i) For z € R' we put suppz = {y € T : 2(y) # 0}.
(ii) We put X(I') = {z € R' : suppz is countable}.

Next we recall the definition of Corson and Valdivia compact spaces. We
do it using an auxiliary notion of »-subset. This turned out to be useful to
make the expression easier.

DEFINITION 1.1. Let K be a compact space.

(i) We say that A C K is a X-subset of K if there is a homeomorphic
injection h of K into some R! such that h(A) = h(K) N S(T).

(ii) K is called a Corson compact space if K is a 3-subset of itself.

(iii) K is called a Valdivia compact space if K has a dense Y-subset.

(iv) We say that K is a super-Valdivia compact space if each xz € K is
contained in some dense ¥-subset of K.

Let us remark that the ordinal segment [0, w;] is a Valdivia compact space
which is not super-Valdivia, in fact its only dense X-subset is the open interval
[0,w1) (see Example 1.10 below). Further, the cube [0, 1] is a super-Valdivia
compact space which is not Corson for any uncountable I" (see Theorem 3.29
below).

In study of Banach spaces naturally appear compact spaces which belong
to more general classes. This is the reason why we introduce the following
definition.
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DEFINITION 1.2. Let s be an infinite cardinal.

(i) If T is any set, we put X, (') = {z € R'' : cardsuppz < k}.

(ii) We say that A C K is a ¥,-subset of K if there is a homeomorphic
injection h of K into some R! such that h(A) = h(K) N I, (T).

(iii) K is called a k-Corson compact space if K is a Y,-subset of itself.

(iv) K is called a k-Valdivia compact space if K has a dense Y,-subset.

In this setting Corson means the same as N{-Corson, and Valdivia is simply
N;-Valdivia. Similar classes with a different notation were studied for example
in [15].

Corson and Valdivia compacta can be characterized using the notion of a
separating family. Let us recall this notion.

DEFINITION 1.3. Let X be a set and I/ a family of subsets of X.

(i) For any z € X we put U(z) ={U e U : z € U}.

(ii) We say that U separates points of X if, whenever z,y € X are distinct,
then there is U € U containing exactly one of the points z, y; i.e. U(z) # U(y)
whenever x # y.

In the investigation of Valdivia compacta the following notions of tightness
and closedness will be used very often.

DEFINITION 1.4. Let X be a topological space.

(i) We say that X is a Fréchet-Urysohn space if, whenever z € X and
A C X are such that z € A, then there is a sequence z,, € A with z, — z.

(ii) We say that the space X is Fréchet-Urysohn with respect to G5 subsets
if, whenever z € X and A C X is a G set such that 2 € A, then there is a
sequence z, € A with z,, — =x.

(iii) We say that the space X has tightness x if, whenever z € X and
A C X are such that € A, then there is a subset B C A with card B < &
such that z € B.

(iv) We say that the space X has strong tightness r if, whenever z € X
and A C X are such that 2 € A, then there is a subset B C A with card B < x
such that z € B.

DEFINITION 1.5. Let X be a topological space and s be an uncountable
cardinal.

(i) We say that X is k-compact if every open cover of X with cardinality
strictly less than k has a finite subcover. In particular, ¥;-compact spaces are
called countably compact.
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(i) We say that A C X is s-closed if C C A for every C C A with
card C' < k. In particular, Ni-closed subsets are called countably closed.

Let us remark that a space X is k-compact if and only if every centered
family of closed subsets of X which has cardinality strictly less than s has
nonempty intersection. It is easy to check (cf. [33]) that a k-closed subset of
a k-compact (in particular compact) space is k-compact.

1.2. ELEMENTARY FACTS ON X-SUBSETS AND VALDIVIA COMPACTA In
this section we collect basic facts on 3-subsets, including several useful char-
acterizations. These facts will be widely used in next chapters. We start by
the following lemma.

LEMMA 1.6. (i) The set X(T') is countably closed in R' for every I'. In
particular, if A is any Y-subset of a compactum K, then A is countably closed
in K.

(ii) 3(T) is a Fréchet-Urysohn space for every I'. In particular, any -
subset of a compact space is a Fréchet-Urysohn space.

Proof. (i) This is obvious.

(ii) This follows immediately from [49, Theorem 2.1]. Let us give the
proof. For every z € X(I') the set suppz is countable, so we can fix an
enumeration suppz = {yi(z),y2(z),...}. If suppz is finite, we fill up the
sequence (yx(z)) with some element of I'. Now let A C 3(T'), z € X(I),
z € A. We can construct by induction a sequence of z, € A such that
|20 (Ve (1)) — z((z)))| < 2 for 0 <1 < nand 1 <k < n, where 29 = z.
Then clearly z,, — x (since the convergence in the product topology is the
coordinatewise one). 1

This lemma enables us to prove the following uniqueness result [30, Propo-
sition 2.4].

LEMMA 1.7. Let K be a compact space and A, B be two X-subsets of K.
If M C K is a set such that AN BN M is dense in M, then ANM = BN M.
In particular, A = B whenever AN B is dense in K.

Proof. Let z € AN M. By the assumption we have z € ANBN M. As A
is Fréchet-Urysohn by Lemma 1.6(ii), there is a sequence z,, € ANBNM with
Zn — z. As B is countably closed by Lemma 1.6(i), we get € B. It follows
that AN M C BN M. The inverse inclusion can be proved by interchanging
roles of A and B. |1
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LEMMA 1.8. Let A be a subset of ¥(I'). Then the following assertions are
equivalent.

(i) A is countably compact.

(ii) A is closed and coordinatewise bounded in 3(T').

(iii) The closure K of A in R' is compact and A is a ¥-subset of K.

Proof. (i) = (ii) Let A be countably compact. Each coordinate projection
is a continuous function, hence it is bounded on A. Therefore A is coordinate-
wise bounded. If A were not closed in (T, there would exist z € A\ A. By
Lemma 1.6(ii) there is a sequence z, € A with z,, — z. As, A is countably
compact, the sequence z, has a cluster point in A. But its only cluster point
in 3(I") is = which does not belong to A. This is a contradiction.

(ii) = (iii) Let A satisfy the assumptions of (ii). Then K, the closure of
A in R", is closed and coordinatewise bounded, hence it is compact. Further,
A=KnNX(T) as A is closed in X(T"). This completes the proof.

(iii) = (i) If A is a X-subset of K, then A is countably closed in K by
Lemma 1.6(i), hence A is countably compact. 1

Next we give some characterization of 3-subsets. The point 2 generalizes
the Rosenthal type characterization of Corson compact spaces (see e.g [47]).

PROPOSITION 1.9. Let K be a compact space and A be a dense subset of
K. Then the following assertions are equivalent.

(i) A is a X-subset of K.

(ii) There is a family U of open F, subset of K which separates the points
of K, and A = {z € K | U(x) is countable}.

(iii) A is homeomorphic to a countably compact subset of ¥(I') for some
I' and K = A.

Proof. (ii) = (i) Let U be such a family. As each U € U is an open F,
set, it is well-known that there is a continuous function fr : K — [0, 1] with
U= fljl((O, 1]). Let us consider the mapping h : K — [0,1]¥ defined by
h(z)(U) = fu(z) for U € U and = € K. Then h is continuous, as each fr is
continuous, and it is one-to-one, as U separates points of K. From the choice
of fr it is clear that h(A) = h(K) N X(I).

(i) = (ii) Suppose that K C RF and A = KNX(T). Fory €T, p € Q
p>0andj=1,2putU,,,;={z € K | (-1)z(y) >plandU = {U,,j: v €
I''pe Qp >0,j =1,2}. Then clearly U is a family of open F, sets which
separates points of K. Let B = {z € K : U(x) is countable}. It follows from
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the construction that A C B. By the already proved implication (ii)=-(i) the
set B is a ¥-subset of K, hence A = B by Lemma 1.7.

(i) = (iii) Suppose that K C R' and A = K N X(T'). As K is compact,
it is clearly coordinatewise bounded, so K C P = [[,cr[—a,,a,] for suitable
numbers a, € (0,00). By [19, Theorem 2] the space P is the Cech-Stone
compactification of PNY(T"). Further, ¥(T") is a normal space by [10, Theorem
1]. Now, as A is closed in X(T'), it follows by [16, Corollary 3.5.7] that A = K
is the Cech-Stone compactification of A.

(iii) = (i) Let B C X(I') be countably compact and g : A — B be a
homeomorphism. Let h : K — B be the continuous extension of g. By Lemma.
1.8 and the already proved implication (i)=>(iii) we have that B = 3B, hence
there is a continuous function b’ : B — K extending ¢~!. Now it is obvious
that b’ = h~1, so h is a homeomorphism and h(A4) = B = h(K)N%(T), which
completes the proof. |

Now we are ready to give the following basic examples of Valdivia and
non-Valdivia compacta.

EXAMPLE 1.10. (i) The ordinal segment [0, w;] is a Valdivia compactum
and the set [0,w) is its unique dense Y-subset.

(ii) The ordinal segment [0, @] is not Valdivia provided o > wo.

(iii) The quotient space made from [0, wq] by identifying points w and wy is
not Valdivia. We will refer to this space as to the interval [0, w;]| with collated
sequence.

(iv) The quotient space made from [0,wq] x {0,1} by identifying points
(w1,0) and (wq,1) is not Valdivia. This space will be called collated double-
interval wy.

Proof. (i) To see that [0,w;) is a Y-subset it is enough to consider the
embedding h : [0,w;] — [0,1]%) defined by h(a) = X[0,a)- To prove the
uniqueness let us remark that [0, w;] has a dense set of isolated points, which
are, of course, contained in every dense subset of [0,w;]. Then it suffices to
use Lemma 1.7.

(ii) This is a result of Yabouri, a proof is given in [11, Proposition II-2].
We give a simple proof based on Rosenthal type characterization of Valdivia
compacta given in Proposition 1.9. Suppose that A is a dense Y-subset of
[0,]. Then A contains all isolated ordinals (by the density of A). Further,
A does not contain the point we, as A is Fréchet-Urysohn by Lemma 1.6 and
wo belongs to the closure of the set of all smaller isolated ordinals without



VALDIVIA COMPACT SPACES 9

being limit of any sequence. Let U be a family of open F, subsets of [0, a]
determining A in the sense of Proposition 1.9. As wy ¢ A, the set U(w2) is
uncountable. Let Uy, v < wy be distinct members of U(ws). For every v < w
there is 8, < wo with wy € (By,w2] C U,. Then B = sup,.,, By < wa. It
follows that U, € U(B + 1) for every v < wy, hence U(B + 1) is uncountable,
which is a contradiction.

(iii) This is a result of M. Valdivia [66]. Let us denote this space by L.
Suppose that A is a dense Y-subset of L. Then A contains all isolated points of
L, which are exactly the isolated ordinals. Further, A is countably closed, and
each point of L (including the collated point {w, w1 }) is the limit of a sequence
of isolated ordinals. It follows that A = L. Then it follows by Lemma 1.6 that
L is Fréchet-Urysohn. But the collated point {w,w;} belongs to the closure
of the interval (w,w;) without being limit of any sequence from this set. This
is a contradiction.

(iv) This is proved in [30, Example 3.4]. Let us denote this compactum by
K and suppose that A is a dense Y-subset of K. As A contains all isolated
points and is countably closed (Lemma 1.6), it follows that [0, w;) x{0,1} C A.
As the collated point {(w1,0), (w;,1)} is limit of no sequence of points from
[0,w1) x {0,1}, it follows from Lemma 1.6 that A = [0,w;) x {0,1}. Now, the
characteristic function X[g ., )x {0} has no continuous extension on K, hence A
is not a Y-subset of K by Proposition 1.9. Let us remark that [0, w;) x {0,1}
is homeomorphic to a countably compact subset of 3(I"). This shows that the
assumption K = A in condition 3 of Proposition 1.9 cannot be dropped. 1

We continue by the following easy lemma, whose importance was observed
already in [30, 31].

LEMMA 1.11. Let K be a compact space and A C K be a dense countably
compact subset of K. Then G N A is dense in G whenever G C K is Gg.

Proof. Let G C K be a G§ set. Then there are open sets U, C K such
that G = (,cny Un. Let z € G and W be an open neighborhood of z. We will
show that W N ANG # (. To this end we construct by an easy induction
open sets V,, n € N such that

VicW, z€VyneN, VioaCVonUn---NU,neN

As A is dense in K, we have V,, N A # () for every n. Moreover, V.1 C V,,
and A is countably compact, hence AN, . Vi # 0. But by the construction
we have (], cy Vi € G N W which completes the argument. |
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Let us remark that the previous lemma can be proved also by another
argument, known in the theory of pseudocompact spaces. As A is countably
compact, it is also pseudocompact (i.e. each continuous function on A is
bounded). Suppose that G is a nonempty G4 subset of K. By regularity of
K we can without loss of generality suppose that G is closed. Then there is a
non-negative continuous function g on K such that G = ¢~ '(0). But g attains
on A its minimum, hence A N G # 0.

We preferred the direct argument, as it gives a better idea of how to prove
a more general lemma which we formulate in the next section.

The above lemma has the following immediate consequences.

COROLLARY 1.12. Let K be a compact space with a dense set of G
points. Then there is at most one dense Y-subset of K.

Proof. This follows immediately from Lemma 1.11 and Lemma 1.7. 1

PRrROPOSITION 1.13. Every continuous image of a super-Valdivia compact
space is Fréchet-Urysohn with respect to G sets.

Proof. Let K be a super-Valdivia compact space, G C K a G4 set and
z € G. As K is super-Valdivia, there is a dense Y-subset A of K with z € A.
By Lemma 1.11 the intersection AN G is dense in G, hence x € AN G. Now,
A is Fréchet-Urysohn by Lemma 1.6 and thus there is a sequence z,, € GN A
with z, — z. Hence K is Fréchet-Urysohn with respect to G sets. Finally,
it is enough to observe that spaces which are Fréchet-Urysohn with respect to
G5 sets are stable to closed continuous images. |

In the previous proposition super-Valdivia cannot be weakened to Valdivia,
as witnesses the Valdivia compactum [0,w;]. However we do not know the
answer to the following question.

QUESTION 1.14. Let K be a Valdivia compact space which is Fréchet-
Urysohn with respect to G sets. Is then K super-Valdivia?

In Lemma 1.11 we only assumed that A is a dense countably compact
subset of K. If we assume that A is even a dense Y-subset of K we get a
stronger statement, contained in the following lemma. It is proved in [34].
The proof is rather technical, we give only a sketch of it.
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LEMMA 1.15. Let K be a compact space and G = (), cy U, where each
U, is an open subset of K. If A is a dense Y.-subset of K, then GN A is dense
in G.

Proof. (Sketch) Let A be a fixed dense X-subset of K. If G is the closure
of an open set, then G N A is dense in G by density of A. Now suppose that
G = UNYV where U and V are disjoint open sets. This special case was
proved already in [30]. Without loss of generality suppose that K = U U V.
Let £ € UNV and assume W C K is an open neighborhood of z such
that WNUNVNA=®. Then ANW is a dense Y-subset of W. The sets
ANWNU and ANW NV are disjoint relatively clopen subsets covering ANW
(as WNUNVNA=0). Let f be the characteristic function of W N U N A.
This is a bounded continuous function on A N W. By Proposition 1.9 this
function can be continuously extended on W. But the point z belongs both
to WNUNA and to WNV N A, which is impossible.

The proof continues in several steps. Firstly, it can be proved by induction
that the assertion of the lemma does hold if G = U1 N---NU,, with Uy, ... .U,
open and pairwise disjoint. The next step is to show that, if G = V;N---NV,
and V; are open, not necessarily disjoint, then G can be expressed as the
union of finitely many sets of the form U; N---NU, with Uy, ... ,U; open and
pairwise disjoint. Finally, to show the general version, we can use countable
compactness of A. |

We finish this section with the following results on those compact spaces
which are continuous images of Valdivia compact spaces.

LeEMMA 1.16. Let K be a compact space. Then K is a continuous image
of a Valdivia compact space if and only if K has a dense subset which is
continuous image of a countably compact subset of ¥(T).

Proof. The ‘only if’ part is trivial. To prove the ‘if’ part let B be a count-
ably compact subset of 3(I') and f : B — K be a continuous mapping with
f(B) dense in K. By Lemma 1.8 the compact B is Valdivia. By Proposition
1.9 we have B = 3B, hence there is F : B — K, a continuous extension of f.
It follows that K is a continuous image of B. 1

LEMMA 1.17. Let K be a compact space with a countable dense set of G4
points. If K is a continuous image of a Valdivia compact space, then K is
metrizable.
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Proof. Let L C R" be a compact space with A = LNY(I") dense in L, and
f: L — K be a continuous onto mapping. Let C' be a countable dense subset
of K, consisting of G5 points. As f(A) is dense in K and countably compact,
we get by Lemma 1.11 that C C f(A). Hence, we can choose a countable set
D C A with C = f(D). Then D is clearly metrizable (as a separable compact
subset of ¥(T)), and f(D) = C = K. It remains to use the well-known fact
that metrizable compact spaces are stable to continuous images. |

As an immediate consequence of this lemma we get the following example.

ExAMPLE 1.18. The following compact spaces are not continuous images
of Valdivia compacta.

(i) Any non-metrizable compactification of a separable completely metriz-
able space, e.g. ON, SR, the Bohr compactification of R (see e.g. [36]).

(ii) The double arrow space (see e.g. [17, Section 2.3]) and any its non-
metrizable modification from [27].

(iii) The Kunen compact space (see [48, Section 7]).

1.3. SOME REMARKS ON k-CORSON AND k- VALDIVIA COMPACT SPACES
In this section we collect some basic facts on k-Corson and k-Valdivia com-
pacta for k possibly larger than X;. It turns out that this theory for x regular
is completely analogous to that for ordinary Corson and Valdivia compacta,
as described in the previous section. However, the case of singular k is es-
sentially different. We will almost not give the proofs in this section, as they
are either straightforward but technical or very similar to those from previous
section.

We start by an analogue of Lemma 1.6.

LEMMA 1.19. Let x be an uncountable cardinal and I' an arbitrary set of
cardinality at least k.
(i) The set ¥, (T) is k-closed in R' if and only if k is regular.
(ii) If k is regular, then ¥, (") has strong tightness k.
(iii) If k is singular, then X, (I") has tightness k but not strong tightness .

Proof. (Remarks on the proof) (i) This is trivial using the definition of
regularity of a cardinal.

(ii) This can be proved by an induction argument similar to that used in
the proof of Lemma 1.6.
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(iii) The positive part follows from the point (ii) with £ instead of x. The
negative part can be proved by a transfinite construction using singularity of

5. 1

We continue by a lemma generalizing Lemma 1.7.

LEMMA 1.20. Let K be a compact space and k a regular uncountable
cardinal. If A and B are two X.-subsets of K, and M C K is such that
MNANB isdense in M, then ANM = BN M.

Proof. The proof is completely analogous to that of Lemma 1.7. 1

Next we give an example related to Example 1.10.(i).

EXAMPLE 1.21. (i) If  is a regular uncountable cardinal, then the ordinal
segment [0, k] is x-Valdivia but not x-Corson. Moreover, [0, %) is its unique
dense X .-subset.

(ii) If  is a singular uncountable cardinal, then [0, x] is x-Corson. More-
over, both [0, k) and [0, k] are dense ¥,-subsets of [0, x].

(iii) [0,1]" is k-Valdivia for every s and I. If & is regular and cardT' > &,
or « is singular and card ' > k, then it is not x-Corson.

Proof. (i) This is completely analogous to Example 1.10(i).

(ii) To see that [0, k) is a ¥,-subset, it is enough to consider the embedding
h: [0, k] — [0, 1)) defined by h(a) = X[0,a)- Now let us prove that [0, k] is k-
Corson. As & is singular, there is a cardinal A < s and cardinals oy < K, v < A
such that k = sup,.) a,. For v < A put U, = {(B, 4] : B < ay}. Further,
put U = {J, .\ Uy U{{0}}. Then U is clearly a family of clopen sets which
separates the points of [0, k). Moreover, it is clear that cardi, () < card
for every 8 < k and v < A, and U(k) = (. Therefore cardU(f) < k for every
B < k. Now it is clear that g : [0,x] — R¥ defined by g(a)(U) = xv(a)
witnesses that [0, x] is x-Corson.

