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1. INTRODUCTION

The Whittaker-Shannon-Kotel'nikov Sampling Theorem, hereafter WSK
Theorem, states that any function f € L?(R), bandlimited to [, 7], i.e. such
that the support of its Fourier transform is contained in [—, 7] (equivalently
ft) = % ffﬂ f(w)e'™ dw , where f stands for the Fourier transform of f) may
be reconstructed from its samples {f(n)}nez on the integers as

) =3 fn)sine(z—n).

n=—oo

where sinc denotes the cardinal sine sinc (z) = sin 7z/7z [4, 10, 13]. The
choice of the interval [—m, x| is arbitrary. The same result applies to any
compact interval [—mo, mo] taking the samples in {n/o} and replacing = with
7 /o in the cardinal sines.

This theorem and its numerous offspring have been proved in many dif-
ferent ways, e.g. using Fourier expansions, the Poisson summation formula,
contour integrals, etc. (see, for instance, [4]). But the most elegant proof
is probably the one due to Hardy, using that the inverse Fourier transform
F~!is an isometry from L2[—n, 7] onto the Paley-Wiener space PW, = {f €
L?(R)NC(R): supp fg [—m, 7]} Any value f(t,) of f is the inner product in
L?[~m, 7] of fand the complex exponential e~*»“_ Furthermore, the classical
Paley-Wiener Theorem shows that PW, coincides with the space of entire
functions of exponential type at most m whose restriction to the real axis is
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square integrable, i.e.
PWr={f € H(O) :1/(2)] < Ae™?|, flz € L*(R)}.

The Paley-Wiener space PW,, inverse image space of L?[—, 7] through F !,
is a reproducing kernel Hilbert space, hereafter RKHS, whose reproducing
kernel is the function k(z,w) = sinc (z — W), i.e.

fw)={(f(2),sinc(z —w))pw,, [f€ PW;,.

The key point in Hardy’s proof is that an expansion converging in L?[—, 7] is
transformed by F~! into another expansion which converges in the topology
of PW,. This implies, in particular, that it converges uniformly on compact
sets of the complex plane (to be precise, it converges on horizontal strips
of C) [10]. Choosing the first expansion in such a way that the coefficients
are samples of f or of some function related to f (its derivatives, its Hilbert
transform, etc.) provides different sampling theorems for functions in PW.
This Fourier duality technique can also be applied to the multidimensional
case, or to the so-called multi-band case of functions whose Fourier transform
has support on the union of a finite number of disjoint sets of finite Lebesgue
measure (see [4] for more details).

One direction in which the WSK Theorem has been generalized is replac-
ing the kernel function, ¢"*“, by a more general kernel K (w, \) leading to the
following generalization by Kramer [1, 5]: Let K(w, A) be a function, continu-
ous in A such that, as a function of w, K(w, \) € L?(I) for every real number
A, where I is an interval on the real line. Assume that there exists a sequence
of real numbers {\, },cz such that {K(w, A\,)}nez is a complete orthogonal
sequence of functions of L?(I). Then for any f of the form

FO) = /F(w)K(w,A) dw.

1

where F € L?(I), we have

F) = D0 FO)Sa(n),

n=-—o0o
with

J; K(w, MK (w, \p) dw

Sn ) = T R o am) P o
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The series (2) converges uniformly wherever || K (-, A)|[z2(7) is bounded.

In particular, if I = [—7, 7], K (w, ) = € and {)\, = n},cz, we get the
WSK sampling theorem.

One way to generate kernels K(w, A) and sampling points {\, },ez is to
consider Sturm-Liouville boundary-value problems [3, 11, 12]. The kernel will
be the function ¢(z,A) which generates the eigenfunctions of the problem
taking A = A, ,n € N. Thus, we obtain the so-called Sturm-Liouville type
transform, term first coined in [14].

The aim of this paper is twofold: firstly, to apply the integral transform
theory which appears in [8] characterizing the space of output functions from
a linear integral transform as a RKHS, and secondly, to obtain a Fourier-type
duality to be used in order to obtain the sampling theorem associated with the
regular Sturm-Liouville transform. For sampling theorems in the framework

of the RKHS see [7].

2. PRELIMINARIES

Consider the regular Sturm-Liouville problem

=y +q@)y =Xy, z€lab] q€Cla] (1)
y(a) cosa + 3y (a) sina =0, (2)
y(b) cos B + ¢/ (b) sin =0. (3)

The problem (1)—(3) defines a self-adjoint operator [2, p. 141] with discrete
spectrum [9]. The eigenvalues {\, }52, are real, and following [9, pp. 12 and
ff.], simple and bounded from below. Furthermore, the associate eigenfunc-
tions form an orthogonal basis of L?(a,b) .

