On the Regular Sturm-Liouville Transform

Antonio G. García and Miguel A. Hernández-Medina

Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911-Leganés, Spain Departamento de Matemática Aplicada, E.T.S.I.T. Universidad Politécnica de Madrid, 28940-Madrid, Spain

(Research paper presented by A. Ibort)

AMS Subject Class. (1991): 30C40, 34B24, 44A05

Received June 7, 1999

1. Introduction

The Whittaker-Shannon-Kotel'nikov Sampling Theorem, hereafter WSK Theorem, states that any function $f \in L^2(\mathbb{R})$, bandlimited to $[-\pi, \pi]$, i.e. such that the support of its Fourier transform is contained in $[-\pi, \pi]$ (equivalently $f(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widehat{f}(\omega) e^{it\omega} d\omega$, where \widehat{f} stands for the Fourier transform of f) may be reconstructed from its samples $\{f(n)\}_{n\in\mathbb{Z}}$ on the integers as

$$f(z) = \sum_{n = -\infty}^{\infty} f(n) \operatorname{sinc}(z - n),$$

where sinc denotes the cardinal sine $\operatorname{sinc}(z) = \sin \pi z / \pi z$ [4, 10, 13]. The choice of the interval $[-\pi, \pi]$ is arbitrary. The same result applies to any compact interval $[-\pi\sigma, \pi\sigma]$ taking the samples in $\{n/\sigma\}$ and replacing π with π/σ in the cardinal sines.

This theorem and its numerous offspring have been proved in many different ways, e.g. using Fourier expansions, the Poisson summation formula, contour integrals, etc. (see, for instance, [4]). But the most elegant proof is probably the one due to Hardy, using that the inverse Fourier transform \mathcal{F}^{-1} is an isometry from $L^2[-\pi,\pi]$ onto the Paley-Wiener space $PW_{\pi}=\{f\in L^2(\mathbb{R})\cap\mathcal{C}(\mathbb{R})\colon \operatorname{supp}\widehat{f}\subseteq [-\pi,\pi]\}$. Any value $f(t_n)$ of f is the inner product in $L^2[-\pi,\pi]$ of \widehat{f} and the complex exponential $e^{-it_n\omega}$. Furthermore, the classical Paley-Wiener Theorem shows that PW_{π} coincides with the space of entire functions of exponential type at most π whose restriction to the real axis is

square integrable, i.e.

$$PW_{\pi} = \{ f \in \mathcal{H}(\mathbb{C}) : |f(z)| \le Ae^{\pi|z|}, \ f|_{\mathbb{R}} \in L^{2}(\mathbb{R}) \}.$$

The Paley-Wiener space PW_{π} , inverse image space of $L^{2}[-\pi, \pi]$ through \mathcal{F}^{-1} , is a reproducing kernel Hilbert space, hereafter RKHS, whose reproducing kernel is the function $k(z, \omega) = \operatorname{sinc}(z - \overline{\omega})$, i.e.

$$f(\omega) = \langle f(z), \operatorname{sinc}(z - \overline{\omega}) \rangle_{PW_{\pi}}, \quad f \in PW_{\pi}.$$

The key point in Hardy's proof is that an expansion converging in $L^2[-\pi, \pi]$ is transformed by \mathcal{F}^{-1} into another expansion which converges in the topology of PW_{π} . This implies, in particular, that it converges uniformly on compact sets of the complex plane (to be precise, it converges on horizontal strips of \mathbb{C}) [10]. Choosing the first expansion in such a way that the coefficients are samples of f or of some function related to f (its derivatives, its Hilbert transform, etc.) provides different sampling theorems for functions in PW_{π} . This Fourier duality technique can also be applied to the multidimensional case, or to the so-called multi-band case of functions whose Fourier transform has support on the union of a finite number of disjoint sets of finite Lebesgue measure (see [4] for more details).

One direction in which the WSK Theorem has been generalized is replacing the kernel function, $e^{i\lambda\omega}$, by a more general kernel $K(\omega,\lambda)$ leading to the following generalization by Kramer [1, 5]: Let $K(\omega,\lambda)$ be a function, continuous in λ such that, as a function of ω , $K(\omega,\lambda) \in L^2(I)$ for every real number λ , where I is an interval on the real line. Assume that there exists a sequence of real numbers $\{\lambda_n\}_{n\in\mathbb{Z}}$ such that $\{K(\omega,\lambda_n)\}_{n\in\mathbb{Z}}$ is a complete orthogonal sequence of functions of $L^2(I)$. Then for any f of the form

$$f(\lambda) = \int_{I} F(\omega) K(\omega, \lambda) d\omega,$$

where $F \in L^2(I)$, we have

$$f(\lambda) = \sum_{n=-\infty}^{\infty} f(\lambda_n) S_n(\lambda),$$

with

$$S_n(\lambda) = \frac{\int_I K(\omega, \lambda) \overline{K(\omega, \lambda_n)} \, d\omega}{\int_I |K(\omega, \lambda_n)|^2 \, d\omega}.$$

The series (2) converges uniformly wherever $||K(\cdot,\lambda)||_{L^2(I)}$ is bounded.