(iii) Tt follows immediately from the definitions that [0,1]" is x-Valdivia.
If & is regular and cardI’ > &, then [0,1]" has not strong tightness &, so by
Lemma 1.19 it is not x-Corson. The assertion for « singular follows from the
previous one applied to k™. |

The above results show that there is a great difference between singular
and regular cardinals. However, it seems not to be clear how great is this
difference. So we formulate several questions.
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QUESTION 1.22. Let s be an uncountable singular cardinal.

(i) Has every x-Corson compact space strong tightness x?

(ii) Is [0, 1]® k-Corson?

(iii) Is there a k-Valdivia compactum of weight x which is not k-Corson?

Let us remark that positive answer to the first question would give answers
to the last two ones.
Further we give a generalization of Lemma 1.11.

LEMMA 1.23. Let K be a compact space, x an uncountable cardinal and
A a dense k-compact subset of K. If G C K is the intersection of strictly less
than k open sets, then G N A is dense in G.

Proof. (Remarks on the proof) This can be proved by refining the argu-
ment of Lemma 1.11, using transfinite induction on . In [33, Lemma 3] it
is proved for s being a successor cardinal. In fact, we will use only this case,
but the proof of general case is exactly the same. |

We finish this section by the following easy lemma on continuous images
and preimages of k-closed sets. The proof is trivial and we omit it.

LEMMA 1.24. Let f: X — Y be a continuous mapping between topolog-
ical spaces and x be an uncountable cardinal.

(i) f~Y(B) is k-closed in X whenever B is a k-closed subset of Y.

(ii) If f is moreover a closed mapping, then f(A) is k-closed in Y whenever
A is k-closed in X .

2. POL TYPE CHARACTERIZATION OF VALDIVIA COMPACTA

In this chapter we give a characterization of Valdivia compact spaces,
which generalizes Pol’s characterization of Corson compact spaces [59], [3, Sec-
tion IV.3]. Our exposition follows [31], where this characterization is proved
and used to derive some results on open continuous images of Valdivia com-
pact spaces. Here we restrict ourselves to the characterization, applications
will be given in next chapters.

We start with the following definition.

DEFINITION 2.1. If ' is an arbitrary set, we denote by Lr the one-point
Lindeléfication of the discrete space I', i.e. Lr = T'U {oc} where each point
of I is isolated in Lt and neighborhoods of co are complements of countable
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subsets of I'. A topological space X is called primarily Lindelof if it is a
continuous image of a closed subset of (Lp)" for some set I

Basic properties of the class of primarily Lindelof spaces are summed up
in the following lemma, which is proved for example in [3].

LEMMA 2.2. (i) The class of primarily Lindelof spaces is closed with re-
spect to closed subspaces, countable unions, countable products and continu-
ous images.

(ii) Every primarily Lindeldf space is Lindel6f.

The fact that the class of primarily Lindelof spaces is closely related to the
Y-product X(T") is showed by the following proposition.

PROPOSITION 2.3. Let X be a primarily Lindelof space. Then there is an
one-to-one linear continuous mapping of C,(X), the space of real continuous
functions on X endowed with the topology of pointwise convergence, into %(T)
for a set I

This result, which can be viewed as a generalization of a remark of Corson
[10, Proposition 5], is due to S.P. Gul’ko. The proof is done by transfinite
induction, using long sequences of retractions on closed subsets of (Lp)".
It can be found in [59, Proposition 1.4] or [3, Proposition I1V.3.10]. A nice
exposition on duality of spaces like X(T") and primarily Lindelof spaces is given
in a recent survey paper by S.P. Gul’ko [23].

We will need a modification of the topology of pointwise convergence.
This topology was used for example by M. Valdivia in [65]. We define also an
analogical modification of the weak topology of a Banach space.

DEFINITION 2.4. (i) Let K be a compact space and A be a subset of K.
By 74 we denote the topology of the pointwise convergence on A, i.e. T4 is
the weakest topology on C(K) such that f — f(a) is continuous for every
a € A.

(ii) Let X be a Banach space and A C X*. Then we denote by wy the
weakest topology on X such that each functional from A is continuous.

Let us remark that both 74 and w4 are locally convex topologies, and that
74 is Hausdorff provided A is dense in K, and w, is Hausdorff whenever the
linear span of A is weak™® dense in X*. This will be always the case in the
applications.
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Now we are ready to formulate the announced characterization. These
theorems are proved in [31, Section 2]. We sketch the proofs later.

THEOREM 2.5. Let K be a compact space and A be a dense subset of K.
Then the following two conditions are equivalent.

(i) A is a X-subset of K.

(ii) A is countably compact and (C(K),T4) is primarily Lindeldf.

As an immediate consequence we get the following result generalizing Pol’s
characterization to completely regular countably compact spaces.

COROLLARY 2.6. Let X be a completely regular countably compact space.
Then X is homeomorphic to a subset of X(I') for some set ' if and only if
Cp(X), the space of continuous functions on X with the topology of pointwise
convergence, is primarily Lindelof.

Proof. As X is countably compact, every continuous function on X is
bounded, and hence the space Cp,(X) is canonically homeomorphic to (C(8X),
Tx). Further, it follows from Proposition 1.9 that X is homeomorphic to a
subset of X(T') if and only if X is a 3-subset of 5X. Now it is enough to use
Theorem 2.5. 1

We continue by the following theorem generalizing [4, Proposition 1.2].

THEOREM 2.7. Let X be a Banach space and A be a weak* dense subset
of the dual unit ball Bx-. Then the following three conditions are equivalent.

(i) There is a linear weak* continuous one-to-one mapping T : X* — Rl
such that A = Bx- NT~Y(X(T)).

(ii) A is a convex symmetric Y-subset of (Bxx,w™).

(iii) A is weak™ countably compact and (X, w,) is primarily Lindeldf.

The proof of Theorem 2.5 uses Pol’s methods (see [3, Section IV.3]), to-
gether with some additional ideas. We formulate two of them as lemmas, since
they can be of use also elsewhere. The first of them is the following simple
result on closedness of certain spaces of continuous functions. This follows
[31, Lemma 2.9]. The formulation is due to P. Holicky.

LEmMMA 2.8. Let ¢ : K — L be a continuous surjection between compact
spaces and A be a dense subset of K. Put E = {(z,y) € KxK : ¢(z) = p(y)}.
IfEN(A x A) is dense in E, then the space ¢*(C(L)) ={foq: f e C(L)}
is Ta-closed in C'(K).
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Proof. Let f,—f, where f, € ¢*(C(L)) and f € C(K). First we will
show that f(z) = f(y) whenever ¢(z) = ¢(y). So let ¢(z) = ¢(y), which
means (z,y) € E. By the assumptions there is a net (z,,y,) € EN (A x A)
converging to (z,y). As f, € ¢*(C(L)), we have f,(z,) = f,(y,) for every
v and p. Since z,,y, € A, we get f,,(mﬂ)éf(xﬂ) and f,,(y#)éf(yu), SO
f(zy) = f(yu) for every p. Now it follows from the continuity of f that
flz) = f(y).

So there is a function g : L — R such that f = go . As f is continuous,
 closed and hence a quotient mapping, it follows that g is continuous as well
(see [16, Theorems 2.4.2 and 2.4.3]). It means f € o*(C(L)). 1

The second lemma is the following result on Lindelof property of the topol-
ogy 7. It was proved in [31, Proposition 2.13]. The proof we present here is
a bit more elementary.

LEMMA 2.9. Let K be a compact space and A C K be a countably closed
dense subset. If (C(K),74) is Lindelof, then K = A.

Proof. Put K' = A and let ¢ : K’ — K be the continuous extension of
the identity mapping of A. It is enough to show that 1 (u) # 1(v) whenever
u,v € K"\ A are distinct.

Suppose that u,v € K'\ A are distinct such that (u) = ¥(v) = p.
Clearly p € K \ A. Denote by G the set of open neighborhoods of p, ordered
by the inverse inclusion. Choose U and V open neighborhoods of w and v,
respectively, such that UNV = (). For every G € G choose ug € UNy~1(G)NA
and vg € VN1~ (G)N A. This is possible by density of A in K’. Further put

Wea={f € C(K) | |f($(uc)) — f(d(va))| <1},  Geg.

Clearly each W¢; is a 74-open set in C(K). Moreover these sets cover C(K).
Indeed, it is enough to observe that 1 (ug) — p and ¥ (vg) — p as well. As
(C(K),T4) is Lindelof, there is a sequence G, n € N such that C(K) =
Unen Wa,,- Put H = {¢(ug,) | n € N} and L = {¢(vg,) | n € N}. As
A is countably closed, we have H C A and L C A. Since y~'(H) C U,
¢ (L) C V and 9 | A is a homeomorphism, we have H N L = (. So there
is, by Urysohn’s lemma [16, Theorem 1.5.5], f € C(K) with f [ L = 0 and
f I H=1. Then f belongs to no Wg, , which is a contradiction completing
the proof. |1

Proof. (Sketch of the proof of Theorem 2.5) (i)=-(ii) Let A be a dense
Y-subset of K. It follows from Lemma 1.6 that A is countably compact. It
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remains to show that (C(K),74) is primarily Lindelof. This can be done in
three steps.

Step 1. Reduction to the zero-dimensional case. In this step we show
that it is enough to consider K C {0,1}" with A = K N %(T). The proof will
follow the proof of [31, Proposition 2.10], which refines [3, Proposition IV.3.9].

If A is a dense Y-subset of K, we can suppose that K C [0,1]' and
A=KnNX(T). Let 9 : {0,1}Y — [0,1] be a continuous surjection such that
$~1(0) = {0}. Such a mapping exists, one can take for example 1(z) =
> nen 2. We can define the mapping ¥ : ({0, 1}N)F — [0,1]" by the formula
U (z)(y) = (x(vy)). It is clear that ¥ is a continuous surjection satisfying the
condition

(1) z €N xT) & U(z) € 3(T)

Put L =0 Y(K), B=LNY(NxT)and ¢ =¥ | L. By (1) we get that
A = ¢(B), hence clearly (C(K),74) is homeomorphic to (¢*C(K),75) (where
©*f = f o, see Lemma 2.8). The proof of Step 1 will be finished if we prove
that B is dense in L and ¢*C(K) is 7p-closed in C(L), due to Lemma 2.2.
To this end it is enough to prove the following claim.

a,b € L, p(a) = p(b) =

@) 3 a net (a,,b,) € B x B,¢(a,) = ¢(by,), (ay,b,) = (a,b).

Indeed, to show the density of B it suffices to take a = b, and to prove that
¢*C(K) is Tp-closed in C(L) it is enough to use Lemma 2.8. So let us prove
(2).

Put ¢ = p(a) = p(b). Let G denote the family of all Gy subsets of K
containing ¢, ordered by the inverse inclusion. For any G € G choose some
cg € ANG. This is possible due to Lemma 1.11. The net c¢g converges to ¢
in a strong sense, i.e.

(3) VyeT 3G e GVH € G H C G cy () = (7).

Indeed, it suffices to take G = {z € K : z(y) = ¢(y)}. Now we will construct
ac and bg in the following manner. If cq(y) = (’y) put ag(y) = a(y) and
ba(y) = b(7y), otherwise choose ag(7y),ba(y) € ¥~ (ca(y)) arbitrary. It is
clear that ¢(ag) = ¢(bg) = cg, by (1) we have ag,bg € B and it follows
easily from (3) that ag — a and bg — b. This completes the proof of (2).
Step 2. If K is zero-dimensional, A C K dense, and there is a primarily
Lindelof set M C (C(K,{0,1}),74) which separates the points of K, then
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(C(K),7a) is primarily Lindelof. This is proved in a series of lemmas in [31],
and the proof is completely analogical to the proofs of the respective lemmas
in [3, Section IV.3]. In fact it suffices to check that the arguments of [3], given
for the pointwise topology, work also for 74.

Step 3. If K C {0,1}! such that A = K N %(T') is dense in K, then
(C(K,{0,1}),74) contains a primarily Lindelof space separating the points of
K. Let us define ¢ : Ly — C(K,{0,1}) by putting

_Jm K yEeT,
¢(7)—{0 Y= o,

where 7, is the projection of {0, 1} onto the y-th coordinate. It is clear that
¢ maps Lr to C(K,{0,1}). Let us show that ¢ is continuous to 74. Suppose
that v, is a net in Ly converging to some v € Lr. If v € T, then there is
vy such that for every v > vy we have v, = v, and hence ¢(v,) = ¢(y). If
v = oo, we will prove that ¢(y,) — 0 in 74. Indeed, if x € A then suppz is
countable, thus U = Lr \ supp z is a neighborhood of co. Hence there is some
vy such that v, € U for v > vy. Therefore we have, for v > g, ¢(y,)(z) = 0,
s0 ¢(v)(z) = 0 = p(7)().

By the definition ¢(Lr) is primarily Lindel6f, and it is clear that it sepa-
rates points of K.

(ii))=(i) By Proposition 2.3 there is an one-to-one continuous mapping
T : Cp(C(K),7a) — X(T') for some I'. Further, the evaluation mapping
e: A— Cy(C(K),74) defined by e(a)(f) = f(a), is clearly continuous and
one-to-one, hence T o e is a continuous one-to-one mapping of A into X(T").
As A is countably compact, each closed subset of A is countably compact as
well, and therefore by Lemma 1.8 the mapping T o e is closed. It follows that
A is homeomorphic to a countably compact subset of X(I'). Now, clearly A
is countably closed in K, and hence K = A by Lemma 2.9. It remains to
conclude by Proposition 1.9. 1§

Proof. (Remarks on the proof of Theorem 2.7) 1 = 2 This is trivial.

(ii)=-(iii) Let us consider the canonical embedding e : X — C(Bx~,w")
defined by e(z)(f) = f(z). It is clear from definitions that the mapping e
is a wg — 74 homeomorphism. By Theorem 2.5 the space (C(Bx=),Ta) is
primarily Lindel6f, so it is enough to show that e(X) is 74-closed in C'(Bx~).
Let f be in the T4-closure of ¢(X). As A is convex and symmetric, it follows
that f | A is a symmetric affine function. As A is weak™ dense in By« and f
continuous, we get that f is the restriction to Bx- of a linear functional on
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X*. Since f is continuous on Bx+, it follows from Banach-Dieudonné theorem
(see [24, Corollary 224]) that f € e(X).

(iii)=(i) By Proposition 2.3 there is a linear one-to-one continuous map-
ping Ty : Cp(X,wa) — E(T") for some T'. It is clear from the definition of w4
that span A C Cp(X,w4). By continuity of Tj it follows that Ty(A) is dense
in To(span AN Bx~). But in the same time Ty(A) is closed in 3(I') by Lemma
1.8. Therefore, A = span AN Bx~.Similarly as in the proof of Theorem 2.5 we
get that A is homeomorphic to a countably compact subset of X(I"). Further,
we have Bx+ = $A. This is proved in [31], using an analogue of Lemma 2.9
([31, Lemma 2.18]). The proof is based on a technical construction of certain
linear space endowed with a topology, to be able to interpret the extension of
the identity A — A to A — Bx~ as a linear mapping.

Hence there is a linear mapping 7 : X* — R extending Tj such that
T | Bx~ is weak* continuous. It follows by Banach-Dieudonné theorem [24,
Corollary 224] that T is weak™® continuous. By Lemma 1.8 and Proposition
1.9 we get that T(By-) is a Cech-Stone compactification of T'(A), and so
T | Bx~ is one-to-one, therefore T' is one-to-one as well. The argument can
be completed by Lemma 1.7. 1

We finish this chapter by discussing necessity of the conditions in Theorems
2.5 and 2.7. It turns out that they cannot be improved in any obvious way,
as it is clear from the following example.

EXAMPLE 2.10. (i) Neither in condition (ii) of Theorem 2.5 nor in condi-
tion (iii) of Theorem 2.7 the assumption that the respective space is primarily
Lindel6f can be dropped.

(ii) If K is a compact space and M a dense subset of K which is contained
in a dense Y-subset, then (C(K), 757) is primarily Lindel6f. So the assumption
on countable compactness cannot be dropped. The analogous statement hold
in case of Banach spaces as well.

(iii) The converse of the previous point does not hold. Namely, if K = SN
and A = N, then (C(K),74) is primarily Lindel6f while A is contained in
no dense ¥-subset of K. Moreover, Bg(k)- is not Valdivia, but there is a
weak™ dense convex symmetric subset B C Be (k- such that (C(K),wpg) is
primarily Lindelof.

(iv) If X = ¢1(I") with uncountable I', then there are Aj,..., A4, dense
Y-subsets of Bxs, such that A; is convex symmetric, As is convex non-
symmetric, A is symmetric non-convex and Ay is neither convex nor sym-
metric.
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Proof. (i) This follows from the well-known obvious facts that every com-
pact space is countably compact and not every compact space is Corson (for
example K = A = [0, w;], or the dual unit ball of C[0,w]).

(i) If M C A C K, then (C(K), ) is a continuous image of (C(K), 74).
Similarly, (X, wps) is a continuous image of (X, w,4) whenever M C A C X*.
It remains to use the fact that primarily Lindel6f spaces are closed with respect
to continuous images (Lemma 2.2).

(iii) Tt is well-known and easily follows from the properties of Cech-Stone
compactification that C'(SN) can be canonically identified with /.. The topol-
ogy 7y is then just the pointwise convergence topology on fn.. Thus ¢, with
this topology naturally embeds to RY, being there F,. Hence it is an F, sub-
set of a separable completely metrizable space, so it is primarily Lindelof by a
classical theorem [37, Theorem 7.9] and Lemma 2.2. However, N is contained
in no dense X-subset of SN, as SN is not a Valdivia compactum by Example
1.18.

Further, it follows from Example 1.18 and Theorem 5.3 below that the dual
unit ball of £, is not a Valdivia compactum. But if we put B = ;N By , then
B is convex, symmetric and weak® dense in By: (by Goldstine theorem [24,
Theorem 64]). Further, it is clear that wp = w*. As ¢; is separable, the unit
ball By, in the w* topology, is a metrizable compact space [24, Proposition
62]. Hence (By_,w,) is primarily Lindelof by [37, Theorem 7.9]. Moreover,
by Lemma 2.2 primarily Lindel6f spaces are stable to countable unions, hence
(boo,wB) = (oo, w™) is primarily Lindel6f.

(iv) The dual unit ball of #;(T) is canonically homeomorphic with [—1, 1]F.
Choose vy € I'. Then we have the following.

- Ay = {z € [-1,1]' : suppz is countable} is a dense convex symmetric
Y-subset.

- Ay ={z € [-1,1]' : {y € T : () # 1} is countable} is a dense convex
non-symmetric >-subset.

- Ay ={z e [-1,1]' : {y € T : 2(y) # x(y)?} is countable} is a dense
symmetric non-convex Y-subset.

- Ay ={z e [-1,1]V : {y € T : 2(y) # z(y)?} is countable} is a dense
Y-subset which is neither convex nor symmetric.

The density of each A; follows immediately from the definition of product
topology. The assertions on A; and As are obvious. It is clear that Aj is
symmetric and not convex (for example the constants 0 and 1 belong to Ag
but the constant % does not). Similarly, A4 is neither convex nor symmetric.
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It remains to show that A3 and A4 are Y-subsets. To this end it is enough to
consider the following mappings:

T —x 3
hs(a)(7) = {mgz) o el ek
h4($)(’}’) _ {‘IE(’Y) - x(,YO)Q v E r \ {70}7
z(70) Y = Yo- ]

3. TOPOLOGICAL PROPERTIES OF VALDIVIA COMPACTA

This chapter is devoted to study namely the permanence (and non-perma-
nence) properties of Valdivia compact spaces with respect to topological op-
erations - like taking subsets, continuous images, products, sums and unions.

3.1. SOME GENERAL TOPOLOGICAL PROPERTIES OF VALDIVIA COMPACTA
In this section we collect some easy useful topological properties of Valdivia
compact spaces. We begin by the following observation.