Let ¢(z,A) and £(z,t) be the solutions of (1) verifying

¢(a,\) =sina, ¢'(a,\) = —cosa,
£(b,\) =sinf, &'(b,A)=—cosp.

The function ¢(z, A) verifies the boundary condition (2) for all A, and conse-
quently, A\, will be an eigenvalue if and only if ¢(z, \,,) fulfills the boundary
condition (3). Therefore, {¢(x, \y)}5%, will be the eigenfunctions of the prob-
lem (1)—(3).

The wronskian W of ¢ and £ is defined as

W (-, M), &, N) = jf(&/\x)) gf'g;\;
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The following result may be found in [9, pp. 7-11 and 19]
LEMMA 2.1. W(X) = W(¢(-,A),&(-,N)) is independent of = € [a,b]; it is

an entire function of order 1/2, its zeros are real, simple and located at, and
only at, the eigenvalues {\,}>2,. When k — oo we have

km 1
Vii=2T 0 <z> |
We also have
W (A) = — cos Bb(b, \) — sin B (b, \). (4)

Since W () is an entire function of orden 1/2 with simple zeros in {\, }22,
Hadamard’s Factorization Theorem [10] asserts that

W(\) = CP(\) (5)

where C € C and

ﬁ( S2). g ke ©)

n=0
ﬁ(l——), if Ao =0. (7)

The function ¢(x, \) fulfills all the requirements in Kramer’s Theorem.
Therefore, the function F'(A) = (f, (-, A))r2(ap), With f € L?(a,b), can be
recovered through its samples in the eigenvalues of (1)-(3)

where

b
— oy / 5@ ) bl N) da

and the constants «a,, are the normalizing factors for the eigenfunctions of the
problem (1)-(3), i.e. a, = ||¢(-, A\n)||- The convergence of the series is absolute
and uniform on subsets D C C where ||¢(-, A)|| is bounded.
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We define

p(N) = a,”

An <A

This non decreasing function will define a positive measure dp(\) on R in the
Lebesgue—Stieltjes sense. We define

Byb = {F :C—=C: FO\) = /abf(x)qé(x,k) dz with f € L*(a, b)}.

We know [9] that ¢(z, ) = O(e(‘”_a)\/m) as |A\| = oo, uniformly in z. Using
Cauchy-Schwarz’s inequality in

b
ﬂﬂz/fmﬂ%Mm
we obtain the inequality
IF(\)| < AeC— VI

and therefore, the functions in Bg’b are entire functions of order 1/2 and type
at most b — a.

DEFINITION 2.1. We define the regular Sturm-Liouville transform associ-

ated with the problem (1)—(3) as the application 7 : L%(a,b) — Bg’b given
by

b
[T(NIAN) = FA) i/ f(@)p(z,\) dz, for f € L*(a,b).

In the next section we prove that this application 7 is an isometry mapping
the Hilbert space L?(a,b) onto Bg’b.

3. THE SPACE BS"

Let r be the application defined by r(F') = F|r for F' € B;,l’b. We denote
by T the composition r7. We have the following result

THEOREM 3.1. The linear application T is an isometry from L?(a,b) onto
L3(R). Furthermore, if F =T(f) then

1@ = [~ PO 0 dol). ®)

—0o0
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Proof. Let f € L%(a,b) and F(X) = [T(f)](\). Since {¢(z, A\n)}%, is an
orthogonal basis in L?(a,b) we have

£@) = 30 (2 HER = [ P gta ) dot)

n=0

with convergence in L?(a,b), thus (8) is satisfied.
Furthermore

JRLCIREED SN R ZI s Pa?
n=0

- / £ (@) de,
a
where we have used Parseval’s equality.
To prove that T is surjective, let F € L%(R). Defining

oo

f(m)Z/RF(A)éwAdp Z ) )

TL

this function belongs to L?(a,b) and 7(f) = F. 1}

The above theorem shows that if F/(\) € Bg’b then its restriction to the
real line belongs to L%(R), and every function in L%(]R) can be extended to

a function in Bg’b. Thus, Bg’b is a Hilbert space of entire functions endowed
with the inner product

(.G = [ FOGI dp() = 3~ FOn)G0w)

for any F,G € Bg’b, or

b -
(P.G)yyo = [ fa)galdo

where 7(f) = F and 7(g) = G. Furthermore, we have found a characterization
of the image space 7(L%(a,b)) = Bg’b through the regular Sturm-Liouville
transform as

B = {F € H(C), with [F(\)| < Ae® VN and Flz € LA(R)},
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with

71,0 = /|F )2dp(A /|f )P,

where 7(f) = F.