In particular, if $I = [-\pi, \pi]$, $K(\omega, \lambda) = e^{i\lambda\omega}$ and $\{\lambda_n = n\}_{n \in \mathbb{Z}}$, we get the WSK sampling theorem.

One way to generate kernels $K(\omega, \lambda)$ and sampling points $\{\lambda_n\}_{n\in\mathbb{Z}}$ is to consider Sturm-Liouville boundary-value problems [3, 11, 12]. The kernel will be the function $\phi(x,\lambda)$ which generates the eigenfunctions of the problem taking $\lambda = \lambda_n$, $n \in \mathbb{N}$. Thus, we obtain the so-called Sturm-Liouville type transform, term first coined in [14].

The aim of this paper is twofold: firstly, to apply the integral transform theory which appears in [8] characterizing the space of output functions from a linear integral transform as a RKHS, and secondly, to obtain a Fourier-type duality to be used in order to obtain the sampling theorem associated with the regular Sturm-Liouville transform. For sampling theorems in the framework of the RKHS see [7].

2. Preliminaries

Consider the regular Sturm-Liouville problem

$$-y'' + q(x)y = \lambda y, \quad x \in [a, b], \ q \in \mathcal{C}[a, b]$$
 (1)

$$y(a)\cos\alpha + y'(a)\sin\alpha = 0,$$

$$y(b)\cos\beta + y'(b)\sin\beta = 0$$
(2)

$$y(b)\cos\beta + y'(b)\sin\beta = 0. (3)$$

The problem (1)–(3) defines a self-adjoint operator [2, p. 141] with discrete spectrum [9]. The eigenvalues $\{\lambda_n\}_{n=0}^{\infty}$ are real, and following [9, pp. 12 and ff.], simple and bounded from below. Furthermore, the associate eigenfunctions form an orthogonal basis of $L^2(a,b)$.

Let $\phi(x,\lambda)$ and $\xi(x,t)$ be the solutions of (1) verifying

$$\begin{split} \phi(a,\lambda) &= \sin\alpha\,, \quad \phi'(a,\lambda) = -\cos\alpha\,, \\ \xi(b,\lambda) &= \sin\beta\,, \quad \xi'(b,\lambda) = -\cos\beta\,. \end{split}$$

The function $\phi(x,\lambda)$ verifies the boundary condition (2) for all λ , and consequently, λ_n will be an eigenvalue if and only if $\phi(x,\lambda_n)$ fulfills the boundary condition (3). Therefore, $\{\phi(x,\lambda_n)\}_{n=0}^{\infty}$ will be the eigenfunctions of the problem (1)-(3).

The wronskian W of ϕ and ξ is defined as

$$W(\phi(\cdot,\lambda),\xi(\cdot,\lambda)) = \left| \begin{array}{cc} \phi(x,\lambda) & \xi(x,\lambda) \\ \phi'(x,\lambda) & \xi'(x,\lambda) \end{array} \right|.$$

The following result may be found in [9, pp. 7-11 and 19]

LEMMA 2.1. $W(\lambda) \doteq W(\phi(\cdot, \lambda), \xi(\cdot, \lambda))$ is independent of $x \in [a, b]$; it is an entire function of order 1/2, its zeros are real, simple and located at, and only at, the eigenvalues $\{\lambda_n\}_{n=0}^{\infty}$. When $k \to \infty$ we have

$$\sqrt{\lambda_k} = \frac{k\pi}{b-a} + O\left(\frac{1}{k}\right).$$

We also have

$$W(\lambda) = -\cos\beta\phi(b,\lambda) - \sin\beta\phi'(b,\lambda). \tag{4}$$

Since $W(\lambda)$ is an entire function of orden 1/2 with simple zeros in $\{\lambda_n\}_{n=0}^{\infty}$, Hadamard's Factorization Theorem [10] asserts that

$$W(\lambda) = CP(\lambda) \tag{5}$$

where $C \in \mathbb{C}$ and

$$P(\lambda) = \prod_{n=0}^{\infty} \left(1 - \frac{\lambda}{\lambda_n} \right), \quad \text{if } 0 \notin \{\lambda_n\}_{n=0}^{\infty}$$
 (6)

$$P(\lambda) = \lambda \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_n}\right), \quad \text{if } \lambda_0 = 0.$$
 (7)