THEOREM 3.1. Every infinite Valdivia compact space contains a one-to-
one convergent sequence.

Proof. Let K be an infinite Valdivia compact space, and A be a dense
Y-subset of K. Then A is clearly infinite, and since it is countably compact
(Lemma 1.6), it has an accumulation point a. Now, a belongs to the closure
of A\ {a}, and therefore, by Lemma 1.6, there is a sequence a,, € A\ {a}
converging to a. It is clear that this sequence can be chosen one-to-one. [

As a corollary we get the following example.

ExaMPLE 3.2. Every Valdivia compact space which is homeomorphic to
a subset of AN is finite.

Proof. By [16, Theorem 3.5.4] the space SN contains no one-to-one con-
vergent sequence. It remains to use Theorem 3.1. |

We continue by the following theorem which is a partial converse of Corol-
lary 1.12. In the same time it is a generalization of a known fact that every
Corson compactum has a dense set of G5 points. A related result in the
framework of Banach spaces is given in [4, Corollary 1.12].
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THEOREM 3.3. Let K be a compact space such that there is a Y.-subset
A of K with K \ A being of first category in K. Then K has a dense set of
G points.

Proof. At first we prove the following statement.
(4) Every nonempty Corson compact space has at least one G5 point.

Let H C ¥(I") be compact. Let us introduce on H the following order.

r<y& (Vyel)(z(y) #0=z(y) =y(v)).

This is a partial order and it is clear from compactness of H that any subset of
H totally ordered by this relation has an upper bound. So by Zorn’s lemma,
there is a maximal element z,, of H. It is clear that

{zm} ={y € H | y(y) = o (y) for all v € suppzy, },

which is a G set as supp z,, is countable. This completes the proof of (4).

Now, let A be a residual 3-subset of K and U C K a nonempty open set.
It follows easily from the regularity of K that there is a nonempty closed G
set H C ANU. As H is a Corson compactum, by (4) it has a G5 point, which
is also a G point of K contained in U. This completes the proof. 1

We finish this section by some observations on density and weight of Val-
divia compacta. Let us recall that the density of a topological space is the
minimal cardinality of a dense subset, and the weight is the minimal cardinal-
ity of a basis of open sets. It is obvious that density is always at most equal
to the weight, while the equality need not hold.

LEMMA 3.4. Let K be a compact space and A a dense Y.-subset of K.
Then the density of A is equal to the weight of K.

Proof. If A is finite, the assertion is obvious, so let us suppose that A is
infinite. It is obvious that the density of A is less than or equal to the weight of
K. Hence it is enough to prove the inverse inequality. Suppose that K C R'
with A = K NX(T'). Let D be a dense subset of A. Put

I= U{suppm rx € D}

Then cardl = card D (as D is infinite and suppz is countable for every
x € D). As D is dense also in K, it follows that suppz C I for every z € K.
Hence K is homeomorphic to a subset of R’ , and therefore has weight at most
card I = card D. This completes the proof. |
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THEOREM 3.5. (i) If K is a Valdivia compactum with a dense set of iso-
lated points, then the weight of K is equal to the density of K.

(ii) If K is a Valdivia compactum with a dense set M of G4 points, then
the weight of K is equal to the density of M.

(iii) There is a separable super-Valdivia compact space, which has not
countable weight.

Proof. The assertions (i) and (ii) follows immediately from Lemma 3.4 and
Lemma 1.11. To prove the assertion (iii) it is enough to consider K = [0,1]"
with R < cardT' < 28, This compactum is separable by [16, Theorem 2.3.7],
it is super-Valdivia for example by Corollary 3.30 below, and it is obviously
not Fréchet-Urysohn. |

3.2. SUBSETS OF VALDIVIA COMPACTA It is well-known that a closed
subset of a Valdivia compact space need not be Valdivia. In this section we
collect some strong non-stability results, as well as several stability properties.
We begin by the following well-known theorem.

THEOREM 3.6. Every compact space is homeomorphic to a closed subset
of a super-Valdivia compact space.

Proof. 1t is well-known [16, Theorem 3.2.5] that every compact space is
homeomorphic to a closed subset of [0,1]" for a set T. And it is easy to see
(and follows from Corollary 3.30) that [0,1]" is super-Valdivia compact space
for every I'. 11

We continue by a positive result.

THEOREM 3.7. (i) Every closed subset of a Corson compactum is again
Corson. In particular Corson compacta are hereditarily Valdivia.
(ii) If @ < we, then every closed subset of [0, «] is a Valdivia compactum.

Proof. (i) This is trivial.

(ii) At first let us remark that any nonempty closed subset of [0,q] is
homeomorphic to [0, 3] for some 8 < a. So, to prove that every closed subset of
[0, o] is Valdivia it is enough to prove that [0, 5] is Valdivia for 5 < a. We will
prove this by transfinite induction, using the Rosenthal type characterization
given in Proposition 1.9.

The space [0,0] = {0} is clearly Valdivia (even metrizable). Further, it
is clear that [0, + 1] is Valdivia whenever [0, 8] is Valdivia. Suppose that
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a < wy is limit and that [0, (] is Valdivia for every 5 < a. Then cofinality
of « is either countable or w;. Suppose the latter takes place. There is an
increasing transfinite sequence of ordinals 3, < a, v < w1, such that 5y = 0,
a = sup,, ., By and, moreover, for every limit A < w; we have ) = sup,, . 3,
By the induction hypothesis (8, 8,+1] is Valdivia for every v < wy. Let U,
be the separating family from Proposition 1.9. Put

U= U Uy U{(By, 0] 1y <wi}.

Y<wi

It is easy to check that this family witnesses (in sense of Proposition 1.9) that
[0, @] is Valdivia. If @ has countable cofinality, the proof is similar and easier.

The following theorem follows immediately from Lemma 1.11 and Lemma
1.15.

THEOREM 3.8. (i) Every subset of a Valdivia (super-Valdivia) compact
space which is the closure of an arbitrary union of Gy sets is again Valdivia
(super-Valdivia).

(ii) If K is Valdivia (super-Valdivia) and G = ()
K, then G is Valdivia (super-Valdivia) as well.

neN U, with U, open in

To formulate next positive result we need to recall the notion of derived
set.

DEerINITION 3.9. Let X be a topological space.

(i) The derived set of X (denoted by X?¢) is the set of all non-isolated
points of X.

(ii) If @ is an arbitrary ordinal, we define the a-th derived set of X (denoted
by X (O‘)) by transfinite induction using the following rules.

- xlet) — (x (o)),

- XN =, X@ for A limit.

LEMMA 3.10. Let K be a compact space and A be a dense countably
compact subset of K. Then K(® N A is dense in K@ for every o < w.
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Proof. Due to an induction argument, it is enough to prove the following
two claims.

(5) K compact, A C K dense countably compact = AN K¢ is dense in K¢

K compact, A C K countably compact, .

(6) F, C K closed, F,, N A dense in F,,, F,, \(F } = F0 A dense in F

Let us prove (5). Let z € K% and U be an open neighborhood of X. By
regularity of K there is an open set V with2z € V.C V C U. Then ANV is
dense in V. As z is not isolated, V is infinite, hence ANV is infinite as well.
By countable compactness of A there is a, an accumulation point of ANV in
A. In particular, a € KN ANU.

The claim (6) follows by a standard argument using countable compactness
of A. 1

THEOREM 3.11. (i) If K is a Valdivia compact space and o < wy, then
K@) js Valdivia as well.

(ii) If K is a super-Valdivia compact space and « an arbitrary ordinal,
then K(® is super-Valdivia.

(iii) There is a Valdivia compact space K such that KV is not Valdivia.

Proof. (i) Let A be a dense X-subset of K. It follows from Lemma 3.10
that K(® N A is dense in K@, so K(® is Valdivia.

(i) Let P denote the set of all isolated points of K. Then P is super-
Valdivia by Theorem 3.8. But by Lemma 1.7 the space P has at most one
dense Y-subset. It follows that P is Corson.

Let « be an arbitrary ordinal and z € K(®. There is a dense Z-subset A
of K with € A. As clearly P C A, P is Fréchet Urysohn and A countably
closed (Lemma 1.6), we get P C A. Moreover, clearly (K \ P) N A is dense in
K \ P. Remark that (K \ P) ¢ K™, hence K(® N A is dense in K(®),

(iii) Put K = [0, w;] % [0,w;]. It is easy to check and follows from Theorem
3.29 that K is a Valdivia compactum. Further, it is not hard to show that
K@ is homeomorphic to the collated double-interval w; from Example 1.10.

Now we give the fundamental embedding result. We formulate it for weak*
compact sets in dual Banach spaces. This is no restriction as any compactum
K is homeomorphic to a weak* compact subset of C'(K)*. This proposition
puts together ideas of [33, Theorem 2] and [32, Proposition 3, Step 2].
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PROPOSITION 3.12. Let X be a Banach space and K C X* weak™ com-
pact. Suppose there is a homeomorphic embedding h : K — R with A =
h=Y(2(T)) dense in K. If ¢ € K is such that cardsupph(¢) = k > Vg, then
there is a homeomorphic embedding ¢ : [0,k] — K such that the following
conditions are fulfilled.

(i) supph(p(a)) C supph(p(B)) C supp h(§) for every a < 8 < k;
(i) (k) = ¢;

(iii) card supp h(p(a)) = max(card o, Ng) for every a < k;

* *

(iv) convo(fa+ 1,K])" Nconve([0,a])” =0 for every a < k.

Proof. Put I = supph(¢) and fix an enumeration I = {i, : @ < k}. We
construct by transfinite induction ¢, € K, z, € X and J, C [ such that the
following conditions are satisfied.

a € Jat+1, Ugcq supp h(€p) C Jo, card J, < max(card a, No);

c) J.

(a) ia

(b) Ja C Jat1, supph(éa) N1 S Joy1 NI
(€) Ja = Upen Js if @ is limit;

(d) h(€a)(2) = h(&)(2) for i € Jo;

(

(

(

e) &a(zp) = &(zp) for B < g
f) &o = limgq €p if o is limit;
8) &(za) > sups<qy £5(Ya)-

The construction uses Lemma 1.23 and Hahn-Banach separation theorem.
It is a straightforward generalization of the construction performed in [32,
Proposition 3, Step 2].

Put &, = £. It is clear from conditions (a), (c), (d), (f) that supph(&,) C
supp h(§) for each limit a < k and ¢ = limy<y €, If we denote by L the set
of all limit ordinals from [0, ], there is clearly a bijective increasing mapping
1 :[0,5] = L. Let us define ¢ : [0, 5] — K by the formula p(a) = {y(q). This
mapping is one-to-one by the condition (b) and the continuity follows easily
from the condition (f) and the definition of &;. The condition (iv) follows
easily from (e) and (g). This completes the proof. 1
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Remarks 3.13. (i) As a consequence of the previous proposition we get
the result of [11, Proposition I1I-2], that a Valdivia non-Corson compactum
contains a copy of [0,w1]. In case that this compactum is contained in a dual
Banach space, we get a stronger result.

(ii) An analogous statement holds for 7-Valdivia compacta with an infi-
nite cardinal 7. Only in condition (iii) the cardinal 8y should be replaced by 7.
For 7-Valdivia compacta with regular 7 the formulation is a bit more compli-
cated - in condition (iii) there should be card supp h(&,) < max(7, (card @) ™).

(iii) It follows from the condition (iv) of the previous proposition that ¢(«)
w*

is a weak* G5 point of conv [0, k] whenever a < & is an isolated ordinal.
In the following two theorems we sum up several results on embedding
non-Valdivia compact spaces into (Valdivia) non-Corson compact spaces.

THEOREM 3.14. Let K be a non-Corson Valdivia compact space.

(i) If K is not No-Corson, then K contains uncountably many pairwise
disjoint nowhere dense closed subsets such that one of them is homeomorphic
to [0, we], uncountably many of them are homeomorphic to the collated double
interval wy, and uncountably many of them are homeomorphic to the interval
[0,w1] with collated sequence (cf. Example 1.10).

(ii) If K has at least two distinct dense X-subsets, then K contains un-
countably many pairwise disjoint nowhere dense copies of the interval [0, w ]
with collated sequence.

(iii) If K can be expressed as a product of two infinite compact spaces,
then K contains a closed subset which is not Valdivia compactum.

Proof. (i) Suppose that K C R' with A = K N (') dense in K. Put
B = KNYy,(T). By Lemma 3.10 we have that K?N A is dense in K¢. By the
assumption K \ B # 0, so clearly K%\ B # (. It follows from Proposition 3.12
that there is a homeomorphic injection ¢ : [0,ws] — K? with ¢([0,w;)) C
¥(T) and ¢([0,wq)) C Ty, (). Now clearly ¢([wi,w2)) C B\ A. So it is
clear that there are pairwise disjoint compact sets M', M2 M3 for a < w;
such that M! is homeomorphic to [0,ws] and is contained in K¢\ A, all
M? are homeomorphic to [0,w] and are contained in B\ A, and all M3 are
homeomorphic to [0,w] and are contained in B\ A. Let us denote by m?2 the
“point w” of M2, and by m? the “point w;” of M2. We will construct by the
transfinite induction N2, N3, o < w; such that the following conditions are
fulfilled.

(a) N2 C K4\ Upoo(N3UN3), N3 C K4\ (Na2 UUgca(N2U Ng));
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(b) There is a continuous bijection ¢ : [0,w;] — N¢ such that ¢([0,w;)) C
KN A and ¢(wy) = mi, i =2,3.

This can be done using Proposition 3.12 together with Lemma 1.11 and
the following easy observation which holds in every regular space.

If G is a G set such that z € G,
then there is a closed G set F with z € FF C G

(7)
Finally, the required subsets are M, M} UN!, a < wy, i = 2,3.

(ii) Due to (i) we can suppose that K is No-Corson. Let A and B be two
distinct dense Y-subsets. By Lemma 1.7 it follows that there is a nonempty
open set U such that U N AN B = (. We can construct by a transfinite
induction My, C KNU, my € My, y" € KNU, n €N, a < wy, such that

() Mo C K \Usen (MBU{yg:nGN}>;

(b) there is a continuous bijection ¢, : [0,w1] — My with ¢4 ([0,w;1)) C A
and ¢4 (w1) = Mgy, and m,, € B;

(c) ygeBﬂ(K\(MaUUﬁ<a (MﬁU{yE:nEN}>)) and y? 5 myg,.

This can be done using Proposition 3.12, the observation (7), Lemma 1.11
and Lemma 1.6. Then M, U{y! : n € N}, a < w; are the required subsets.

(iii) Let K = L x H with both H and L infinite. As K contains a homeo-
morphic copies of L and H, we can suppose that both L and H are Valdivia.
If both of them are Corson, then K is Corson as well (Theorem 3.31 below).
Suppose that L is not Corson. By Proposition 3.12 it contains a copy of [0, w;].
Further, H is an infinite Valdivia compactum, so it contains a nontrivial con-
vergent sequence, i.e. a copy of [0,w] (Theorem 3.1). Hence K contains a
copy of [0, w1] X [0, w], which has a subset homeomorphic to the interval [0, w]
with collated sequence (Example 1.10). §

Remark 3.15. We do not know whether there is a reasonable characteri-
zation of hereditarily Valdivia compact spaces. From the previous theorem it
follows that hereditarily Valdivia compactum has exactly one dense >-subset,
is No-Corson and contains no non-Corson product of infinite compact spaces.
However, by Theorem 3.7 there are non-Corson hereditarily Valdivia com-
pacta. The next theorem shows that within convex weak™ compact subsets of
dual Banach spaces the situation is more clear.
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THEOREM 3.16. Let K be a convex weak* compact subset of a dual Ba-
nach space X*. If K is not Corson, there is a convex compact subset of K
which is not Valdivia.

Proof. (Sketch) This theorem is proved in [32, Proposition 3]. The proof is
rather long and technical, we give only main ideas. If K is not Valdivia, there
is nothing to prove. Suppose that K is Valdivia and that A C K is a dense
Y-subset. Let h: K — R be a homeomorphic injection with h(A4) = h(K) N
Y(T"). By Proposition 3.12 there is g € K such that card supp h(g) = N;.

The first step consists in constructing f, € K and z, € X satisfying the
following conditions.

@) [Ifn =gl < 33

(i) f, does not belong to the affine envelope of {g} U {f; : 1 <i < nl};
(iii) g(zk) < fo(zk) < fi(zg) for 1 < k < mn;

(iv) g(zn) < fi(zn) = -+ = fa1(zn) < fnl@n)-

The construction given in [32] strongly uses the convexity of K. In the
second step we put G = {{ € K : Vn € N &(z,) = g(z,)} and find g4, @ < wy,
a copy of [0,wi] in G, with the properties from Proposition 3.12 such that
Jui = 9- i

Finally put L ={f, :n € N} U{gs: @ <w;} and H = convL" .

It follows from the construction that each f, and each g, for a < wq
isolated is a weak* G point of H. So, if H were Valdivia, L would be Valdivia
as well by Theorem 3.8. But L is clearly homeomorphic to the interval [0, w]
with collated sequence (Example 1.10). §

Remark 3.17. By the same method a more general statement can be proved.
Namely, it can be shown that a convex weak* non-x-Corson compact set con-
tains a convex weak* compact subset which is not x-Valdivia, provided & is a
regular cardinal.

3.3. CONTINUOUS IMAGES OF VALDIVIA COMPACTA In this section we
give several results on continuous images of Valdivia compacta. We begin
by the strong non-stability result from [30], a positive result on open con-
tinuous images of Valdivia compact spaces [31] will follow. We will finish by
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some properties that continuous images of Valdivia compact spaces share with
Valdivia compacta [33].

We start by the following auxiliary Lemma [30, Lemma 2.8]. In fact, we
will need only a special case of it, but we formulate it in a more general setting.

LEMMA 3.18. Let K be a compact space and F C K be a metrizable
closed subset. Put L = K \ F U {F} endowed with the quotient topology
induced by the mapping ) : K — L defined by

_Jrx =z ¢F,
Q(x)_{F zeF.

If A is a X-subset of L, then Q~'(A) is a X-subset of K.

Proof. Let hg : L — R be a homeomorphic injection such that hg(A) =
ho(L) N X(T), and R : F — RY be any homeomorphic injection. For n € N
let hy(n) be a continuous extension of A} (n) on K. Define h : K — RI'VN by
the formula

h(z)(7) = ho(Q(2))(7), v €T,
h(z)(n) = hi(x)(n), n € N.

Now it is obvious that h is a homeomorphic injection and h(Q1(A4)) = h(K)N
S(CUN). 1

PROPOSITION 3.19. Let K be a compact space and a,b € K be two dis-
tinct non-isolated points of K such that at least one of them is contained in
no dense Y.-subset. Let L be the quotient space made from K by identifying
a and b. Then L is not Valdivia.

Proof. Denote by @ the canonical quotient mapping and put p = Q(a) =
Q(b). Choose open sets U,V C K such that a € U, b€ V and U NV = .
Put U' = Q(U \ {a}) and V! = Q(V \ {b}). It follows that U’ and V' are open
in L and U' NV’ = {p}. Hence, if A is a dense X-subset of L, then p € A by
Lemma 1.15. By Lemma 3.18 the set Q !(A) is a X-subset of K. Clearly it
is dense and contains both a and b. This is a contradiction. |

ProrosiTION 3.20. Let K be a compact space, M, N be two disjoint
closed nowhere dense mutually homeomorphic subsets of K, which are not
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Valdivia compacta. Let h : M — N be a homeomorphism, put L = K \ M
with the quotient topology induced by the mapping

x x ¢ M,
h(z) =€ M.

Then L is not a Valdivia compactum.

Proof. Suppose that L is Valdivia. As K is normal, there are open (in K)
sets U D M, V O N such that U NV = §. The sets U' = Q(U \ M) and
V! = Q(V \ N) are clearly disjoint open sets in L with U’ NV’ = N. Thus,
by Theorem 3.8 the compactum N is Valdivia, a contradiction. N

THEOREM 3.21. Let K be a compact space. Then the following assertions
are equivalent.

(i) Every continuous image of K is a Valdivia compactum.

(ii) Every at most two-to-one continuous image of K is a Valdivia com-
pactum.

(iii) K is a Corson compactum.

Proof. (iii) = (i) This implication follows from the well-known result of
Gul’ko, Michael and Rudin, which says that Corson compact spaces are stable
to continuous images. A proof is given for example in [3, Section IV.3]. Tt
also follows from Theorem 3.22 below.

(i) = (ii) This is trivial.

(ii) = (iii) Let K be a Valdivia compactum which is not Corson. If K
is not super-Valdivia, use Proposition 3.19. If K is super-Valdivia, then it
contains at least two distinct dense ¥-subsets. Hence, by Theorem 3.14, K
contains two disjoint nowhere dense copies of the interval [0, w;] with collated
sequence. These subsets are not Valdivia by Example 1.10. It remains to use
Proposition 3.20. 1

The previous theorem gives the complete answer to a question posed in
[12]. This question was whether Valdivia compact spaces are stable to contin-
uous images. A counterexample was found by M. Valdivia [66]. It was just the
interval [0, w;] with collated sequence from Example 1.10. M. Valdivia asked
whether there is a non-Corson Valdivia compact space whose every continu-
ous image is Valdivia. The above theorem, proved first in [30], answers this
question in the negative.

Now we give a theorem from [31] which gives a finer idea on when contin-
uous image of a Valdivia compactum is again Valdivia.
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THEOREM 3.22. Let ¢ : K — L be a continuous surjection between com-
pact spaces, A C K be a dense Y-subset and B = p(A). Then the following
assertions are equivalent.

(i) B is a X-subset of L.

(ii) *C(L) ={fop: f e C(L)} is Ta-closed in C(K).

(iii) L = BB and ¢ | A is a quotient mapping of A onto B.

Proof. (i) = (iii) If B is a X-subset of L, then L = B by Proposition
1.9. Moreover, B is homeomorphic to a countably compact subset of X(I") for
some set I'. So it is easy to see, using Lemma 1.8, that ¢ [ A is closed, and
therefore a quotient mapping.

(iii) = (ii) Let f, € ¢*C(L) and f € C(K) be such that f,—f. We will
prove that f € p*C(L). It follows from the definition of 74 that f is constant
on ¢ (1) N A for every | € L. Hence there is a function g : B — R such that
fl1A=go(p] A). As f is continuous and ¢ | A is a quotient mapping, we
get that g is continuous as well. Now, since L = 8B and g is bounded on B
(as B is countably compact), there is a continuous extension g of g onto L. It
follows that f = g o ¢ which completes the argument.

(i) = (i) By Theorem 2.5 we have that A is countably compact and
(C(K),Ta) is primarily Lindel6f. Hence B is countably compact (as a con-
tinuous image of A). Moreover, (C(L), 7g) is homeomorphic to (¢*C(L), T4),
which primarily Lindel6f by Lemma 2.2. It follows from Theorem 2.5 that B
is a dense Y-subset of L. |

The above theorem follows [31, Theorem 2.20]. Although the formulation
is due to [31], some implications had been essentially proved before. For
example, the implication 2 = 1 follows also from [65, Theorem 2], together
with [29, Lemma 3] (and Lemma 1.7). The implication 3 = 1 follows also
from [22] and Proposition 1.9.

The previous theorem can be used to get some results on open continuous
images of Valdivia compacta. We follow [31, Section 4].

LEMMA 3.23. Let ¢ : K — L be an open continuous surjection between
compact spaces. If L has a dense set of G§ points and A is a dense X-subset
of K, then ¢(A) is a ¥.-subset of L.

Proof. By Theorem 3.22 it is enough to show that ¢*C(L) is 74-closed in
C(K). To prove this we will use Lemma 2.8. Put E = {(z,y) € K x K |
o(z) = ¢(y)}. We will show that £ N (A x A) is dense in E.
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Choose an arbitrary pair (u,v) € E, and U, V open neighborhoods of
u, v, respectively. Put z = ¢(u) = ¢(v). Then ¢(U) and (V) are open
neighborhoods of z, since ¢ is open. Therefore W = ¢(U)N¢(V') is a nonempty
open set, so there is ¢ € W, a Gy point of L. The set ¢ !(g) is G5 in
K, and hence ¢~ 1(g) N A is dense in ¢~ !(g) by Lemma 1.11. Tt follows
that we can choose z € ¢ '(g) NANU and y € ¢ '(9) N ANV. Then
(z,y) € (UxV)NEN (A x A), which completes the proof.

As an immediate consequence we get the following theorem.

THEOREM 3.24. Let ¢ : K — L be an open continuous surjection between
compact spaces. Suppose that L has a dense set of G5 points. Then the
following holds.

(i) If K is Valdivia, then so is L.

(ii) If K is super-Valdivia, then L is Corson.

Remarks 3.25. (i) It is easy to check (see e.g. [31, Lemma 4.3]) that any
compact space which is an open continuous image of a compact space with
a dense set of G5 points, has again this property. So we get that any open
continuous image of a Valdivia compactum with a dense set of G5 points is
again Valdivia. In particular, any open continuous image of [0,w:] (or even
[0,w1]N - cf. Theorem 3.29 below) is Valdivia.

(ii) The assertion of Lemma 3.23 does not hold without assumptions on
L. Take L = [0,1]" with uncountable I', K = L x {0,1} with ¢ being the
canonical projection of K onto L. If we put

A=((LNnXE(M)) x{0}) U({z € L:{y:z(y) # 1} is countable} x {1}),

then A is a dense X-subset of K and ¢(A) is not a dense X-subset of L (even
though L is Valdivia).

(iii) We do not know whether the assertion of Theorem 3.24 holds without
additional assumptions on L. So we can formulate a question.

QUESTION 3.26. Is every open continuous image of a Valdivia (super-
Valdivia) compact space again Valdivia (super-Valdivia)?

We finish this section with a theorem of [33], which shows that, in a sense,
the class of continuous images of Valdivia compacta is not so far from the
class of Valdivia compacta. The first point of this theorem generalizes [11,
Proposition I1I-2], the second one generalizes Theorem 3.1.
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THEOREM 3.27. (i) If K is a non-Corson continuous image of a Valdivia
compactum, then K contains a homeomorphic copy of [0, w1].

(ii) Every infinite compact space which is a continuous image of a Valdivia
compactum contains an one-to-one convergent sequence.

Proof. Let L be a Valdivia compactum, f : L — K a continuous surjection,
and A a dense Y-subset of L. Suppose that K contains no homeomorphic copy
of [0,w;]. We will show that f | A is a closed (into K) mapping.

Choose F' C A a relatively closed subset. Then clearly F' is a dense Y-
subset of F. Let h : F — RI' be a homeomorphic embedding such that
h(F) = h(F) N X(T"). We will show that f(F) = f(F). Suppose it is not the
case. Let x = min{cardsupph(z) | x € F & f(z) ¢ f(F)} and let z € F be
such that card h(z) = k and f(z) ¢ f(F). It is clear that x is uncountable.
Let ¢ : [0,5] — F be the mapping satisfying the conditions of Proposition
3.12.

If k is singular, then there is an infinite cardinal A < x and cardinals
(Ty)y<r with 7, < for v < X and k = sup,, 7,. By the definition of x we
have f(¢(7,)) € f(F). Moreover, f(F) = f(FNh™Y(Z)+(T))), so f(F) is AT-
closed in K (by Lemma 1.19 and Lemma 1.24). In particular, f(z) € f(F),
as it is in the closure of the set {f(¢(7,)) | ¥ < A}. This is a contradiction.

Hence k is a regular cardinal. Put ¢ = f o ¢. At first let us note that
card g((a, ) = k for every a < k. Otherwise by regularity of , the set g~ (1)
is unbounded in [0, k) for some [ € f(F). But then z = g(k) € f(F'), as it is
equal to [ by continuity of g.

So we can choose by transfinite induction ordinals 7, < s for a < k such
that

(@) Nat1 > Na;
(b) 9(na+1) & {9(ns) | B < a} U{g(r)};

(¢) Na = Supgcqp for a <k limit.

Now it is clear that K contains a homeomorphic copy of [0, k], and therefore
also that of [0,w1], as k is uncountable. This is a contradiction. Hence f [ A
is closed. It follows that f(A) is a dense closed subset of K, so f(A) = K.
Therefore, K is a Y-subset of itself by Theorem 3.22. It means that K is
Corson. This completes the proof of the first point.

Let us prove the second one. Let K be an infinite continuous image of
Valdivia compactum. If K is Corson, then it contains an one-to-one convergent
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sequence by Theorem 3.1. If K is not Corson, then it contains by the above
a copy of [0,w:], and so also an one-to-one convergent sequence. |

3.4. PRODUCTS OF VALDIVIA COMPACT SPACES In this section we col-
lect stability results from [30, Section 4] and [31, Section 4]. We begin by the
following lemma on behavior of -subsets with respect to products.

LEMMA 3.28. Let K, a € I, be a family of compact spaces and, for each
a €1, let A, be a dense X-subset of K, and z, € A,. Then the set

A=1{y = (Ya)acr € [[ncr Aa : {a € I : yo # x4} is countable}

is a dense Y-subset of the space K = [],c; Ka-

Proof. For each a € I there is a homeomorphic injection h, : K, —
R such that he(K,) N B(TCs) = ha(As). Obviously we can ensure that
ho(zq) = 0 for each a € I. Let us define h : K — [[,.; R = R, where
I'={(y,a) | v € I'y, € I}, by the formula

h((Ya)aer)(7; B) = hs(ys) (7)-

It is obvious that h is a homeomorphic injection, and that h(A) = h(K)NX(T),
so A is a X-subset of K. The density of A in K follows easily from the definition
of the product topology. |

a€el

Now the following stability theorem easily follows.

THEOREM 3.29. The product of an arbitrary family of Valdivia (super-
Valdivia) compact spaces is again Valdivia (super-Valdivia, respectively).

COROLLARY 3.30. Arbitrary product of Corson compact spaces is super-
Valdivia. In particular, [-1,1]', [0,1]" and {0,1}" are super-Valdivia compact
spaces for any set I.

It follows from Lemma 3.28 that Corson compact spaces are closed with
respect to countable products. In fact, a converse holds as well.

THEOREM 3.31. Let K,, a € I be a family of nonempty compact spaces
and K = [],c; Ko Then K is Corson if and only if each K, is Corson and
all but countably many K,’s are one-point spaces.
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Proof. The ‘if’ part follows immediately from Lemma 3.28. To show the
converse suppose that K is Corson. Each K, is homeomorphic to a subset
of K, hence it is Corson by Theorem 3.7. If uncountably many of K,’s have
at least two points, then the dense Y-subset of K defined in Lemma 3.28 is a
proper subset of K, so K is not Corson by Lemma 1.7. |

The question whether given compact spaces are Valdivia provided their
product has this property seems to be more difficult. In fact, we do not know
the complete answer. The following results of [31] give a partial answer.

LeMMA 3.32. Let K and L be nonempty compact spaces such that L has
a dense set of G5 points.

(i) If K x L is Valdivia, then both K and L are Valdivia as well.

(ii) If K x L is super-Valdivia, then K is super-Valdivia and L is Corson.

Proof. Let us first show the assertion on K. Pick | € L, a G5 point of
L. Then K x {l} is a closed G4 subset of K x L, hence we can use Theorem
3.8. To show the assertion on L, it is enough to observe that the projection
of K x L onto L is an open continuous mapping, and use Theorem 3.24. |

The following theorem now follows immediately.

THEOREM 3.33. Let K, a € I be a family of nonempty compact spaces,
such that each K, has a dense set of G points. Put K = Hae] K,.

(i) K is Valdivia if and only if each K, is Valdivia.

(ii) K is super-Valdivia if and only if each K, is Corson.

We finish this section by the following question.

QUESTION 3.34. Suppose that K and L are compact spaces such that
K x L is Valdivia (super-Valdivia). Are both K and L again Valdivia (super-
Valdivia, respectively)?

3.5. TOPOLOGICAL SUMS AND UNIONS OF VALDIVIA COMPACTA We be-
gin this section by the following easy result.

THEOREM 3.35. (i) Finite topological sum of Corson (Valdivia, super-
Valdivia) compact spaces has again the same property.

(ii) The one-point compactification of an arbitrary topological sum of Cor-
son (Valdivia, super-Valdivia) compact spaces has again the same property.
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Proof. This easily follows from the characterization of Y-subsets in terms
of separating families given in Proposition 1.9. 1

Now we will study stability of Valdivia compacta with respect to unions of
two spaces. This is related to continuous images, as any union is a continuous
image of the respective topological sum.

LeEMMA 3.36. Let K be a compact space, H and L be closed subsets of
K covering K, and M = H N L be nowhere dense both in L. and H. Then K
is Valdivia if and only if there are B, a dense Y-subset of H, and C, a dense
Y.-subset of L, such that M N B = M N C, and this set is dense in M.

Proof. Suppose that K is Valdivia. Then there is a dense Y-subset A of
K. 1t follows from Lemma 1.15 that B = AN H and C' = AN L have the
required properties. This proves the ‘only if’ part.

To show the ‘if’ part, put K’ = (H x {0}) U (L x {1}) (considered as a
subset of K x {0,1}). It is easy to check that A" = (B x {0}) U (C x {1}) is
a dense Y-subset of K’. Denote by ¢ the canonical projection of K’ onto K.
It is easy to verify that this mapping satisfies the assumption of Lemma 2.8,
and hence it follows from Theorem 3.22 that ¢(A’) is a dense X-subset of K.
|

Remarks 3.37. (i) It is clear from the proof of the previous lemma that
the ‘if” part holds also without assumption that M is nowhere dense in H and
in L.

(ii) The ‘only if’ part of the previous lemma does not hold without as-
sumption that M is nowhere dense both in L and H. This takes place for
example if K = H is Valdivia and L is a non-Valdivia subset of K, or if
K =H =[0,w;] and L = {w; }.

Now we are ready to formulate the following negative result.

THEOREM 3.38. Let K and L be infinite compact spaces such that at
least one of the following conditions holds true.

(i) Either K or L is not super-Valdivia.

(ii) Neither K nor L is Corson.

Then there is a non-Valdivia compactum which can be represented as a

union of two subsets, one homeomorphic to K, the second homeomorphic to
L.
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Proof. First suppose that L is not super-Valdivia. Then there is a € L
which is contained in no dense Y-subset of L. Choose b € K any non-isolated
point. The required union will be the quotient space made from K & L by
identifying a and b (see Proposition 3.19).

Now suppose that both K and L are super-Valdivia but not Corson. Then
both K and L contain a nowhere dense copy of the interval [0, w;]| with collated
sequence by Theorem 3.14. We can conclude by Proposition 3.20. |

A very partial positive result, given in the following proposition, follows
immediately from Lemma 3.36.

PropPoOSITION 3.39. Let K = H U L such that both H and L are super-
Valdivia compact spaces, and H N L contains at most one point. Then K is
Valdivia.

We do not know whether, under the assumptions of the previous proposi-
tion, K is necessarily super-Valdivia. Also, we do not know the answer to the
following question.

QUESTION 3.40. Suppose that K = H U L such that H is super-Valdivia
and L is Corson. Is then K Valdivia (super-Valdivia)?

We finish this section by a proposition which relates the previous question
with other problems.

PROPOSITION 3.41. Let K be a compact space. The following assertions
are equivalent.

(i) For every Corson compactum L, any compactum which can be repre-
sented as a union of K and L is Valdivia.

(ii) For every Corson compactum L, any compactum which can be repre-
sented as a union of K and L is super-Valdivia.

(iii) Every closed subset of K which is a Corson compactum, is contained
in a dense Y-subset of K.

Proof. (ii) = (i) This is trivial.
(i) = (iii) Let H be a closed subset of K which is Corson and is contained
in no dense Y-subset. As the interior of H is clearly contained in every dense

Y-subset, we can suppose without loss of generality that H is nowhere dense.
Then L = H x [0,w] is Corson (Theorem 3.31). Put K/ = K U (H x [0,w))
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endowed with the quotient topology induced by the mapping Q : K® L — K’
defined by

_Jr ze KU(H x[0,w)),
Q(m)_{h z = (h,w) € H x {w}.

Then K’ can be expressed as a union of K and L, and it easily follows from
Lemma 3.36 that K’ is not Valdivia.

(iii) = (ii) Let K’ = K U L with L being Corson and a € K’ be arbitrary.
Then (K N L)U{a} is Corson, and hence by the assumptions, it is contained
in a dense X-subset B of K. Now it is easy to check, using Theorem 3.22,
similarly as in the proof of Lemma 3.36, that A = B U L is a dense X-subset
of K' which contains a. 1

3.6. RETRACTIONS ON VALDIVIA COMPACTA In this section we give
some basic facts on retractions on Valdivia compact spaces. The construc-
tion of such retractions on some subspaces of the space 3(I") goes back to
[22]. These results for Valdivia compact spaces were probably first formulated
in [5]. A nice recent survey on families of retractions is [23]. First we give the
following lemma.

LEMMA 3.42. Let K be a compact space and A be a dense Y-subset of
K. If M is an infinite subset of A, then there is a retraction R : K — K such
that

(i) M € R(K);

(ii) R(K) N A is dense in R(K);

(iii) The weight of R(K) is at most card M.

Using this lemma, one can prove by a standard transfinite induction the
following theorem.

THEOREM 3.43. Let K be a compact space of weight k > Xy and A be a
dense Y-subset of K. Then there is a family of retractions (Ry : w < a < K)

on K such that the following conditions are fulfilled.
(i) Rx=1Idg;

(ii) RoRg = RgRy = Ry for w < a < <k;
(iii) The weight of R, K is at most card «;

(

iv) RoK N A is dense in R, K;
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(v) RAK =, <qer RaK whenever A € (w, 5] is limit.

4. VALDIVIA TYPE BANACH SPACES

This chapter is devoted to the study of Banach spaces with Valdivia type
properties. The first section has an auxiliary character and deals with pro-
jectional resolutions and projectional generators. In the second section we
introduce and characterize some classes of Banach spaces whose duals have a
Valdivia type property. The third section contains a result of [32] concerning
strong non-stability of such spaces with respect to renormings. In the fourth
section we discuss stability with respect to various types of products. The
fifth section is devoted to study of subspaces and quotients.

Recently some results on spaces with Valdivia type biduals were obtained
in [35]. We do not give a systematic exposition but we include some examples
in the last chapter.

We will use some standard notation from Banach space theory. For a
subset A of a Banach space we will mean by A, A", A" its closure with
respect to the norm, to the weak topology, to the weak* topology (if the
respective Banach space is dual), respectively.

Further, if X is Banach space, we put

L={¢eX*: (VacA)((a)=0)}, forAcX
B, ={zeX:(Vbe B)(b(z)=0)}, for Bc X*

By Q we denote the field of rational numbers. By Q-linear subspace of a
Banach space we mean a subset which is closed with respect to rational linear
combinations.

4.1. PROJECTIONAL GENERATORS AND PROJECTIONAL RESOLUTIONS OF
THE IDENTITY In this auxiliary section we sketch a method of constructing
projectional resolutions of the identity in certain Banach spaces. This goes
back to J. Orihuela and M. Valdivia [52], a finer approach is given in [17,
Chapter 6].

We start with the following definition.

DEFINITION 4.1. Let X be a Banach space and S C X* be an arbitrary
subset.

(i) We say that S is I-norming if ||z| = sup{{(z) : £ € S, ||€]| < 1} for any
reX.
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(ii) We say that S is norming if the formula |z| = sup{é(z) : £ € S, ||¢|| <
1}, z € X, defines an equivalent norm on X.

Remarks 4.2. (i) It is obvious that S C X* is norming if and only if there
is an equivalent norm on X such that S is 1-norming with respect to this
norm.

(ii) If S € X* is linear (or even only Q-linear), then it easily follows
from the Hahn-Banach separation theorem that S is 1-norming if and only if
S N Bx~ is weak* dense in Bx-.

We continue by the definition of the projectional generator. There are
several different definitions in the literature ([52], [17]). We choose an easier
one as it is sufficient for applications.