The function $\phi(x,\lambda)$ fulfills all the requirements in Kramer's Theorem. Therefore, the function $F(\lambda) = \langle f, \overline{\phi(\cdot,\lambda)} \rangle_{L^2(a,b)}$, with $f \in L^2(a,b)$, can be recovered through its samples in the eigenvalues of (1)-(3)

$$F(\lambda) = \sum_{n=0}^{\infty} F(\lambda_n) S_n(\lambda),$$

where

$$S_n(\lambda) = \alpha_n^{-2} \int_a^b \overline{\phi(x, \lambda_n)} \phi(x, \lambda) dx$$

and the constants α_n are the normalizing factors for the eigenfunctions of the problem (1)-(3), i.e. $\alpha_n = \|\phi(\cdot, \lambda_n)\|$. The convergence of the series is absolute and uniform on subsets $D \subset \mathbb{C}$ where $\|\phi(\cdot, \lambda)\|$ is bounded.

We define

$$\rho(\lambda) = \sum_{\lambda_n < \lambda} \alpha_n^{-2}.$$

This non decreasing function will define a positive measure $d\rho(\lambda)$ on \mathbb{R} in the Lebesgue–Stieltjes sense. We define

$$B^{a,b}_{\rho} = \left\{ F : \mathbb{C} \to \mathbb{C} : \ F(\lambda) = \int_{a}^{b} f(x)\phi(x,\lambda) \, dx \text{ with } f \in L^{2}(a,b) \right\}.$$

We know [9] that $\phi(x,\lambda) = O(e^{(x-a)\sqrt{|\lambda|}})$ as $|\lambda| \to \infty$, uniformly in x. Using Cauchy-Schwarz's inequality in

$$F(\lambda) = \int_{a}^{b} f(x)\phi(x,\lambda) dx$$

we obtain the inequality

$$|F(\lambda)| \le Ae^{(b-a)\sqrt{|\lambda|}}$$

and therefore, the functions in $B_{\rho}^{a,b}$ are entire functions of order 1/2 and type at most b-a.

DEFINITION 2.1. We define the regular Sturm-Liouville transform associated with the problem (1)–(3) as the application $\tau: L^2(a,b) \longrightarrow B^{a,b}_{\rho}$ given by

$$[\tau(f)](\lambda) = F(\lambda) \doteq \int_a^b f(x)\phi(x,\lambda) dx, \quad \text{for } f \in L^2(a,b).$$

In the next section we prove that this application τ is an isometry mapping the Hilbert space $L^2(a,b)$ onto $B^{a,b}_{\rho}$.

3. The space
$$B_{\rho}^{a,b}$$

Let r be the application defined by $r(F) \doteq F|_{\mathbb{R}}$ for $F \in B^{a,b}_{\rho}$. We denote by T the composition $r\tau$. We have the following result

THEOREM 3.1. The linear application T is an isometry from $L^2(a,b)$ onto $L^2_{\rho}(\mathbb{R})$. Furthermore, if F = T(f) then

$$f(x) = \int_{-\infty}^{\infty} F(\lambda)\phi(x,\lambda) \, d\rho(\lambda) \,. \tag{8}$$

Proof. Let $f \in L^2(a,b)$ and $F(\lambda) = [T(f)](\lambda)$. Since $\{\phi(x,\lambda_n)\}_{n=0}^{\infty}$ is an orthogonal basis in $L^2(a,b)$ we have

$$f(x) = \sum_{n=0}^{\infty} \langle f, \phi(\cdot, \lambda_n) \rangle \frac{\phi(x, \lambda_n)}{\alpha_n^2} = \int_{\mathbb{R}} F(\lambda) \phi(x, \lambda) \, d\rho(\lambda)$$

with convergence in $L^2(a, b)$, thus (8) is satisfied.

Furthermore

$$\int_{\mathbb{R}} |F(\lambda)|^2 d\rho(\lambda) = \sum_{n=0}^{\infty} |F(\lambda_n)|^2 \alpha_n^{-2} = \sum_{n=0}^{\infty} |\langle f, \phi(\cdot, \lambda_n) \rangle|^2 \alpha_n^{-2}$$
$$= \int_a^b |f(x)|^2 dx,$$

where we have used Parseval's equality.