DEFINITION 4.3. Let X be a Banach space. Projectional generator on X
is a pair (S, ®) such that

(a) Sis a l-norming Q-linear subspace of X*;

(b) ®:S — X is a countably valued mapping;

c NB = whenever B C §' is Q-linear.
®(B))*NB" = {0} wh BCSisQl

Now we give the definition of the projectional resolution of the identity
which goes back to [43, 44].

DEFINITION 4.4. Let X be a non-separable Banach space with dens X =
w. By projectional resolution of the identity (shortly PRI) on X we mean a
family (P, : w < a < u) of projections on X such that the following conditions
are satisfied.

(i) P, =0, P, =1Idx;

(ii) ||Pal| =1 for w < a < p;

(iii) PyPs = PsPy =Py forw<a<p<
(iv) dens P, X < carda for w < a < 3

(V) Up<a P3X is dense in P, X whenever a <y is a limit ordinal.
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The previous definition is a standard one but it seems that the formulation
of condition (iv) is not the best one. It turns out that in some cases it is too
strong and in some cases it seems to be too weak. So we introduce the following
modifications of the notion of PRI.

DEFINITION 4.5. Let X be a non-separable Banach space with dens X =
p. By weak projectional resolution of the identity (shortly weak PRI) on X
we mean a family (P, : w < a < pu) of projections on X which satisfies the
same conditions as those in the definition of PRI except for the condition (iv)
which is replaced by

(iv’) dens P, X < u for every w < a < p.

By strong projectional resolution of the identity (shortly strong PRI) on X
we mean a family (P, : w < a < pu) of projections on X which satisfies the
same conditions as those in the definition of PRI except for the condition (iv)
which is replaced by

(iv”) dens P, X = card « for every w < a < p.

The rest of this section is devoted to constructing a PRI from a projectional
generator. We follow the ideas of [17, Chapter 6]. However, we refine the
construction, and so we give the proofs of some steps.

We begin the following lemma on the “norming pair”. The proof is easy
and standard, it is given for example in [17, Lemma 6.1.1].

LEMMA 4.6. Let X be a Banach space, A C X and B C X* be such that
(a) A and B are linear spaces;
(b) llzll = sup{{(z) : £ € B, [[£]| < 1} for every x € A;
(c) ALnB"Y = {0}.

Then there is a projection P on X of norm 1 such that PX = A, P~1(0) = B,
Prx*=B"

The following lemma follows from [17, Lemma 6.1.3]. In fact, the proof
given there is not completely correct, but it works in our setting. The lemma
formulated in [17] is also valid but requires a finer proof.
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LEMMA 4.7. Let X be a Banach space, S C X* be Q-linear, ® : S — X
and ¥ : X — S be countably valued (set-valued) mappings. If k is an infinite
cardinal and Ag C X, By C S are such that card Ay < k and card By < k,
then there are A, B such that

(i) AyCAC X and By C BC S;
(ii) A and B are Q-linear spaces;
(iii) card A < k, card B < k;

(iv) ®(B) C A and ¥Y(A) C B.

The following proposition refines a bit a special case of [17, Proposition
6.1.4].

PROPOSITION 4.8. Let X, S, ®, ¥ be like in Lemma 4.7. Suppose that
X is nonseparable and y = dens X. Then there are families (Aq : w < a < )
and :w < a < u), such that the following conditions are fulfilled.

a) Ay C X, By C S, A4, = X;

b) A, and B, are Q-linear;

)
c) dens A, = card A, = card o, card B, < card «;
d)

( ) C Aq, \II(Aa) C Ba;

(Ba
(
(
(
(
() A3 C Ay and Bg C By if B< o, Ag C Ay if B <
(f) A

a = Ugp<q 4p and By = Uz, Bp if a is a limit ordinal.

Proof. Let {4 :w < a < u} be a dense subset of X not containing 0. Let
Au41 and B, 41 be the sets A, B from Lemma 4.7 applied to Ay = {z¢} and
By = . Then the conditions (a), (b), (d) are fulfilled by Lemma 4.7. The
condition (c) is satisfied due to Lemma 4.7 together with the obvious fact that
Ay is infinite as z¢ # 0.

Suppose we have A, and B, for some o < p. Let v = min{d : 75 ¢ A,}.
This y exists, as the set on the right-hand side is nonempty, since dens X =
p > card o = card A, (by (c)). Let An41 and B,41 be the sets A, B obtained
by Lemma 4.7 applied to Ag = A, U {z,}, By = B,. Then the conditions
(a)—(e) clearly remain valid.
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Let o < p be a limit ordinal such that we have constructed Ag and Bg for
each 8 < a. Put Ay = Ug., Ap and By = Ug, Bs- Then the conditions
(a), (b), (d), (e), (f) are clearly satisfied. (The validity of (a) in case a = p
follows by the construction, as A, contains z, for every v < p.) It remains
to prove the condition (c). It is clear, by the induction hypothesis, that
dens A, < card A, < card«a and card B, < carda. Now it suffices to prove
that dens A, > card a. If « either is not a cardinal or is a limit cardinal, then
carda = supg, card 3, hence the required inequality follows immediately
from the induction hypothesis. If « is a successor cardinal, say a = &1, and
dens A, < «, then dens A, < k. Let D be a dense subset of A, such that
card D < k. Then it follows from (f) that there is § < o with D C Ag. But
then Ag = A,, which contradicts (e).

This completes the proof. |

We finish this section by the following proposition on the existence of PRI.
This is a slight generalization of [17, Proposition 6.1.7].

PROPOSITION 4.9. Let X be a non-separable space which admits a pro-
Jjectional generator (S,®), and M C X be a set such that for every s € S
the set supps = {z € M : s(z) # 0} is at most countable. Let j denote
the density of X. Then X has a strong PRI (P, : w < a < pu), such that
M C Uyeqep(Pas1 — Pa)X.

Proof. At first define ®'(s) = ®(s)Usupps. It is easy to check that (S, ®')
is again a projectional generator. As S is 1-norming, we can choose for every
z € X a countable set ¥(z) C SNBx-, such that ||z|| = sup{s(z) : s € U(x)}.
Now apply Proposition 4.8 (with @' instead of ®) to get the long sequences
(Aq tw < a < p) and (B, : w < a < p) satisfying the conditions of the
mentioned proposition.

It is easy to see that A, and B, fulfil the assumptions of the Lemma
4.6, and so there is P,, a norm one projection on X such that P, X = A,,
P:X* = B," and (Pa)~'(0) = (Ba).. It is easy to verify (cf. [17]) that
these P, together with P, = 0 form a strong PRI.

Next we are going to prove that M C A, U{0}. Suppose it is not the case
and choose 0 #m € M\ A,. As ®'(B,) C Ay, we get m ¢ ®'(B,). By the
definition of ®’ it follows that s(m) = 0 for every s € By, hence m € (B,,) | .
But (B,), = {0} by the previous paragraph. This is a contradiction.

So, for any 0 # m € M there is a minimal « with m € A,. Due to the
condition (f) of Proposition 4.8 it is of the form o = g+ 1. As m ¢ Ag, we
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get m ¢ ®'(Bg), and hence m € (Bg) . It follows that m € Agy 1N (Bg), =
(Pg41 — Pg)X. This completes the proof. I

Let us remark, that by choosing M = () we get that every nonseparable Ba-
nach space with projectional generator admits a (strong) PRI [17, Proposition
6.1.7).

Remark 4.10. Similarly as we introduced the notion of weak PRI, we can
introduce the notion of weak projectional generator on a Banach space X.
This would be a pair (S, ®) with the same properties as projectional generator
(see Definition 4.3), only the condition (b) would be replaced by the following
one.

(b’) ®: S — X is a multivalued mapping such that card ®(s) < dens X for
every s € S.

Then it is easy to show (following the methods used in this section) that the
existence of a weak projectional generator implies the existence of a weak PRI
provided dens X is a regular cardinal.

4.2. SOME CLASSES OF BANACH SPACES WITH VALDIVIA TYPE DUALS
In this section we give definition and some characterizations of certain classes
of Banach spaces associated with Valdivia compacta.

DEFINITION 4.11. Let X be a Banach space.

(i) We say that S C X* is a Y-subspace of X* if there is a linear one-
to-one weak* continuous mapping 7 : X* — Rl for a set I', such that S =
T-42(I)).

(ii) We say that X is weakly Lindelof determined (shortly WLD) if X* is
a X-subspace of itself.

(iii) We say that X is a Plichko space if X* has a norming X-subspace.

(iv) We say that X is a 1-Plichko space if X* has a 1-norming ¥-subspace.

The class of WLD spaces was investigated probably first in [63], the name
WLD was given in [4]. We introduce the notions of Plichko and 1-Plichko
spaces. These classes were, with a different definition, thoroughly studied by
A. Plichko [53, 54, 55, 56]. It turns out that the class of 1-Plichko spaces
coincides with the class V of J. Orihuela [50], studied also by M. Valdivia in
[65].
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Remark 4.12. By replacing ¥(I") with ¥, (I") we can obviously define no-
tions of X.-subspace, k-WLD space, k-Plichko and 1-k-Plichko space. These
notions can be sometimes useful.

The above introduced classes of Banach spaces can be characterized in
terms of certain Markushevich bases. In fact, this was the definition used by
A. Plichko. Let us now give the definition of these bases.

DEFINITION 4.13. Let X be a Banach space.
(i) A Markushevich basis (shortly M-basis) of X is a family (zq, fa)aea of
elements of X x X* such that the following conditions are fulfilled.

- span{z, : @ € A} = X

- fa(ma) =1, fa(mﬂ) =0if 7é 6;
- For any z € X \ {0} there is @ € A with fu(z) # 0.

(ii) An M-basis (24, fa)aca is called norming (1-norming) if the space
span{fo:a € A} ={f e X" : {a € A: f(z,) # 0} is finite}

is a norming (1-norming, respectively) subspace of X*.
(iii) An M-basis (za, fa)aca is called countably norming (countably 1-
norming) if the space

{fe X" :{a€eA: f(x,) # 0} is countable}

is a norming (1-norming, respectively) subspace of X*.

Now we formulate the main theorems of this section. The proofs, together
with some auxiliary results will then form the rest of this section.

THEOREM 4.14. Let X be a nonseparable Banach space and let i denote
the density of X.

(i) If X is 1-Plichko, then there is a strong PRI (P, : w < a < ) such
that (Pyt1 — Pa)X is 1-Plichko for every a € [w, ).

(ii) If X has a weak PRI, then X is 1-u-Plichko.

(iii) If p is a regular cardinal and X is 1-u-Plichko, then X has a weak
PRI
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THEOREM 4.15. Let X be a Banach space. Then the following assertions
are equivalent.

1. X is 1-Plichko.
2. There is a set M C X such that span M = X and that

{feX*:{me M: f(x) # 0} is countable}

is a 1-norming subspace of X*.
3. X has a countably 1-norming M-basis.

4. (Bx+,w*) has a dense convex symmetric ¥-subset.

If, moreover, dens X = Ny, then the previous conditions are also equivalent
with the following one.

5. X has a PRI

THEOREM 4.16. Let X be a Banach space. Then the following assertions
are equivalent.

1. X is Plichko.
2. There is an equivalent norm |- | on X such that (X,|-|) is 1-Plichko.

3. X has a countably norming M-basis.

THEOREM 4.17. Let X be a Banach space. Then the following assertions
are equivalent.
1. X is weakly Lindelof determined.

2. There is an M-basis (4, fo)aca of X such that the set {a € A : f(zy) #
0} is countable for every f € X*.

3. (Bx»,w*) is a Corson compactum.
4. (X,w) is primarily Lindeldf.
To prove these theorems we will use several lemmas. The first one will be

a characterization of 1-norming Y-subspaces.

LEMMA 4.18. Let X be a Banach space and S C X* a 1-norming linear
subspace. Then the following assertions are equivalent.

(a) S is a X-subspace of X*.
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(b) SN Bx~« is a X.-subset of (Bx«,w").

(c) There is a dense convex symmetric X-subset A of (Bx~,w*) such that
S = span A.

(d) SN By~ is weak* countably compact and (X, wg) is primarily Lin-
delof.

Proof. The implications (a) = (b) = (c¢) are obvious.

(c)=-(d) Suppose that the condition (c) holds. Then (X, w,) is primarily
Lindelof by Theorem 2.7. And it is obvious that ws = wg, as S = span A.
Further, by Theorem 2.7 (the implication (ii)=-(i)) we have A = Bx-Nspan 4,
so SN A is weak™ countably compact by Lemma 1.6.

(d)=(a) This follows from Theorem 2.7 (the implication (iii)=-(i)). I

LEMMA 4.19. Let X be a Banach space and M C X be such that span M =
X and that

S={feX*:{meM: f(m)# 0} is countable}
is a 1-norming subspace of X*. Then the following hold.

(i) Ifdens X = p > N, then there is a strong PRI (P, : w < a < p) such
that the following conditions are fulfilled.

-MC Uw§a<M(POé+1 - Pa)X,
- span(M N (Pyy1 — Pa)X) = (Pay1 — Po) X for every w < a < p;

-Sa = {s | (Pyy1 — Py)X : s € S} is a I-norming subspace of
((Pag1 — Po)X)* for every w < a < pi.

(ii) There is an M-basis (Ta, fa)aca, such that all z, belong to span M
and for every s € S the set {a € A : s(z,) # 0} is countable.

Proof. (i) For every s € S put ®(s) = {m € M : s(m) # 0}. By the
assumptions this is a countably valued mapping, and it is easy to check that
(S, @) is projectional generator on X. By Proposition 4.9 there is a strong
PRI on X satisfying the first condition. The second condition follows easily
from the fact that span M is dense in X. The third one follows immediately
from the fact that S is 1-norming.

(ii) We will prove this by transfinite induction on dens X. If X is separable,
this follows from a classical theorem of Markushevich (see e.g. [24, Theorem
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272]). Suppose that X has density p > Ny and that we have proved the
statement for spaces with density strictly less than p. Let (P, : w < a < )
be a PRI on X satisfying the conditions from (i) . For a € [w, ) put M, =
MN(Pay1—Py)X and Sy = {s | (Pay1—P,)X : s € S}. By (i) and induction
hypothesis there is an M-basis (2, f,)yer, Of (Pagt1 — Po)X such that all z,
are in span M, and for every s € S, the set {y € A, : s(z,) # 0} is countable.
Every f, can be extended to a continuous functional f; on X such that f; is
zero on Py X @ (Id —P,41)X. Then, putting together all these M-bases, one
get an M-basis of X with the required properties. [

Now we are ready to prove the main theorems of this section.

Proof. (of Theorem 4.15) The equivalence 1 < 4 follows from Lemma, 4.18.

1 = 2 If X is 1-Plichko, there is a 1-norming >-subspace S of X*. It
means there is a linear one-to-one weak* continuous mapping 7' : X* — RF
such that S = T~ (X(')). For every v € T' the functional f — T(f)(y) is
weak™ continuous, and hence is represented by some m, € X (see e.g. [24,
Theorem 55]). Put M = {m, :y €T}

2 = 3 This follows from Lemma 4.19(ii) .

3 = 1 Let (%4, fa)aca be a countably l-norming M-basis of X. Define
T : X* = R by putting T(f)(a) = f(z4). This mapping clearly witnesses
that X is 1-Plichko.

If dens X = Ny, then 1 < 5 follows from Theorem 4.14 which we are going
to prove in a while. (Note, that the implication 1 = 5 holds regardless of
density of X.) 1

Proof. (of Theorem 4.14) The assertion (i) follows from Lemma 4.19(i)
together with the equivalence 1 < 2 of Theorem 4.15.

(ii) Let (Py : w < a < pu) be a weak PRI on X. Put k, = dens P11 X.
Then ko < p for every a € [w, p) and, moreover, ko form a non-decreasing
long sequence. For every a € [w, i) let I, be a dense subset of (Pyy1 — Py)X
such that cardI, < k,. Put I = Uw§a<u I, and define T : X* — R! by
the formula T'(f)(1) = f(i). It is easy to check that S = U,<4, PaX" is
I-norming and T'(S) C X,(I"). It follows that X is 1-u-Plichko.

(iii) Let S be a 1-norming ¥,-subspace of X* and 7' : X* — R a linear
one-to-one weak* continuous mapping such that T'(S) C X,(I'). For every
v € T the linear functional T, (f) = T'(f)(7y) is weak* continuous, and hence is
represented by an element of X. If we put ®(f) = {T, : T,(f) # 0}, then the
pair (S, ®) is clearly a weak projectional generator. It remains to use Remark
4.10. 1
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Proof. (of Theorem 4.16) This theorem follows immediately from Theorem
4.15 using Remark 4.2. |

Proof. (of Theorem 4.17) The equivalences 1 < 3 < 4 follow from Lemma
4.18.

The implication 1 = 2 follows from Lemma 4.19 using the same idea as in
the proof of Theorem 4.15, 1 = 2.

Finally, 2 = 1 can be proved in the exactly same way as the implication
3 = 1 of Theorem 4.15. 1

Remarks 4.20. (i) It follows from Theorem 4.15 that the dual unit ball
of a 1-Plichko Banach space in its weak™ topology is a Valdivia compactum.
We do not know whether the converse holds true. We formulate it below as a
question. A partial positive answer will be given in Theorem 5.3 below. An
example in the negative direction will be given in Example 6.8.

(ii) The idea of proof of Theorem 4.14(ii) comes from [18]. Note, that we
cannot expect that the space in question would be 1-Plichko. It can be easily
seen that the space C[0,ws] has even strong PRI, but the dual unit ball is not
Valdivia (Example 1.10 and Theorem 5.3).

(iii) The theorem 4.17 was proved, in a bit different form, in [4]. The
implication 3 = 5 of Theorem 4.15 was proved first by A. Plichko [54]. The
implications 4 = 3 and 4 = 5 follow also from results of [65]. The validity of
3 = 4 was observed in [29, Lemma 3].

QUESTION 4.21. Let X be a Banach space such that (Bx-,w*) is Valdivia.
Is then X 1-Plichko?

4.3. NON-STABILITY WITH RESPECT TO EQUIVALENT NORMS While it
is clear that Plichko spaces are stable with respect to equivalent norms, for
1-Plichko spaces it is not the case. This was shown for example in [29] and
[18]. In fact, a stronger statement holds. The following theorem was proved
in [32].

THEOREM 4.22. Let X be a Banach space. Then the following assertions
are equivalent.

1. X is weakly Lindelof determined.

2. X is 1-Plichko with respect to every equivalent norm on X.
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3. B(x,.|)+ Is a Valdivia compactum in the weak* topology, for every equiv-
alent norm | - | on X.

If, moreover, dens X = Ny, then the previous conditions are equivalent also to
the following one.

4. X has a projectional resolution of the identity with respect to every
equivalent norm.

Before proving this theorem we collect several interesting consequences.

COROLLARY 4.23. If I" is an uncountable set, then there is an equiva-
lent norm on ¢1(I") such that the respective dual unit ball (with the weak*
topology) is not a Valdivia compactum.

COROLLARY 4.24. There is an equivalent norm on ¢1(][0,w1)), such that
the space ¢1([0,w;)) has no PRI with respect to this norm.

Proof. (of Corollaries 4.23 and 4.24) It is enough to observe that ¢;(T) is
1-Plichko for every I' and that it is not WLD if I' is uncountable; and use
Theorem 4.22. 1

A quantitative version of Corollary 4.24 was obtained in [58].
Theorem 4.22 also yields the following answer to a question of [46, §4,
p.517].

COROLLARY 4.25. Under continuum hypothesis there is a Corson com-
pact space K, and an equivalent norm on C(K) such that C(K) has no PRI
with respect to this norm.

Proof. Assume continuum hypothesis. By [5] there is a Corson compactum
K of weight ¥y such that C(K) is not WLD. Then it suffices to use Theorem
422. 1

To prove Theorem 4.22 we will use the following two easy lemmas from
[32].