To prove that T is surjective, let $F \in L_a^2(\mathbb{R})$. Defining

$$f(x) = \int_{\mathbb{R}} F(\lambda)\phi(x,\lambda) \, d\rho(\lambda) = \sum_{n=0}^{\infty} \frac{F(\lambda_n)}{\alpha_n^2} \phi(x,\lambda_n) \,,$$

this function belongs to $L^2(a,b)$ and $\tau(f)=F$.

The above theorem shows that if $F(\lambda) \in B^{a,b}_{\rho}$ then its restriction to the real line belongs to $L^2_{\rho}(\mathbb{R})$, and every function in $L^2_{\rho}(\mathbb{R})$ can be extended to a function in $B^{a,b}_{\rho}$. Thus, $B^{a,b}_{\rho}$ is a Hilbert space of entire functions endowed with the inner product

$$\langle F, G \rangle_{B^{a,b}_{\rho}} \doteq \int_{\mathbb{R}} F(\lambda) \overline{G(\lambda)} \, d\rho(\lambda) = \sum_{n=0}^{\infty} \frac{F(\lambda_n) \overline{G(\lambda_n)}}{\alpha_n^2}$$

for any $F, G \in B^{a,b}_{\rho}$, or

$$\langle F, G \rangle_{B^{a,b}_{\rho}} = \int_{a}^{b} f(x) \overline{g(x)} dx$$

where $\tau(f) = F$ and $\tau(g) = G$. Furthermore, we have found a characterization of the image space $\tau(L^2(a,b)) = B_{\rho}^{a,b}$ through the regular Sturm-Liouville transform as

$$B^{a,b}_{\rho} = \{ F \in \mathcal{H}(\mathbb{C}), \text{ with } |F(\lambda)| \le Ae^{(b-a)\sqrt{|\lambda|}} \text{ and } F|_{\mathbb{R}} \in L^2_{\rho}(\mathbb{R}) \},$$

with

$$\|F\|_{B^{a,b}_{
ho}}^2 = \int_{\mathbb{R}} |F(\lambda)|^2 d
ho(\lambda) = \sum_{n=0}^{\infty} \frac{|F(\lambda_n)|^2}{lpha_n^2} = \int_a^b |f(x)|^2 dx$$

where $\tau(f) = F$.

The inversion formula (8) is given by means of the σ -finite, purely atomic measure $d\rho(\lambda)$ whose support is $\{\lambda_n\}$. As we will see in the next section, this inversion formula is important from a theoretical point of view. However, one can obtain an inversion formula involving a continuous measure using other techniques. See [15] for the details.

Now we prove that $B_{\rho}^{a,b}$ is a RKHS.

THEOREM 3.2. $B_{\rho}^{a,b}$ is a RKHS space with reproducing kernel

$$k(\lambda, \mu) \doteq \langle \phi(\cdot, \lambda), \phi(\cdot, \mu) \rangle_{L^{2}(a,b)}. \tag{9}$$

Proof. Let $F \in B^{a,b}_{\rho}$ and $\lambda \in \mathbb{C}$. Defining $l_{\lambda}F \doteq F(\lambda)$ we have

$$|l_{\lambda}F| = |F(\lambda)| = \left| \int_a^b (\tau^{-1}F)(x)\phi(x,\lambda) dx \right|.$$

Applying Cauchy-Schwarz's inequality we obtain

$$|l_{\lambda}F| \leq \|\tau^{-1}F\|_{L^{2}(a,b)}\|\phi(\cdot,\lambda)|_{L^{2}(a,b)}$$

= $\|F\|_{B_{\rho}}\|\phi(\cdot,\lambda)\|_{L^{2}(a,b)}$.

Thus, $B_{\rho}^{a,b}$ is a RKHS space since the point evaluation l_{λ} is a bounded linear functional on $B_{\rho}^{a,b}$ for each $\lambda \in \mathbb{C}$ [8, 10]. Taking $f = \tau^{-1}(F) \in L^{2}(a,b)$, we have

$$F(\lambda) = \langle f, \overline{\phi(\cdot, \lambda)} \rangle_{L^{2}(a,b)} = \langle \tau f, \tau \overline{\phi(\cdot, \lambda)} \rangle_{B^{a,b}_{\rho}},$$
$$= \langle F, \tau \overline{\phi(\cdot, \lambda)} \rangle_{B^{a,b}_{\rho}},$$

and therefore,

$$k(\lambda, \mu) = \langle \phi(\cdot, \lambda), \phi(\cdot, \mu) \rangle_{L^2(a,b)}$$

is the reproducing kernel of $B_{\rho}^{a,b}$.