LEMMA 4.26. Let X be a Banach space and K C Sx« be a convex weak*
compact set. Then there is a convex weak® compact set L which is weak* G4
in Bx~ and K C L C Sx~.
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Proof. Let n € N. The sets (1 — %)BX* and K are two disjoint convex
weak* compact sets, so there is, by Hahn-Banach theorem, z,, € X and ¢, € R
such that

sup  f(zn) < cp < inf f(zy).
fe(l—+)Bx~ feK

It is enough to put

L={f¢€Bx-:(VneN)(f(zn) >cn)}
1

LEMMA 4.27. Let (X, | -||) be a Banach space such that there is a weak™
compact convex set K C Sy~ which is not a Valdivia compactum. Then there
is, for any € € (0, 1), an equivalent norm |-| on X such that (1—¢)||-|| < |-] < ||l
and that B(x,.« is not Valdivia.

Proof. Let L be a convex weak™® compact set, weak* G4 in Bx+ such that
K C L C Sx+. Such L exists due to Lemma 4.26. Put

B =conv(KU(-K)U(l—¢)Bx-).

Then B is a convex symmetric weak* compact set such that (1 —e)Bx+ C
B C Bx-, so there is an equivalent norm |- | on X such that B is its dual
unit ball. It remains to show that B is not Valdivia. To see it we will prove
that K = LN B. Choose f € LN B. Then there are s,t > 0, s+t <1 and
ki,ky € K, be (1 —¢)BY such that f = sb+tk; + (1 —s —t)(—kz). We have

L=lfI < slpll+tlkl+ A =s=t)[| —kall < s(l—e) +t+1-s—t =1-sc,

hence s = 0. So f = tky + (1 —t)(—ks). Asky € K C L, we get 1(f+k2) € L,
but 3(f + k2) = 5(k1 + k2), so ||5(f + k2)|| =, hence t = 1.

So K = L N B and therefore K is weak™ G4 in B. If B was Valdivia, K
would be Valdivia as well by Theorem 3.8. It follows that B is not Valdivia
which completes the proof. |1

Proof. (of Theorem 4.22) The implication 1 = 2 is obvious.

2 = 3 This follows from Theorem 4.15.

3 = 1 Assume X is not WLD. Then (Byx~,w*) is not Corson by Theorem
4.17. If it is not Valdivia, there is nothing to prove, hence suppose that
(Bx=+,w*) is Valdivia. Let A be a dense X-subset. If Sx« C A, then by
Lemma 1.6 and a corollary to Josefson-Nissenzweig theorem [13, Chapter
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XII, Exercise 2(i) | we would get Bx- C A, and so By~ would be Corson. So
there is f € Sx+ \ A. Apply Lemma 4.26 to get a convex weak* compact set
L C Sx-» which is weak* G§ in Bx~ and contains f. By Lemma 1.11 we have
that LN A is dense in L, so L is Valdivia, and as f € L\ A, L is not Corson. By
Theorem 3.16 there is K C L convex weak* compact, non-Valdivia. Finally
by Lemma 4.27 there is an equivalent norm on X such that the corresponding
dual unit ball is not Valdivia. This completes the proof.

1 = 4 This follows from Theorem 4.14.

If dens X = Ny, then 4 = 2 follows from Theorem 4.15. |

For spaces of density greater than Ny we have the following theorem.

THEOREM 4.28. Let X be a Banach space of density u such that p is a
regular cardinal. Then the following assertions are equivalent.

a) X is u-WLD.
b) (Bx+,w*) is a u-Corson compact space.

(
(
(¢) X is 1-u-Plichko with respect to every equivalent norm.

(d) (B(x,.)»w") is a p-Valdivia compactum for every equivalent norm
|-| on X.

(e) X has a weak PRI with respect to every equivalent norm.

(f) X has a weak PRI (Py : w < o < p) such that J,., Pa X" = X*.

Proof. (Remarks on the proof) The implication (a)=-(b) is trivial.

(b)= (f) This can be proved following the proof [17, Proposition 8.3.1],
and then using Remark 4.10.

(b)= (e) This follows from the previous implication, using the obvious fact
that the dual unit ball is u-Corson with respect to every equivalent norm.

The implication (e) = (¢) follows from Theorem 4.14.

(c)= (d) This is trivial.

(d)=- (b) This can be proved in the same way as the implication 3 = 1 of
Theorem 4.22, using Remark 3.17 instead of Theorem 3.16.

(f)= (a) This follows from the proof of Theorem 4.14(ii) . 1

Let us remark that the existence of a weak PRI implies the existence of
a PRI provided the density of the Banach space in question is a successor
cardinal, so we have the following example.
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EXAMPLE 4.29. Let X be the ¢y sum of Ny copies of the space ¢1([0,w1)).
Then X is No-WLD, not WLD and has PRI with respect to every equivalent
norm.

This shows that WLD spaces of large density cannot be characterized using
the notion of PRI. However, the following question seems to be open.

QUESTION 4.30. Let X be a Banach space such that X has a strong PRI
with respect to each equivalent norm. Is then X necessarily WLD?

4.4. STABILITY TO PRODUCTS In this section we collect some results
on stability and non-stability of Valdivia type classes of Banach space with
respect to taking products. We begin by naming the theorems.

THEOREM 4.31. (i) Let Xy,..., X, be 1-Plichko spaces and N be a norm

on R" such that N(t1,...,t,) = N(|t1|,...,|tn|) for any t1,...,t, € R
Equip the product X = X; x --- x X,, with the norm ||(z1,...,z,)| =
N(||lz1lly-- -, |lznll)- Then (X,|| - ) is 1-Plichko.

(ii) Let X, Y be two non-trivial Banach spaces such that at least one of
them is not WLD and at least one of them has Valdivia dual unit ball. Then
there is a norm || - || on X X Y such that max(||z||, [|y||) < ||(z,y)|| < |lz]+ ]yl
and that the respective dual unit ball is not Valdivia.

(iii) The co-sum, as well as the £,-sum for any p € [1,00), of an arbitrary
family of 1-Plichko spaces is again 1-Plichko.

THEOREM 4.32. (a) The product of a finite number of Plichko spaces is
again Plichko.

(b) There exists a sequence (X, : n € N) of Plichko spaces such that neither
the co-sum nor the £y-sum for any p € [1,00) of these spaces is Plichko.

THEOREM 4.33. (i) The product of a finite number of WLD spaces is
again WLD.

(ii) The cy-sum, as well as the £,-sum for any p € (1,00), of an arbitrary
family of WLD spaces is again WLD.

(iii) The ¢1-sum of a countable family of WLD spaces is WLD. The £1-sum
of an arbitrary family of WLD spaces is 1-Plichko.

Before proving the theorems we give the following lemma, which can be
viewed as a Banach space analogue of Lemma 3.28.
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LEMMA 4.34. Let (X, : a € A) be a family of Banach spaces, S, be a
Y-subspace of X} for every a € A, p,q € [1,00] be such that 119 + % =1. If
p < oo, let X be the £,-sum of all X,’s, if p = oo, let X be the co-sum of
all X,’s. Then the dual X* is canonically isometric to the £4-sum of all X}’s,
and the set

S ={(&)acn € X*: (Va € A)(& € Sa) & {a € A : &, # 0} is countable}
is a X-subspace of X*.

Proof. Let T, : X; — Rle be a linear mapping witnessing that S, is a
Y-subspace of X. Put

T((fb)beA)(aa’Y) = Ta(fa)(’)/)a a€l, yeT,.

Then this mapping witnesses that S defined above is a Y-subspace of X*. |

Proof. (of Theorem 4.31) (i) By N* denote the dual norm on R”, i.e.
N*(s1,...,8,) = sup{|sit1 + -+ + sptn| : N(t1,...,tn) < 1}. Then it is easy
to check that X* is canonically isometric to X] x --- x X with the norm
(€15, &)l = N*([&lls - - - s [I€nll)- Let S; be a 1-norming ¥-subspace of X7
for = 1,...,n. It follows from Lemma 4.34 that S = 51 x --- x S, is a
Y-subspace of X*. It remains to prove that it is 1-norming.

Let z = (z1,...,2,) € X and € > 0. There are s1,...,s, € [0,00) such
that N*(s1,...,s,) = 1 and sq||z1|| + -+ + spllznl = N(|z1ll,- .., |zal]) =
|(z1,...,2y)|. Forevery j =1,...,n choose some {; € Sj, ||| = s; such that
£i(;) > sl — £ Then € = (1,....£n) € S, [I€]] = 1, and £(z) > [lz]) — c.
This completes the proof.

(ii) Suppose without loss of generality that X is not WLD. First assume
that Bx- is Valdivia. Choose yp € Y with |lyg|]| = 1 and put L = {g € By~ :
g(yo) = 1}. This is a convex weak™ compact subset of the sphere Sy-.

Further, Bx~ is Valdivia and not Corson, and hence there is a non-Valdivia
weak* compact K C By~ which is convex, contains 0, and has a dense set
of G5 points. This can be shown by a minor modification in the proof of
Theorem 3.16. Namely, either ¢ = 0, or we can choose f; = 0, using the
notation of Theorem 3.16. Hence we can arrange that 0 € K. The fact that
K has a dense set of G5 points follows from the fact that K is the weak™
closed convex hull of a weak* compact scattered space (by [32, Lemma 4] the
space K is a continuous image of a Radon-Nikodym compactum, and hence
has a dense set of G points).
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Now put
B = conv((Bx~ x {0}) U ({0} x By-) U(K x L)U ((—K) x (—L))),

all considered in the space X* xY™* = (X xY)*. then B is a convex symmetric
weak® compact set, such that conv((Bx= x {0})U ({0} x By«)) C B C Bx~ X
By~, hence B is the dual unit ball of an equivalent norm || - || on X x Y such
that max(|[z]], |lyl}) < [[(z,y)l| < [lzll+[yl for every (z,y) € X x V. We claim
that B is not a Valdivia compactum.

Let us first show that K x L = {(f,g9) € B : (f,9)(0,y0) = 1}. The
inclusion “C” immediately follows from the choice of L and B. Let us prove
the inclusion “D”. Choose (f,g) € B such that g(yo) = (f,9)(0,50) = 1. By
the definition of B there are s,t,u > 0 with s +¢t4+u < 1 and a € Bx~,
b € By, ki,ko € K and ly,ly € L such that (f,g) = s-(a,0) +¢-(0,b) + u -
(k1,01) + (1 — s —t—wu) - (—kg,—l2), in particular

1= g(yo) = tb(yo) + ul1(yo) + (1 — s —t — u)(—l2)(10)
=th(yo) tu—(1—s—t—u)<t+u<s+t+u<l,

hence the equalities take place, therefore s =0, ¢ +u = 1 and b(yg) = 1. It
follows that b € L and (f,g) = t(0,b)+(1—t)(k1,l1) = (1—t) k1, tb+(1—1)l1) €
K x L, as K and L are convex and K contains 0.

Let us suppose that B is a Valdivia compactum. Then K x L is also
Valdivia, due to Theorem 3.8. Now, as K has a dense set of G5 points, K is
Valdivia by Lemma 3.32. This is a contradiction.

Now suppose that Bx+ is not Valdivia. Then, by the assumptions, By is
Valdivia. If Y is not WLD, then we can do the same as above interchanging
the roles of X and Y. If Y is WLD, then we can choose ||(z,9)| = ||z| + ||y
In this case the respective dual unit ball is weak* homeomorphic to Bx= X By,
and so it is not Valdivia by Theorem 3.3 and Lemma 3.32.

(iii) This follows from Lemma 4.34, as it can be easily seen that S is
1-norming whenever each S, is 1-norming. [

Proof. (of Theorem 4.32) (a) This is trivial using Lemma 4.34.

(b) This was proved by A. Plichko and D. Yost in [58, Section 7]. Let us
indicate the idea.

Let (X, - ||) be Plichko. Then there is an equivalent norm | - | on X such
that (X,|-|) is 1-Plichko, and thus there is a family of projections (P, : w <
P, < dens X) which form a PRI for (X,|-|) (Theorem 4.14). This family of
projections, considered on the space (X, || - ||), has all the properties of a PRI
except for condition (ii) which is replaced by
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(ii’) SUPy<a<dens X HPa” < 0.

Let us call such a family of projections bounded projectional resolution, and
the constant sup,<,<gens x |[Fall < 0o be called the projection constant (cf.
[58, Section 7]).

The space ¢1(]0,w1)) with the standard norm is 1-Plichko, and so it is
Plichko in every equivalent norm. By [58, Section 7, Theorem] there is, for

each n € N, an equivalent norm || - ||, on £1([0,w1)) such that the projection
constant of any bounded projectional resolution in (41 ([0,w1)),] - ||n) is at
least n.

Put X, = (£1([0,w1)), ] - ||») and let X be either the co-sum or the £,-sum
for some p € [1,00) of X,;’s. Then X,, is Plichko for any n € N but X is not
Plichko. Although it is very natural, the proof is not completely trivial, it is
given in [58] for the case of /;-sum, but the same argument works for all other
cases. |1

Proof. (of Theorem 4.33) All assertions easily follow from Lemma 4.34. 1

Remark 4.35. Tt is claimed in [50] that 1-Plichko spaces are stable to finite
products. However, it is not clear which norm on X xY one takes for a product
norm. The assertions (i) and (ii) of Theorem 4.31 clarify the situation. As
for the assertion (ii), we do not know what happens if neither X nor Y has
Valdivia dual unit ball (cf. Lemma 4.41 and Question 4.45).

4.5. SUBSPACES AND QUOTIENTS In this section we collect some results
on stability and non-stability of Valdivia type classes of Banach spaces with
respect to taking subspaces and quotients.

The situation concerning quotients is easy to describe.

THEOREM 4.36. (i) If X is WLD and there is a bounded linear operator
T:X —-Y withTX denseinY, thenY is WLD as well.

(ii) Every Banach space is isometric to a quotient of a 1-Plichko space.

(iii) If X is 1-Plichko (Plichko) and Y C X a separable subspace, then
X/Y is 1-Plichko (Plichko, respectively).

Proof. (1) IfTX isdenseinY’, then T* : Y* — X* is one-to-one. Obviously
T* is weak™ to weak* continuous. Let F' : X* — Y(I') witnesses that X is
WLD. Then F o T* witnesses that Y is WLD.
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(ii) It is well-known (cf. [24, p. 71]) that every Banach space is isometric to
a quotient of £1(T") for a set I'. And ¢ (T") is obviously 1-Plichko (for example
by Theorem 4.31).

(iii) Suppose that X is 1-Plichko and that S is a 1-norming Y-subspace
of X*. The dual (X/Y)* is canonically isometric to Y- and the latter is a
weak* closed weak* G subspace of X*. In particular, SN Bx+ NY "+ is weak*
dense in Bx-NY " by Lemma 1.11. Tt follows from Lemma 4.18 that X/Y is
1-Plichko.

If X is Plichko, then there is an equivalent norm |-| on X such that (X, |-|)
is 1-Plichko. By the previous paragraph the quotient (X,|-])/Y is 1-Plichko.
Finally, X/Y is isomorphic to that space and so it is Plichko. 1

As for subspaces, there are more open question than results. We begin by
the following easy example of [29].

EXAMPLE 4.37. The space X = C[0,w;] of continuous functions on the
ordinal segment [0,w;] with the supremum norm is 1-Plichko, while the dual
unit ball of its hyperplane ¥ = {f € X : f(w;) = 0} is not a Valdivia
compactum.

Proof. (Sketch) As [0,w;] is Valdivia (Example 1.10), the space X =
C[0,wq] is 1-Plichko by Theorem 5.2 below. Suppose that By~ is Valdivia.
Let A be a dense ¥-subset. For every o < w; the functional §, (the Dirac
measure supported by «) is a weak™ G5 point of By, hence d, € A. Similarly,
%(5,1 — dpy1) is a weak™ Gy point of By~, hence it belongs to A. It is easy to
check that the set {J, : @ < w1 }U{0}U{2 (0 —dn1) : n € N} is weak™ home-
omorphic to the interval [0, w;] with collated sequence from Example 1.10, so
it is not Valdivia. But we have just proved that it is Valdivia, a contradiction.

We continue by the following analogue of Theorem 3.22.

THEOREM 4.38. Let X be a Banach space, Y a subspace of X, and S a
1-norming Y-subspace of X*. Then the following assertions are equivalent.

1. {s Y :s€S} is a X-subspace of Y*.

2. Y is wg-closed in X.

3. The mapping Q) : s — s | Y is a quotient mapping of (SN Bx-,w*) onto
its image, and (By~,w*) = B(Q(S N Bx+),w*).
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Proof. The proof is completely analogous to that of Theorem 3.22, due to
Lemma 4.18. 1

As a corollary we obtain the following example.

EXAMPLE 4.39. (a) Every subspace of a WLD space is again WLD.
(b) Every hyperplane of ¢;(T") is 1-Plichko.

Proof. (a) This immediately follows from Theorem 4.38.

(b) It will be shown in Example 6.9 that for every z € ¢1(I")* = £ (T)
there is a 1-norming Y-subspace of £ (") containing z. Let Y be a hyperplane
of /1(I"). Then there is z € £o(I") such that Y = {z} . Let S be a 1-norming
Y-subspace containing z. Then Y is wg closed, and hence we can conclude
by Theorem 4.38.

Let us remark that this assertion can be also proved in an elementary way,
explicitly determining the 1-norming >:--subspace of Y*. |

Another positive result on subspaces is the following consequence of The-
orem 4.36(iii).

THEOREM 4.40. Let X be a Banach space and Y a subspace of X such
that X/Y is separable.

(i) If Y is complemented in X, then Y is Plichko if and only if X is
Plichko.

(ii) IfY is I-complemented, thenY is 1-Plichko whenever X is 1-Plichko.
The converse does not hold.

Proof. The ‘if’ part of both cases follows from Theorem 4.36(iii).
The converse for Plichko case follows from Theorem 4.32. The non-validity
of the converse for the 1-Plichko case follows from Theorem 4.31(ii). 1

LEMMA 4.41. Let X and Y be Banach spaces such that the dual ball B x+«
has at least one weak* G§ point and that X @Y is 1-Plichko. Then X is
1-Plichko and (By~,w*) has a dense convex -subset.

Proof. Let S be a 1-norming Y-subspace of (X @1 Y)*. The dual unit ball
of X @Y is canonically weak* homeomorphic to Bx~ X By=. Let f be a G
point of Bx«. Then ({f} x By-) NS is dense in {f} x By=, due to Lemma
1.11. Hence By~ has a dense convex Y-subset.
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To show that X is 1-Plichko, it is enough to prove that X is wg-closed in
X @Y (by Theorem 4.38). Suppose that a net (x,,0) converges in wg to a
point (z,y). We will show that y = 0. By the above the set A = {g € By~ :
(f,g) € S} is weak* dense in By«. For any g € A we have, by the definition
of wg, that

F(@a) = (f,9)(a:0) = (f,9)(x,y) = f(z) + g(y)-

As the left-hand side does not depend on g, neither does the right-hand side.
It follows that the mapping g — g(y) is constant on A. Therefore, by density
of A, it is constant also on By~, and thus y = 0, which completes the proof.

As an immediate consequence of the previous lemma we get the following
theorem.

THEOREM 4.42. Let (X, : @ € A) be a family of Banach spaces such that

Bx; has a weak* G point for each o € A. Then the ¢, sum of all X,’s is
1-Plichko, if and only if each X, is 1-Plichko.

The just named results are, up to our knowledge, almost all what is known
about stability or non-stability with respect to subspaces (except for Theorems
5.13 and 5.14 below). Hence there are many open questions in this area.

QUESTION 4.43. Is a Banach space X WLD provided one of the following
conditions hold?

(i) The dual unit ball of every subspace of X is Valdivia.

(ii) Every subspace of X is 1-Plichko.

(iii) Every subspace of X admits a (weak) PRI.

A partial positive answer, within certain C'(K) spaces, is given in [34]. We
reproduce it in Section 5.2. In particular, even the following question seems
to be open.

QUESTION 4.44. Is every subspace of £;(I") 1-Plichko (or at least Plichko)?

The following questions are natural to ask, in view of Theorem 4.40 and
Lemma 4.41.

QUESTION 4.45. (i) Is every subspace of a Plichko space again Plichko?