Since $B^{a,b}_{\rho}$ is a RKHS, we know that the convergence in the $B^{a,b}_{\rho}$ norm $\| \|_{B^{a,b}_{\rho}}$ implies pointwise convergence. Furthermore, if $|k(\lambda,\lambda)| \leq M$, for each $\lambda \in D \subset \mathbb{C}$, the convergence will be uniform on D.

LEMMA 3.1. For any compact subset $\Omega \subset \mathbb{C}$ there exists a constant $M(\Omega)$ such that

$$|k(\lambda,\lambda)| \leq M(\Omega)$$
, for each $\lambda \in \Omega$.

Proof. Using (9) we have

$$|k(\lambda, \lambda)| = \|\phi(\cdot, \lambda)\|_{L^2(a,b)}^2.$$

Since $\|\phi(\cdot,\lambda)\|_{L^2(a,b)} \leq Be^{(b-a)\sqrt{|\lambda|}}$, we obtain

$$|k(\lambda,\lambda)| \le A^2 e^{2(b-a)\sqrt{|\lambda|}}$$

and the result follows. Therefore, convergence in $B^{a,b}_{\rho}$ implies uniform convergence on compact subsets of \mathbb{C} .

4. FOURIER-TYPE DUALITY ASSOCIATED WITH THE REGULAR STURM-LIOUVILLE TRANSFORM

The isometry τ from $L^2(a,b)$ onto $B_{\rho}^{a,b}$ enables us to transfer orthogonal and Riesz bases back and forth from one space to the other through τ or τ^{-1} , exactly like in the Fourier setting. For this reason, we say that a Fourier-type duality exists associated with the regular Sturm-Liouville transform.

COROLLARY 4.1. $\{\varphi_n(\lambda)\}_{n=0}^{\infty} \doteq \tau(\{\phi(\cdot,\lambda_n)\}_{n=0}^{\infty}) = \{k(\lambda,\lambda_n)\}_{n=0}^{\infty}$ is an orthogonal basis of the Hilbert space $B_{\rho}^{a,b}$.

The following theorem ensures that any function in $B_{\rho}^{a,b}$ can be recovered through its samples on the eigenvalues of the problem (1)-(3) by means of an interpolatory Lagrange-type series.

Theorem 4.1. (Sampling Theorem in $B^{a,b}_{\rho}$) Any $F \in B^{a,b}_{\rho}$ can be expanded as

$$F(\lambda) = \sum_{n=1}^{\infty} F(\lambda_n) S_n(\lambda) , \qquad (10)$$

where

$$S_n(\lambda) = \frac{P(\lambda)}{(\lambda - \lambda_n)P'(\lambda_n)},$$

and $P(\lambda)$ is given by (6) or (7). The convergence is absolute and uniform on compact subsets of \mathbb{C} .

Proof. We know that $\{\varphi_n(\lambda)\}_{n=0}^{\infty}$ is an orthogonal basis of $B_{\rho}^{a,b}$. Thus, for each $F \in B_{\rho}^{a,b}$ we have

$$F(\lambda) = \sum_{n=0}^{\infty} \langle F, \varphi_n \rangle_{B_{\rho}} \frac{\varphi_n(\lambda)}{\|\varphi_n\|_{B_{\rho}}^2}$$
$$= \sum_{n=0}^{\infty} \langle \tau^{-1} F, \tau^{-1} \varphi_n \rangle_{L^2(a,b)} \frac{\varphi_n(\lambda)}{\|\phi(\cdot, \lambda_n)\|_{L^2(a,b)}^2}.$$

Since $\tau^{-1}\varphi_n = \phi(x, \lambda_n)$, then $\langle \tau^{-1}F, \tau^{-1}\varphi_n \rangle_{L^2(a,b)} = F(\lambda_n)$. The proof will be complete once we identify the sampling functions

$$S_n(\lambda) \doteq \frac{\varphi_n(\lambda)}{\|\phi(\cdot, \lambda_n)\|_{L^2(a, b)}^2}.$$

For the sake of completeness we include here the proof which appears in [4] or [13].