(ii) Is every l-complemented subspace of a 1-Plichko subspace again 1-
Plichko?

(iii) Let X @1 Y be 1-Plichko. Are X and Y 1-Plichko as well?
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Another natural question concerning quotients and subspaces is whether
the classes of Banach spaces in question have so called three-space property.
It is the following question: Let X be a Banach space with a subspace Y such
that both Y and X/Y belong to some class of spaces. Does X necessarily
belong to this class as well? There are some well-known examples of spaces
witnessing that for our classes it is not the case, even in a very strong sense.

EXAMPLE 4.46. There are pairs of Banach spaces X, Y with Y being a
subspace of X with the following properties.

(i) Y is isometric to ¢y, X/Y is isometric to ¢5([0,w1)) and X is not
Plichko.

(ii) Y is isometric to ¢y, X/Y is isometric to ¢([0,w1)) and X is not
Plichko.

(iii) Y is isometric to C[0, 1], X/Y is isometric to ¢y(A) (where A is an
arbitrary uncountable subset of (0,1)) and X is not isomorphic to any
subspace of a Banach space with Valdivia dual unit ball.

Proof. The conditions from (i) and (ii) are satisfied by the well-known
examples of Johnson and Lindenstrauss [26]. The fact that these spaces are
not Plichko follows from [8, Claim on p. 139], where it is proved that these
spaces have PRI with respect to no equivalent norm.

Let us prove the assertion (iii) . Let A C (0,1) be an arbitrary uncountable
set and K 4 be the modification of the double arrow space described in [27] and
X be the space C(K 4). Then there is a subspace Y C X with the required
properties (cf. e.g. [17, Section 2.3] or [8, Section 5.6]). By Example 1.18 the
space K4 is not Valdivia, in particular X is not WLD. It follows from [28,
Proposition 7] that the space P(K 4) of Radon probability measures on K4 is
weak* first countable, and hence so is P(K 4) x P(K 4) x [0,1]. The dual unit
ball Be k)« is a continuous image of the latter space and hence it is Fréchet-
Urysohn (it is easy to check that Fréchet-Urysohn spaces are preserved by
closed continuous maps). In particular, it contains no copy of [0, w;]. Clearly
the same is true for the dual unit ball with respect to any equivalent norm.
By Theorem 3.27 we get that the dual unit ball is not a continuous image of
a Valdivia compactum, for any equivalent norm on X. The result now follows
immediately. 1
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However, similarly as WCG spaces (see [26] or [8, Proposition 4.10.1]), the
class of WLD spaces satisfies a weak version of the three space property. The
analogous statement for 1-Plichko spaces is not true.

THEOREM 4.47. (a) Let X be a Banach space such that there is Y C X
which is WLD and such that X/Y is separable. Then X is WLD.

(b) There is a Banach space X which is not 1-Plichko such that there exists
(even 1-complemented) 1-Plichko subspace Y C X with X/Y separable.

Proof. (a) As Y is WLD, there is a linear one-to-one weak*-continuous
mapping T3 : Y* — X(T') for a set I'. Since X/Y is separable, there is a linear
one-to-one weak* continuous mapping Ty : Y+ = (X/Y)* — RY. By Hahn-
Banach theorem this mapping can be linearly weak™® continuously extended
on a mapping Ty : X* — RY. Let us define the mapping 7 : X — 2(I' UN)
by the formula:

T(f)y) =Ti(f1Y)(y), €T
T(f)(n) =Ta(f)(n), neN

This is clearly a linear one-to-one weak* continuous mapping, and hence X is
WLD.
(b) This follows from Theorem 4.31(ii). 1

The following question seems to be open.

QUESTION 4.48. Let X be a Banach space such that there is a Plichko
subspace Y C X with X/Y separable. Is then X necessarily Plichko?

5. VALDIVIA TYPE C(K) SPACES

In this chapter we will study Banach spaces of the form C(K), where K
is a compact space and Valdivia type properties of their duals. It turns out
that these properties are related with Valdivia properties of K, but the exact
relationship remains to be an open question. First we fix some notation.

If K is a compact space, we denote by C(K) the Banach space of all contin-
uous functions on K, endowed with the standard max-norm. The dual space
C(K)* can be, due to Riesz theorem, identified with the space of finite signed
Radon measures on K, the norm of a measure ;s being its total variation.

A special role is sometimes played by the space of Radon probability mea-
sures on K, we will denote in P(K) and always consider it with the weak*
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topology. We will often use also the following standard equality
P(K) ={pe C(K)": |ull <1 & (u,1k) =1},

from which it follows that P(K) is a convex weak* closed weak* G5 subset of
BC( K)*-

If 41 is an element of C'(K)*, we denote by u™ the positive part of y and by
1~ the negative part. If p is a non-negative measure, we denote by supp p the
support of the measure pu, i.e. the set of those points x € K such that each
neighborhood of = has positive u-measure. The support of a signed measure
@ is the union of supp u* and supp . It is well-known and easy to see that
every signed Radon measure is supported by its support, i.e. every Borel set
disjoint with the support has measure zero.

There is also a canonical embedding of K into C(K)*. This embedding
we will denote by 4, and it assigns to a point z € K the Dirac measure §,. It
is well-known that this ¢ is a homeomorphic embedding.

5.1. VALDIVIA COMPACTA AND DUALITY In this section we study re-
lations between Valdivia type properties of a compactum K, the space of
probability measures P(K) and the dual unit ball Bek)-. We start by the
following key proposition. One of the ideas used in the proof goes back to [50,
Corollary 5.

PROPOSITION 5.1. Let K be a compact space and A be a dense Y-subset
of K. Then the set

(8) S ={p € C(K)* : suppp is a separable subset of A}
is a 1-norming Y-subspace of C(K)*.

Proof. Let h: K — R be a homeomorphic injection with h(A) = h(K) N
Y(T). For y € T let f, = 7y o h, where 7, denotes the projection of R onto
the 7-th coordinate. It is clear that the family (f, | v € I') separates the
points of K and that

A={ze K |{yeTl]| f,(z) #0} is countable}.

Let I:‘ be the set of all (possibly empty) finite sequences of elements of I". For
7 € T let us define

15 ify =0,
gy = o~
7 fonceee fon 17

(Y155 7m)-

5}
Il
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It follows from Stone-Weierstrass theorem, that span{gs | 7 € T} = C(K),
hence the family (Qﬁ | 5 € f‘) separates points of C'(K)*. Therefore, if we

define the mapping h : C (K)* — RE by the formula

h(n) () = (1, 95),

it is a linear weak* continuous injection. Put
S=h1 (Z(f)) .

This S is clearly a Y-subspace of C(K)*. Moreover, S contains the Dirac
measure 0, for every z € A. Indeed, if z € A and 4 € T with g5(x) # 0,
then either ¥ = () or 4 = (y1,...,7,) with y;(z) #0, 7 =1,...,n. So clearly
{# € T' | g5(z) # 0} is countable, and therefore &, € S. It follows that S is
1-norming.

It remains to prove the equality (8). At first let us prove the inclusion “>”.
Suppose that u € C(K)* is such that supp u is a separable subset of A. Hence
supp p is a separable Corson compactum, and therefore metrizable. Further,
we have that supp p = supp u™ Usupp ™, thus both supp ™ and supp i~ are
separable. If we knew that ™ and p~ belong to S, then p = u™ — = would
belong to S as well. It follows that we can suppose without loss of generality
that p is non-negative. Moreover, as 0 € S, we can suppose that p € P(K).

Put F = suppu. Then it is well-known and easy to see that P(F) is a
topological subspace of P(K). By the above we have §, € S for every x € F,
and hence also measures supported by a finite subset of F' belong to S. It
is a standard fact that such measures are weak® dense in P(F'), and as F' is
metrizable, P(F') is also metrizable, and hence yu is the limit of a sequence of
elements of SN P(K). It follows that ;4 € S by Lemma 1.6.

It remains to prove the inclusion “C”. Put S’ = span{d, : z € A}. It
is clear that S’ C S and that $" is I-norming. It follows that S N Bex)-
is weak* dense in Bg(g)-. In particular, every u € S N Bk~ belongs to
the weak* closure of S’ N B ()<~ Hence, by Lemma 1.6, there is a sequence
pn € S'N Be(ky- weak™ converging to p. Let C be the set of all z € K such
that pn({z}) # 0 for some n. It is clear that C is a countable subset of A and
that p is supported by C. As C C A (Lemma 1.6), C is a separable Corson
compactum, and hence metrizable. It follows that supp u is separable, too, as
a subset of C. This completes the proof.

Now we are going to formulate duality results on Valdivia type properties.
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THEOREM 5.2. Let K be a compact space. Consider the following condi-
tions
. K is a Valdivia compactum.
. C(K) is a 1-Plichko space.
(BC(K)*,w*) has a dense convex Y.-subset.
P(K) has a dense convex Y.-subset.

(BC(K)*,w*) is a Valdivia compactum.

S N

. P(K) is a Valdivia compactum.

Then the following implications hold true.

1=223<4=5=6

THEOREM 5.3. Let K be a compact space with a dense set of G5 points.
Then all conditions 1-6 of Theorem 5.2 are equivalent.

THEOREM 5.4. Let K be a compact space. Then the following assertions
are equivalent.

(a) K is a Corson compact space such that the support of every Radon
probability on K is separable (i.e., K has so called property (M)).

(b) C(K) is WLD.
(c) P(K) is a Corson compactum.

Now we proceed to proofs of the just stated theorems.

Proof. (of Theorem 5.2) The implication 1 = 2 follows from Proposition
5.1.

2 = 3 This is trivial, as the dual unit ball of a 1-Plichko space has even a
convex symmetric dense Y-subset (cf. Theorem 4.15).

3 = 4 This follows from Lemma 1.11, as P(K) is a weak* closed weak*
G convex subset of Bo()«.

4 = 2 Let A be a dense convex Y-subset of P(K). Then (C(P(K)),7a) is
primarily Lindel6f by Theorem 2.5. Let us consider the injection T : C(K) —
C(P(K)) defined by the formula T'(f)(u) = {1, f), n € P(K), f € C(K). We
claim that F' € C(P(K)) belongs to T'(C(K)) if and only if F is affine.
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The ‘only if” part is obvious, so let us prove the ‘if’ part. Let F' € C(P(K))
be affine. Put f = (F | §(K))od. Then f € C(K). And it easily follows from
the facts that F' is continuous and affine that F' = T'(f).

Further let us notice that T(C(K)) is 7a-closed in C(P(K)). Indeed, let
F, ™ F, where F, € T(C(K)) and F € C(P(K)). Each F, is affine and A
is convex, so F' [ A is affine. As A is dense and F' continuous, we get that F'
is affine, hence F' € T(C(K)).

So T(C(K)) is T4-primarily Lindel6f, and clearly (C(K),w4) is homeo-
morphic to (T(C(K)),7a), therefore (C(K),w,) is primarily Lindeléf. Put
A = conv(AU (—A)). Then clearly wy = w3, 80 (C(K),wj ) is primarily Lin-
deléf. In view of Theorem 2.7 it is enough to show that A is weak* countably
compact and weak* dense in Be(gy-

By Lemma 3.28 we have that A x A x [0, 1] is a dense -subset of P(K) x
P(K) x[0,1], and hence it is countably compact by Lemma 1.6. Consider the
mapping

W : P(K) x P(K) x [0,1] = Box)-

defined by the formula

Q[)(N,I/,t) =1tp— (1_t)’/'

Then 1 is continuous and onto, and A = (A4 x A x [0,1]), so clearly A is
weak* countably compact and weak* dense. This completes the proof.

The implication 3 = 5 is trivial.

5 = 6 This follows from Theorem 3.8. 1§

To prove Theorem 5.3 we need the following lemma. In fact, we need only
a special case, but the present formulation will be of use later.

LEMMA 5.5. Let K be a compact Hausdorff space, 1, ... ,on, be G5 points
of K and ty,...,t, > 0 witht; +---+t, =1. Then t16,, + -+ 1,0, Is a
G point of P(K).

Proof. At first let us show that the set of probability measures on K
supported by the set F' = {z1,...,z,} is G5. As F is clearly Gg, it is enough
to show the following assertion.

(9) F CKisclosed and Gs = {p € P(K) | p(F) =1} is G5 in P(K).
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Let f : K — [0,1] be continuous with f~!(1) = F. Then it is clear that
pu(F) =1 if and only if (i, f) = 1, which proves (9).

Finally observe, that {y € P(K) | u(F) = 1} is homeomorphic to P(F),
which is metrizable whenever F' is finite. So every point of P(F) is G in
P(F), and the assertion of the lemma follows. 1

Proof. (of Theorem 5.3) It is enough to prove the implication 6 = 1.
Suppose that P(K) is a Valdivia compactum and let A be a dense 3-subset
of P(K). If k is a G§ point of K, then dj is, due to Lemma 5.5 a G5 point of
P(K), and hence ¢; € A by Lemma 1.11. So §(K) N A is dense in (K), and
hence K is a Valdivia compactum. [}

It can be easily checked that the exactly same argument as in the previous
paragraph gives the following lemma, which will be useful in the next section.

LEMMA 5.6. Let K be a compact space such that P(K) is Valdivia. Let
M denote the set of all G5 points of K. Then M is Valdivia as well.

Proof. (of Theorem 5.4) (a)=-(b) If K is Corson, then K is a (dense) %-
subset of itself, and hence we can use Proposition 5.1. By the assumptions
on K it follows that the X-subspace S defined in Proposition 5.1 is the whole
space C(K)*, so C(K) is WLD.

(b)=(a) If C(K) is WLD, then K is Corson (as a subset of the Corson
compactum (BC( K)*,w*), and hence K is a (dense) -subset of itself. Let S
be the 1-norming »-subspace defined in Proposition 5.1. As C(K) is WLD,
the whole space C(K)* is a X-subspace of itself, and it follows easily from
Lemma 1.7 that it is the unique 1-norming Y-subspace. Hence S = C(K)*,
so K has the property (M).

(b)=(c) This follows immediately from the fact that P(K) is a closed
subset of the Corson compactum (BC(K)*,w*).

(c)=(b) Suppose that P(K) is a Corson compactum. Then P(K)x P(K)x
[0,1] is Corson as well (it follows e.g. from Lemma 3.28). Moreover, the ball
(BC(K)*,w*) is a continuous image of the space P(K) x P(K) x [0,1] (by
the mapping (u,v,t) — tp — (1 — t)v), hence it is Corson, too (as Corson
compacta are stable to continuous images, cf. e.g. Theorem 3.22). Finally,
C(K) is WLD by Theorem 4.17. 1

It is proved in [5, Theorem 3.12] that, under continuum hypothesis there is
a Corson compact space K without property (M). Hence the respective dual
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unit ball of C(K) is not Corson. The following example strengthens a bit this
result.

ExaMPLE 5.7. Under continuum hypothesis there is a Corson compact
space K such that neither P(K) nor (BC( K)*,w*) is a super-Valdivia com-
pactum.

Proof. As said above, under continuum hypothesis there is a Corson com-
pactum K such that (BC( K)*,w*) is not Corson. We will prove that it is not
even super-Valdivia. Suppose on the contrary that (BC( K)*,w*) is a super-
Valdivia compactum. Then P(K) is super-Valdivia as well, due to Theorem
3.8. Further, K has a dense set of G5 points by Theorem 3.3. It is a stan-
dard fact that finitely supported probability measures are dense in P(K), and
therefore it follows from Lemma 5.5 that P(K) has a dense set of G5 points,
too. By Corollary 1.12 we get that P(K) has at most one dense X-subset. So
it is Corson, and thus (BC(K)* , w*) is also Corson by Theorem 5.4. This is a
contradiction.

The previous example answers negatively the natural question whether
(BC( K)*,w*) is super-Valdivia whenever K has this property. However, un-
der Martin’s axiom and negation of the continuum hypothesis every Corson
compactum has the property (M) (see e.g. [5, Remark 3.2(3)] or [9, p.205]).
Hence it is natural to ask the following question.

QUESTION 5.8. Suppose Martin’s axiom and negation of the continuum
hypothesis hold. Is then (BC( K)*,w*) super-Valdivia whenever K is super-
Valdivia?

In fact, we do not know the answer to the following natural question.

QUESTION 5.9. Is (Bg()-,w*) super-Valdivia if K = [0,1]" or K =
{0,1}F?

Another questions concern the remaining implications of Theorem 5.2.

QUESTION 5.10. Are all conditions of Theorem 5.2 equivalent? In partic-
ular,

(i) is K Valdivia whenever C(K) is 1-Plichko?
(i) is C(K) 1-Plichko whenever (Befy-, w*) is Valdivia?
(iii) is (Be(r)«>w*) Valdivia whenever P(K) is Valdivia?
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5.2. NON-STABILITY TO SUBSPACES In this section we sketch a partial
answer to Question 4.43 given in [34]. Let us start with the definition of a
class of compact spaces.

DEerINITION 5.11. Let K be a compact space. We say that K belongs to
the class G if, for every nonempty open set U C K either U contains a G
point or the one-point compactification of U contains a copy of the ordinal
segment [0, w;].

This definition is natural in view of the below theorems. The following
examples show that it is a wide class but does not contain all compact spaces.

EXAMPLE 5.12.
(a) Every compact space with a dense set of G5 points belongs to GS.
(b) Every continuous image of a Valdivia compact space belongs to GQ.

(c) The space SN \ N, the remainder of N in its Cech-Stone compactifi-
cation, does not belong to G2.

Proof. The assertion (a) is trivial, the assertion (b) easily follows from
Theorem 3.3 and Theorem 3.27. To prove (c) it suffices to observe that SN\ N
contains no one-to-one convergent sequence [16, Theorem 3.5.4] and has no
isolated points. Therefore it has no Gy points and contains no copy of [0, w1].

Now we are ready to formulate the theorems, which are main results of
[34].

THEOREM 5.13. Let K be a compact space from the class GS). Then the
following assertions are equivalent.

1. K is Corson.

2. For any L, continuous image of K, the space C(L) is 1-Plichko.

3. For any L, continuous image of K, the dual unit ball (BC(L)*,UJ*) is
Valdivia.

4. For any L, continuous image of K, the compact space P(L) is Valdivia.

In particular, the assumptions of this theorem are satisfied if K is a continuous
image of a Valdivia compactum.
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THEOREM 5.14. Let K be a compact space from the class GS). Then the
following assertions are equivalent.

1. K is a Corson compactum with the property (M).
2. Any subspace of C(K) is 1-Plichko.
3. For any subspace Y C C(K) the dual unit ball (By-,w*) is Valdivia.

In particular, the assumptions of this theorem are satisfied if K is a continuous
image of a Valdivia compactum.

Now we are going to sketch the proofs by giving the main ideas.

Proof. (Sketch of the proof of Theorem 5.13) The implication 1 = 2 follows
from the fact that Corson compact spaces are stable to continuous images ([3,
Section IV.3], or Theorem 3.22), together with Theorem 5.2. The implication
2 = 3 is trivial and 3 = 4 follows from Theorem 5.2.

It remains to prove 4 = 1. Let K be a non-Corson compactum from the
class GQ2. Let M be the set of all G5 points of K. If M is not Valdivia,
then P(K) is not Valdivia by Lemma 5.6. If M is Valdivia but not Corson,
then it has exactly one dense X-subset A (by Corollary 1.12). Choose a € A
non-isolated and b € M \ A. Let L be the quotient space made from K by
identifying the points a and b and ) be the quotient mapping. By Proposition
3.19 the space Q(M) is not Valdivia. Further, it is easy to check that Q(M)
is the closure of the set of all G§ points of L, hence P(L) is not Valdivia by
Lemma 5.6.