The functions $\phi(x,\lambda)$ y $\phi(x,\lambda_n)$ are solutions of (1). Then,

$$(\lambda - \lambda_n)\phi(x,\lambda)\phi(x,\lambda_n) = [\phi(x,\lambda)\phi'(x,\lambda_n) - \phi'(x,\lambda)\phi(x,\lambda_n)]'.$$

Integrating

$$(\lambda - \lambda_n) \int_a^b \phi(x, \lambda) \phi(x, \lambda_n) \, dx = \phi(b, \lambda) \phi'(b, \lambda_n) - \phi'(b, \lambda) \phi(b, \lambda_n) \,. \tag{11}$$

If $\sin \beta \neq 0$, having in mind that $\phi(x, \lambda_n)$ verifies the boundary condition (3), using (4) we have

$$W(\lambda)\phi(b,\lambda_n) = \sin\beta[\phi(b,\lambda)\phi'(b,\lambda_n) - \phi'(b,\lambda)\phi(b,\lambda_n)].$$

Therefore

$$\int_{a}^{b} \phi(x,\lambda)\phi(x,\lambda_n) dx = \frac{W(\lambda)}{\lambda - \lambda_n} \frac{\phi(b,\lambda_n)}{\sin \beta},$$

and if $\lambda \to \lambda_n$,

$$\|\phi(\cdot,\lambda_n)\|_{L^2(a,b)}^2 = W'(\lambda_n) \frac{\phi(b,\lambda_n)}{\sin\beta}.$$

Now, using (5),

$$\frac{\varphi_n(\lambda)}{\|\phi(\cdot,\lambda_n)\|_{L^2(q,b)}^2} = \frac{P(\lambda)}{(\lambda-\lambda_n)P'(\lambda_n)} . \tag{12}$$

If $\sin \beta = 0$, by (4) $W(\lambda)\phi'(b, \lambda_n) = -\cos \beta \phi(b, \lambda)\phi'(b, \lambda_n)$, and by (3) we can write (11) as

$$\int_{a}^{b} \phi(x,\lambda)\phi(x,\lambda_n) dx = -\frac{W(\lambda)}{\lambda - \lambda_n} \frac{\phi'(b,\lambda_n)}{\cos \beta}.$$

Proceeding as before we obtain again (12).

The absolute convergence in (10) follows from the unconditional character of any orthonormal basis and the fact that convergence in a RKHS implies pointwise convergence. The uniform convergence is a consequence of Lemma 3.1. ■

Let us illustrate all these results with an example, the finite continuous cosine transform:

Consider the regular Sturm-Liouville problem

$$-y'' = -\lambda y, \quad x \in [0, \pi],$$

 $y'(0) = y'(\pi) = 0.$

In this case, $\phi(x,\lambda) = \cos\sqrt{\lambda}x$ and therefore

$$[\tau(f)](\lambda) = F(\lambda) = \int_0^{\pi} f(x) \cos \sqrt{\lambda} x \, dx, \quad \text{for } f \in L^2(0, \pi).$$

The eigenvalues are $\lambda_n = n^2$, $n \in \mathbb{N}_0 \doteq \mathbb{N} \cup \{0\}$ and the eigenfunctions are $\{\cos nx\}_{n \in \mathbb{N}_0}$. As a consequence,

$$\rho(\lambda) = \begin{cases} \frac{2}{\pi} \left([\sqrt{\lambda}] + 1 \right) & \text{if } \lambda \ge 0 \\ 0 & \text{if } \lambda < 0 \end{cases}$$

where $[\cdot]$ denotes the integer part of a real number.

The reproducing kernel, $k(\lambda, \mu)$, is given by

$$k(\lambda, \mu) = \int_0^{\pi} \cos \sqrt{\lambda} s \, \overline{\cos \sqrt{\mu} s} \, ds \,,$$

and therefore

$$k(\lambda, \mu) = \frac{\sqrt{\lambda} \sin \sqrt{\lambda} \pi \cos \sqrt{\overline{\mu}} \pi - \sqrt{\overline{\mu}} \cos \sqrt{\lambda} \pi \sin \sqrt{\overline{\mu}} \pi}{\lambda - \overline{\mu}}.$$

The functions

$$\varphi_n(\lambda) = k(\lambda, n^2) = \frac{(-1)^n \sqrt{\lambda} \sin \sqrt{\lambda} \pi}{\lambda - n^2}, \quad n \in \mathbb{N}_0,$$

constitute an orthogonal basis and the function F can be recovered through its samples in the points n^2 as

$$F(\lambda) = F(0) \frac{\sin \sqrt{\lambda} \pi}{\sqrt{\lambda} \pi} + \frac{2}{\pi} \sum_{n=1}^{\infty} F(n^2) \frac{(-1)^n \sqrt{\lambda} \sin \sqrt{\lambda} \pi}{\lambda - n^2}.$$