If M is Corson, then K \ M is an uncountable open set without isolated
points. Hence there are four nonempty open sets Uy, ...,U; C K \ M with
pairwise disjoint closures. It easily follows from the definition of the class
GQ that a suitable continuous image K’ of K contains four pairwise disjoint
nowhere dense copies of [0,w;]. Now clearly, a further continuous image K"
contains two pairwise disjoint nowhere dense copies of the collated double
interval wy; from Example 1.10. Let us collate these two sets in the way
described in Proposition 3.20 and call the resulting quotient space by L. Using
the idea of Proposition 3.20 we get that there is N C L, a nowhere dense copy
of the collated double interval wy, and two disjoint open set U,V C L with
UNV = N. Consider the space P(N) canonically embedded in P(L). It is

clear that P(N) = P(U)N P(V). For any open W C K we have the following
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series of inclusions.

neN
C ({reP@)|uW)>1-=}
neN
C Miwe PL) | () 21~ 1} = P(W)
neN

Hence P(W) is of the form (), .y G» with G,, open. Now, if P(L) is Valdivia,
then P(N) is Valdivia as well, due to Lemma 1.15. Further, N has a dense
set of G5 points, hence N is Valdivia by Theorem 5.3. But this contradicts
Example 1.10. This completes the argument. [

Proof. (Sketch of the proof of Theorem 5.14) 1 = 2 If K is a Corson
compactum with property (M), then C(K) is WLD, and so every subspace is
WLD as well (Example 4.39).

The implication 2 = 3 is trivial.

3 = 1 If K is not Corson, we can use Theorem 5.13. So suppose that K is
a Corson compactum without property (M). Let A be the set of all probability
measures on K with separable support. By Proposition 5.1 it is a dense X-
subset of P(K), and by Lemma 5.5 and Corollary 1.12 it is unique dense
Y-subset. There is some y € P(K)\ A. As countably supported measures
belong to A and A is convex, we can without loss of generality assume that
i is continuous (i.e. all singletons have zero p-measure). Choose k € supp u
arbitrary and put

V ={feCK): f(k)=(n[)}

We claim that By is not a Valdivia compactum. Let ¢ denote the inclusion
of Y into C(K) and i* be the adjoint mapping. Then it is easy to check that
i*(P(K)) ={{ € By~ : (£,1) = 1}, so it is a weak™ closed weak™ G5 subset of
By-. If By~ is Valdivia, then ¢*(P(K)) is Valdivia as well, due to Theorem
3.8. Let B be a dense X-subset of i*(P(K)). Then (+*)~'(B) N P(K) is a
Y-subset of P(K) by Lemma 5.15 below. Moreover, it can be proved that for
any open set U C P(K) the image *(U) has nonempty interior in i*(P(K))
(a technical proof is given in [34, Lemma 7]), in particular the inverse image
of any dense set is again dense. Therefore (i*)~'(B)N P(K) is dense in P(K),
and thus it is equal to A. However, 0y € A and p ¢ A, while i*(0) = i*(p), a
contradiction. [
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The following lemma was used in the above proof. In fact, we used it only
for a hyperplane, but we formulate it in a more general setting. It can be
viewed as a Banach space counterpart of Lemma 3.18.

LEMMA 5.15. Let X be a Banach space and 'Y its complemented subspace
such that the quotient X /Y is separable. Let i denote the canonical injection
of Y into X and i* its adjoint mapping. If K is a weak* compact set in X*
and A is a X-subset of i*(K), then (i*)"'(A) N K is a ¥-subset of K.

Proof. By our assumptions there is a closed separable subspace Z C X
such that X =Y @ Z. Denote by j the canonical injection of Z into X and
by j* the adjoint mapping.

Let K C X* be weak* compact and A C *(K) a X-subset. Then there is
a homeomorphic injection hq : i*(K) — R with ho(A) = ho(i*(K)) N Z(T).

Further, j*(K) is a metrizable compact (as Z is separable), therefore there
is a homeomorphic injection hy : 5*(K) — RY.

We are ready to define h: K — R'YN by the formula

(")),  vel;

h(w)(7) = o
hi(j n € N.

*
—~
8
~—
~—
—~
S
~—

It is clear that h is continuous. Further, h is one-to-one. Indeed, if h(x) =
h(y), then i*(z) = i*(y) and j*(z) = 5*(y) (as ho and hy are one-to-one),
whichmeansz [ Y =y [Yandz | Z =y | Z, so x = y. Finally, it is obvious
that h(z) € Z(I'UN) if and only if i*(z) € A. 1

The above theorems partially answer Question 4.43. In proving them
we strongly used the special structure of C(K) spaces. Hence the general
question remains open. Moreover, this question is not completely answered
even within C(K) spaces. We could drop the assumption that K belongs to
GQ if the answer to Question 5.10(i) ,(ii) was positive. It seems natural to
ask the following question, positive answer to which also yields the positive
answer to Question 4.43 within C(K) spaces.

QUESTION 5.16. (i) Let K be a compact space such that (Beo(g)«, w*) is
Valdivia. Does K belong to the class G 7

(ii) Let K be a compact space with at most one G5 point, such that C'(K)
has an equivalent locally uniformly rotund norm. Does K contain a copy of

[0,0.)1]?
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Notice, that if K = SN\ N (which does not belong to G2 by Example
5.12), then Bg k)~ is not Valdivia. (Otherwise C(K) would have an equivalent
locally uniformly rotund norm by [64, Corollary|, which would contradict [7].)

5.3. IsoMORPHIC C(K) SPACES While the questions on isomorphic sta-
bility of Banach spaces with Valdivia type duals are settled in the previous
chapter, within C(K) spaces there are some specific natural questions. These
are questions of the following form. Let K and L be compact spaces such that
C(K) and C(L) are isomorphic. Suppose that K has some property (P). Does
L have (P), too? We will discuss these questions for Valdivia type properties
of compact spaces.

We begin by the following well-known result on Corson compact spaces
with property (M). The proof follows easily from Theorem 5.4 together with
the obvious observation that WLD spaces are stable to isomorphisms.

THEOREM 5.17. Let K and L be compact spaces such that C(K) is iso-

morphic to C(L). If K is a Corson compact with property (M), then so is
L.

We continue by the following non-stability result.

THEOREM 5.18. Let K be a compact space which is not super-Valdivia.
Then there is a non-Valdivia compactum L such that C(L) is isomorphic to

O(K).

To prove this theorem we need the following lemma.

LEMMA 5.19. If K is an infinite continuous image of a Valdivia com-
pactum, then C(K) is isomorphic to its hyperplane.

Proof. By Theorem 3.27 the space K contains a one-to-one convergent
sequence. Then it can be easily seen that C'(K) contains a complemented
isometric copy of ¢g. Therefore C'(K) is clearly isomorphic to its hyperplane.

Proof. (of Theorem 5.18) If K is not Valdivia, put L = K. Otherwise by
Proposition 3.19 there are two points a,b € K such that the quotient space L,
made from K by identifying the points a and b, is not Valdivia. Clearly C(L)
is isometric to a hyperplane of C(K), and so C(L) and C(K) are isomorphic
by Lemma 5.19. |
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The two above theorems are, up to our knowledge, everything which is
known. Therefore there are several natural questions. The first one was asked
already in [5, Problem on p. 218].

QUESTION 5.20. Let K and L be compact spaces such that C(K) is iso-
morphic to C(L). Suppose that K is Corson. Is then L Corson, too?

The following question concerns a generalization of Theorem 5.18.

QUESTION 5.21. Let K be a non-Corson compactum. Is there a non-
Valdivia compactum L with C(L) isomorphic to C'(K)?

We finish by two questions on the class of continuous images of Valdivia
compacta.

QUESTION 5.22. (a) Let K and L be compact spaces such that C(K) is
isomorphic to C(L). Suppose that K is a continuous image of a Valdivia
compact space. Does then L have the same property?

(b) Let K be a continuous image of a Valdivia compact space. Is there a
Valdivia compactum L with C(L) isomorphic to C'(K)?

6. VARIOUS EXAMPLES OF VALDIVIA COMPACT SPACES

In this chapter we collect some illustrative examples of Valdivia compact
spaces with various additional properties. The first section is devoted to
topological examples, the second one to Banach spaces.

6.1. TOPOLOGICAL EXAMPLES The first example is easy and follows
from Example 1.10.

EXAMPLE 6.1. The Valdivia compact space K = [0, w1] has only one dense
Y-subset. It is the set [0,w;) which is open dense in K. The space K is not
Fréchet-Urysohn with respect to open sets.

EXAMPLE 6.2. The compact space K = [0,w;]" is Valdivia. Its only dense
Y-subset is the set [0, w;)N. This is a dense G5 subset of K with empty interior.
The space K is not Fréchet-Urysohn with respect to open sets.

Proof. The fact that [0,w)" is a dense Z-subset of K follows from Lemma
3.28. The uniqueness follows from Corollary 1.12 as K has clearly a dense set
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of G points. Also it is obvious that the complement of [0,w;)Y is dense in
K. To show the last assertion it is enough to observe that if 2(1) = wq, then
z € U where U = {y : y(1) < w;} without being the limit of a sequence from
U. 1

EXAMPLE 6.3. Let I' be an uncountable set. The compactum K = [0, w;]"
is Valdivia. A point x € K is contained in a dense ¥-subset of K if and only
if z € [0,w1)". There are uncountably many pairwise disjoint dense ¥-subsets
of K. The space K is not Fréchet-Urysohn with respect to open sets.

Proof. Let x € [0,w;)". Then the set
Ay ={z€[0,w1)" : {y €T : 2(7) # x(v)} is countable}

is a dense Y-subset of K, due to Lemma 3.28. Moreover, if z,y € [0,w)",
then either A, = Ay, or A, and A, are disjoint. It is easy to observe that
there are card I’ many pairwise disjoint A;’s.

Suppose that z € K is such that z(yy) = wy for some vy. Put U = {z €
K : 2z(y) < wi}. Then U is open in K, z € U and z is not the limit of any
sequence from U. It follows that K is not Fréchet-Urysohn with respect to
open sets, and, moreover, that z is contained in no dense Y-subset. (Let A
be a dense Y-subset of K containing z. Then z € U N A, and hence there are
xn € UN A such that x,, — z (Lemma 1.6). This is a contradiction.) [

EXAMPLE 6.4. The compact space P = P[0, w;] of all Radon probabilities
on [0,w;] is Valdivia. The only dense X-subset is the set A = {u € P :
p({wi}) = 0}. The set A is dense Gy and has empty interior. The space P is
not Fréchet-Urysohn with respect to open sets.

Proof. The set A is a dense Y-subset for example by the following Example
6.5 below and Lemma 1.11. The uniqueness follows from Lemma 1.12, as P
has a dense set of Gs-points (by Lemma 5.5). The set A is G by the following
formula.

A= U{MeP:(M,X[U,al>>1_%}

neN a<wi
The density of P\ A easily follows from the definition of the weak* topology.
Finally, it is easy to observe that the set U = {u € P : pu([0,wq)) > %} is
an open dense subset of P. In particular, §,, belongs to U. However, it is the
limit of no sequence from U, as the mapping p +— pu({w1}) is easily seen to be
weak* sequentially continuous. 1
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EXAMPLE 6.5. The compact space B = (B¢|o, ]+, w") is a Valdivia com-
pactum. The only dense Y-subset is A = { € B : u({w1}) = 0}. The set A is
hereditarily almost Cech complete (i.e., every closed subset has a dense Cech
complete subset) but not Gj.

Proof. The set A is a dense Y-subset of B by Proposition 5.1. Next we
show that A is hereditarily almost Cech complete. Notice that B is a Radon-
Nikodym compactum (it follows from the definition [17, Section 1.5] using
[17, Theorem 1.1.13]), and hence each closed subset of B contains a dense G
completely metrizable subset [17, Theorem 5.1.12]. Let F' be a relatively closed
subset of A. Then F contains a dense G5 completely metrizable subset, say
M. As F is a dense Y-subset of F, we obtain by Lemma 1.11 that F N M is
dense in . As M is metrizable, and F countably closed in F' (Lemma 1.6),
it follows that M C F. Hence F contains a dense Cech complete subset M.

In particular A is residual in B. Hence A is the unique dense Y-subset by
Theorem 3.3 and Corollary 1.12.

To show that A is not G, we prove the following claim.

Claim. If G is a Gs subset of B containing some p with ||u]| < 1, then
G\A#0D

Let G be a G5 subset of B and p € G with ||| < 1. If p({wi}) # 0, it is
nothing to prove, so suppose pu({w;}) = 0. It easily follows from the definition
of the weak* topology that there is a sequence of functions f, € C[0,w;] such
that

V={veB:(VneN{vfu)=(ufr)} CG.

There is some a < w; such that all f,,’s are constant on [a, w]. Put

1 —|pll 1— [[pll
— o

v=u
It is clear that v €e VN AC G\ A. 1

Remark 6.6. Let us remark that the previous example, namely the fact
that A is not Cech-complete, answers a question posed in [25]. Using the no-
tation of [25], the space [0, w; ) is a Cech-complete space such that M; ([0,w;))
is not Cech-complete.

EXAMPLE 6.7. The compact spaces {0, 1} and [0, 1]" are super-Valdivia.
Moreover, each finite subset of these spaces is contained in a dense Y-subset.
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Proof. Let x1,...,2, € [0,1]". Choose v € T' arbitrary. If none of the
numbers z;(7), i = 1,...,n belongs to the open interval (0,1), let h, be the
identity mapping on [0,1]. Otherwise let ¢; < --- < t; be all z;(7y)’s which
belong to (0,1). Let h, be the piecewise linear homeomorphic mapping of
[0,1] onto itself such that h,(t;) = k%_l

Further, let us define an equivalence relation ~ on [0, 1], such that (sq, ...,
Sn) ~ (t1,...,ty) if the following conditions are fulfilled.

(V’i,j Sn)((tz <t]' = S; <Sj) & (ti :t]' = S; :Sj))
(Vign)((ti:0@si:0) &(ti:1<:>si:1))

Clearly there are only finitely many equivalence classes. For 7,0 € ' we will
write v ~ 0 if (z1(y),...,zn(y)) ~ ((1(d),...,2,(J)). Let I'y,...,T'y be all
equivalence classes of ~ on I'. Choose v, € 'y for K = 1,..., N and define
the mapping F : [0,1]" — R by the formula:

hy(@(7)) = hyp (%)) v €Tk \{m}k=1,...,N

It follows from the construction of h,’s that F(z;) € X(I') (in fact, their
support is finite), and it is easy to check that I is one-to-one and F~(X(I))
is dense in [0, 1]".

The proof for {0,1}! is even easier. It suffices to consider the equivalence
classes and there is no need to construct h,’s. 1

EXAMPLE 6.8. There is a Banach space X and K C X* convex weak™®
Valdivia compactum with no convex dense »-subset.

Proof. Put X = C[0,w;] x R. Then X* is canonically isomorphic to
Cl0,w]* x R. We identify C[0,w;]* with the space of finite signed Radon
measures on [0,w;]. Put

P={(pz): p>0,{p,1) =1,0 <z < \/pu({wi })},
M ={(p,z) : p >0, |pl]| <1,0 <z < /u({w})}

Both P and M have the required properties. It is clear that both P and M
are bounded. To show that they are weak* closed, remark that

0<a < Vu{wh) < (Va <o)/ Xaw) = o > 0)
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whenever 1 > 0. Hence P and M are weak® compact. Let us show their
convexity. Choose any two pairs (u, z), (v,y) from P (or M) and any ¢ € [0, 1].
As the function z — 4/z is concave on [0, c0), we obtain using the assumptions

0 < ta+(1-t)y < tv/u({wrH+(1=)Vr({w}) < Vip({w}) + (1 = r({wr}).

This completes the proof of convexity.
Consider the following mapping h: P — R-1w1]

_ 2
h(p,z) (o) = {W’X[aﬂ,wﬂ) ¢ a<uw

T a=w

It is clear that h is weak* continuous. Moreover, it is one-to-one. Indeed, if
h(p, ) = h(v,y), then obviously z = y and (1, X[a+41.w1]) = (Vs Xjat1,w,]) fOr
every a € [—1,w1). It follows that u = v. Moreover, we have h=(3([—1,w1]))
= {{(12) € P pl{wn}) = 27}

It is obvious that this X-subset is not convex. For example, (d,,,1) and
(00,0) belong to this S-subset while (3(dy + duy,), 3) does not. It remains
to observe that this ¥-subset is dense in P and that is the only one dense
Y-subset.

Let (u,z) € P and V be a weak™ neighborhood of (i, z). Then there are
fiy-«+s fn € C[0,w1] such that

{(u,y)eP:y:m& <V7fj>:<ﬂafj>a jzla"-an}CV

There is @ < wp such that all f; are constant on [o,wi]. Put p/ = p —
(p({wi}) — 226w, + (p({w1}) — 2%)64. Then (y',z) € V and belongs to the
above X-subset.

To show the uniqueness, it is enough to observe that P is a Radon-Nikodym
compactum [17, Theorems 1.1.13 and 1.1.2], and hence has a dense set of G
points [17, Theorem 5.1.12]. Therefore the dense Y-subset is unique due to
Corollary 1.12.

The assertions on M can be proved exactly in the same way as those on
P. 1

6.2. EXAMPLES OF BANACH SPACES We begin this section by the fol-
lowing canonical example.

EXAMPLE 6.9. The space #1(T") is 1-Plichko for any set I'. Moreover, any
element of the dual is contained in a 1-norming ».-subspace.
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Proof. Let z € £oo(I') = (£1(I"))* be arbitrary nonzero element. There is a
countable subset C' C I' such that for any v € I there is ¢, € C with z(c,) # 0
and |z(7y)| < |z(c,)|- Define T : £oo(I') — R" by the following formula.

) vec
T(y)(y) = {y(’y) _ ;U((C':)) . y(c,y) yel'\C

It is easy to observe that T is a one-to-one weak* continuous linear mapping
and that the Y-subset T7'(X(I')) is 1-norming and contains z.

A large subclass of 1-Plichko spaces is formed by abstract L' spaces. A
Banach lattice X is called abstract L' space if the norm is additive on the
positive cone.

EXAMPLE 6.10. Any abstract L' space is 1-Plichko.

Proof. Let X be an abstract L' space. By [42, Corollary on p.136] the
space X is isometric to the ¢; sum of Banach spaces, each of which has the
form L'(p) for a finite measure p. The space L'(p) with p finite is weakly
compactly generated (cf. [62, Theorem 2]) and therefore 1-Plichko. It remains
to use Theorem 4.31. 1

COROLLARY 6.11. (i) The space L'(u) is 1-Plichko for an arbitrary mea-
sure p.

(ii) The dual space C(K)* is 1-Plichko for an arbitrary compact space K.

(iii) Any Banach sublattice of ¢1(T") is 1-Plichko.

Just recently the author was informed that A. Plichko [57] obtained the
following result.

EXAMPLE 6.12. Any order continuous Banach lattice is 1-Plichko.

Recall that a Banach lattice is order-continuous if ||z,|| — 0 whenever z,
form a downward directed family with infimum 0. In particular any Banach
lattice not containing cg is order continuous [45, Section 1.al.

A class of dual 1-Plichko spaces was introduced in [35]. Let us say that a
Banach space X belongs to the class (T) if X is contained in a Y-subspace of
X**. Let us name some results of [35] in the following theorem.
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THEOREM 6.13. (i) If X belongs to (T), then X* is 1-Plichko in every
equivalent dual norm.

(ii) If X belongs to (T), then X is Asplund.

(iii) The class (T) is closed with respect to subspaces and quotients.

(iv) If Y C X is such that Y* is separable and X/Y belongs to (T), then
X belongs to (T).

(v) If X is Asplund and Bx- is Na-Corson, then X belongs to (T).

(vi) If Bx~«- is Valdivia and the norm on X is Kadec, then X belongs to
(T).

(vii) C[0,ws] does not belong to (T).

This results witness that dual 1-Plichko spaces have other behavior than
non-dual ones (cf. assertion (i) of the above theorem and Theorem 4.22). This
area contains many open problems not yet considered. Let us name some of
them.

(QUESTION 6.14. 1. Let X be a Banach space such that Bx«+ is Val-
divia for every equivalent norm on X. Does X belong to (T)? (it can
be shown that X is necessarily Asplund).

2. Let X be Asplund. Is then X* Plichko?
3. Let X* be Plichko (1-Plichko). What can be said on X?
4. Let X** be Plichko (1-Plichko). Does X has the same property?
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