Since the reproducing kernel k is equal to

$$k(\lambda, \mu) = \sum_{n=0}^{\infty} \frac{1}{\alpha_n^2} \varphi_n(\lambda) \overline{\varphi_n(\mu)},$$

(see [8, 10]), for $\lambda, \mu \geq 0$ we obtain the formula

$$\frac{\sin\sqrt{\lambda}\pi}{\sqrt{\lambda}\pi} \left(\frac{\sin\sqrt{\mu}\pi}{\sqrt{\mu}\pi} \right) + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sqrt{\lambda}\sin\sqrt{\lambda}\pi}{\lambda - n^2} \left(\frac{\sqrt{\mu}\sin\sqrt{\mu}\pi}{\mu - n^2} \right) \\
= \frac{\sqrt{\lambda}\sin\sqrt{\lambda}\pi\cos\sqrt{\mu}\pi - \sqrt{\mu}\cos\sqrt{\lambda}\pi\sin\sqrt{\mu}\pi}{\lambda - \mu}.$$

5. The discrete regular Sturm-Liouville transform

Let $l_{\alpha}^2 \doteq \{\{a_n\}_{n=0}^{\infty} \subset \mathbb{C}: \sum_{n=0}^{\infty} \frac{|a_n|^2}{\alpha_n^2} < \infty\}$, endowed with the inner product

$$\langle \{a_n\}, \{b_n\} \rangle_{l^2_{\alpha}} \doteq \sum_{n=0}^{\infty} \frac{a_n \overline{b_n}}{\alpha_n^2}. \tag{13}$$

Following [10], we can see that $\{\lambda_n\}$ is a complete interpolating sequence for $B_{\rho}^{a,b}$, i.e. the set of all sequences $\{F(\lambda_n)\}$ where F ranges over $B_{\rho}^{a,b}$ coincides with l_{α}^2 , and the interpolation problem

$$F(\lambda_n) = a_n, \quad n \in \mathbb{N}_0$$

where $F \in B_{\rho}^{a,b}$ has exactly one solution provided $\{a_n\} \in l_{\alpha}^2$. In fact, we have the following result

THEOREM 5.1. Define $\gamma: L^2(a,b) \longrightarrow l^2_{\alpha}$ and $\eta: B^{a,b}_{\rho} \longrightarrow l^2_{\alpha}$ as $\gamma(f) = \{\langle f, \phi(\cdot, \lambda_n) \rangle_{L^2(a,b)}\}_{n=0}^{\infty}$, $\eta(F) = \{F(\lambda_n)\}_{n=0}^{\infty}$. Then, γ and η are isometric isomorphisms verifying $\gamma = \eta \tau$.

Proof. It will be sufficient to prove that η , γ are well defined, are isometries and $\tau = \eta^{-1}\gamma$. For $f \in L^2(a,b)$,

$$f(x) = \sum_{n=0}^{\infty} \langle f, \phi(\cdot, \lambda_n) \rangle_{L^2(a,b)} \frac{\phi(x, \lambda_n)}{\alpha_n^2}.$$

Using Parseval's equality

$$||f||_{L^{2}(a,b)}^{2} = \sum_{n=0}^{\infty} \frac{|\langle f, \phi(\cdot, \lambda_{n}) \rangle_{L^{2}(a,b)}|^{2}}{\alpha_{n}^{2}} = ||\{\langle f, \phi(\cdot, \lambda_{n}) \rangle_{L^{2}(a,b)}\}||_{l_{\alpha}^{2}}^{2},$$

and γ is an isometry. The classical Riesz-Fischer Theorem assures that γ is surjective, and therefore an isomorphism.

On the other hand, η is a well defined isometry since for each $F \in B_{\rho}^{a,b}$

$$||F||_{B_{\rho}}^{2} = \sum_{n=0}^{\infty} \frac{|F(\lambda_{n})|^{2}}{\alpha_{n}^{2}} < \infty.$$

Let $\{a_n\}_{n=0}^{\infty} \in l_{\alpha}^2(\mathbb{N}_0)$ and $f \in L^2(a,b)$ be such that $f = \gamma^{-1}(a_n)$. Then $a_n = \langle f, \phi(\cdot, \lambda_n) \rangle_{L^2(a,b)}$, for each $n \in \mathbb{N}_0$, and taking $F = \tau f$ we conclude that $F \in B_{\rho}^{a,b}$ and $F(\lambda_n) = a_n$ for each $n \in \mathbb{N}_0$, proving that η is an isomorphism and $\tau = \eta^{-1}\gamma$.

We may refer to γ as the discrete regular Sturm-Liouville transform.

Finally, we can apply this result in connection with the inverse Sturm-Liouville problem. Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a sequence of distinct real positive numbers, and let $\{\tau_n\}_{n\in\mathbb{N}}$ and $\{\rho_n\}_{n\in\mathbb{N}}$ both belong to l^2 . Let a, b and c be

constants, and suppose further that

$$\sqrt{\lambda_n} = \frac{n\pi}{b-a} + \frac{a}{n} + \frac{b}{n^3} + \frac{\tau_n}{n^3} \quad n \in \mathbb{N},$$

and that in the sequence

$$\alpha_n = \frac{2}{h-a} + \frac{c}{n^2} + \frac{\rho_n}{n^3}$$

each α_n is positive. Then, according with an important inverse result due to Levitan and Gasymov [6], there exists a regular Sturm-Liouville eigenvalue problem having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, and for which $\{\alpha_n\}_{n\in\mathbb{N}}$ are the normalizing factors for the eigenfunctions. Using this result, we can obtain the following uniqueness theorem.

THEOREM 5.2. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of complex numbers such that $\sum_{n=1}^{\infty}|a_n|^2\alpha_n^{-2}<\infty$. There exists a unique entire function F of order 1/2 and type at most b-a such that $F(\lambda_n)=a_n$. Moreover, this function is given by the Lagrange-type interpolatory series

$$F(\lambda) = \sum_{n=1}^{\infty} a_n \frac{P(\lambda)}{(\lambda - \lambda_n) P'(\lambda_n)}.$$

REFERENCES

- [1] Campbell, L.L., A comparison of the sampling theorems of Kramer and Whittaker, J. Soc. Indust. Appl. Math., 12 (1964), 117–130.
- [2] EDMUNDS, D.E., EVANS, W.D., "Spectral Theory and Differential Operators", Clarendon Press, Oxford, 1987.
- [3] EVERITT, W., BUTZER, P., SCHÖTTLER, G., Sturm-Liouville boundary-value problems and Lagrange interpolation series, *Rendiconti di Matemática*, *Serie III*, **14** (1994), 87–126.
- [4] HIGGINS, J.R., "Sampling Theory in Fourier and Signal Analysis", Oxford Science Publications, Oxford, 1996.
- [5] Kramer, H.P., A generalized sampling theorem, J. Math. Phys., 63 (1957), 68-72.
- [6] LEVITAN, B.M., GASYMOV, M.G., Determination of a differential equation by two of its spectra, Russian Math. Surveys, 19 (1964), 1-63.
- [7] NASHED, M.Z., WALTER, G.G., General sampling theorems for functions in reproducing kernel Hilbert spaces, *Math. Control Signals Systems*, 4 (1991), 363-390.
- [8] SAITOH, S., "Integral Transforms, Reproducing Kernels and their Applications", Pitman Research Notes in Mathematics Series no. 369, Longman, Harlow, 1997.

- [9] TITCHMARSH, E.C., "Eigenfunction Expansions Associated with Second-order Differential Equations", Clarendon Press, Oxford, 1962.
- [10] YOUNG, R.M., "An Introduction to Nonharmonic Fourier Series", Academic Press, New York, 1980.
- [11] ZAYED, A.I., BUTZER, P., HINSEN, G., On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm-Liouville problems, SIAM J. Appl. Math., 50 (1990), 893-909.
- [12] ZAYED, A.I., On Kramer's sampling theorem associated with general Sturm-Liouville problems and Lagrange interpolation, SIAM J.Appl. Math., 51 (1991), 575-604.
- [13] ZAYED, A.I., "Advances in Shannon's Sampling Theory", CRC Press, Boca Raton, FL, 1993.
- [14] ZAYED, A.I., "Handbook of Function and Generalized Function Transformations", CRC Press, Boca Raton, FL, 1996.
 [15] ZAYED, A.I., WALTER, G.G., On the inversion of integral transforms as-
- [15] ZAYED, A.I., WALTER, G.G., On the inversion of integral transforms associated with Sturm-Liouville problems, *J. Math. Anal. Appl.*, **164** (1992), 285–306.