The inversion formula (8) is given by means of the o-finite, purely atomic
measure dp(\) whose support is {\,}. As we will see in the next section, this
inversion formula is important from a theoretical point of view. However, one
can obtain an inversion formula involving a continuous measure using other
techniques. See [15] for the details.

Now we prove that B;,l’b is a RKHS.

THEOREM 3.2. Bg’b is a RKHS space with reproducing kernel
k(AaM) = <¢('7>‘)7¢('7M)>L2(a,b)' (9)

Proof. Let F € BS" and A € C. Defining IyF = F()\) we have

b
IhF| = [F(3)] = / (v F) (@) (. \) |

Applying Cauchy-Schwarz’s inequality we obtain

ILF| < 177 Flipzn l6(, M2 o)
= FlB,ll6¢; MLz (ap) -
Thus, Bg’b is a RKHS space since the point evaluation [ is a bounded linear

functional on Bg’b for each A\ € C [8, 10]. Taking f = 7 '(F) € L?(a,b), we
have

FO) = (£, M2 = (7f. 76 X)) gas
= <F77-¢('7 >\)>Ba,b7

p

and therefore,
k(>‘7 :U‘) = <¢(’ >‘)a ¢(a /J))L2 (a,b)

is the reproducing kernel of B3*. 11
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Since BS" is a RKHS, we know that the convergence in the B5* norm
||| yos implies pointwise convergence. Furthermore, if [k(A, A)| < M, for each
P

A € D C C, the convergence will be uniform on D.

LEMMA 3.1. For any compact subset {2 C C there exists a constant M (2)
such that

|k(\,\)| < M(Q), for each X € Q.
Proof. Using (9) we have
B ] = 16C, M7z 0.0)-
Since [|$( M|z () < Be® DVI, we obtain
k(A )] < A2V,

and the result follows. Therefore, convergence in B;,l’b implies uniform conver-
gence on compact subsets of C. |

4. FOURIER-TYPE DUALITY ASSOCIATED WITH THE REGULAR
STURM-LIOUVILLE TRANSFORM

The isometry 7 from L?(a,b) onto Bg’b enables us to transfer orthogonal
and Riesz bases back and forth from one space to the other through 7 or 777,
exactly like in the Fourier setting. For this reason, we say that a Fourier-type

duality exists associated with the regular Sturm-Liouville transform.

COROLLARY 4.1. {pn(N)}22y = 7({d(, M) }oo) = {k(N\An) )02, is an
orthogonal basis of the Hilbert space Bg’b .

The following theorem ensures that any function in Bg’b can be recovered
through its samples on the eigenvalues of the problem (1)-(3) by means of an
interpolatory Lagrange-type series.

THEOREM 4.1. (Sampling Theorem in BS") Any F € B2 can be ex-
panded as

F(A) =Y F(A)Sa(N), (10)
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where

PQ)

and P()) is given by (6) or (7). The convergence is absolute and uniform on
compact subsets of C.

Proof. We know that {y,())}52, is an orthogonal basis of Bg’b. Thus, for
each F € Bg’b we have

©n(A)

FQ) = (F'n)B, 715~
" el

NE

0

3
Il

¢n(N)
w72

[
WE

T_lFaT_l n a
< ® >L2( ,b) ||¢(

Il
)

n

Since 771, = ¢(x, \,), then (171F, T_l(,On>L2(a’b) = F(A\n). The proof will
be complete once we identify the sampling functions

©n(N)
6 (-, A7 20y

For the sake of completeness we include here the proof which appears in [4]
or [13].
The functions ¢(z,A) y ¢(z, A,) are solutions of (1). Then,

(A= 2n)p(@, N)b(m, An) = [p(z, )¢ (2, An) — ¢ (2, N)b(2, An)]'-

Integrating

Sn(A) =

b
(A= ) / (. N b, An) dz = $(b. N (b An) — F (5, Np(b, Aa) . (11)

If sin 8 # 0, having in mind that ¢(z, A,,) verifies the boundary condition (3),
using (4) we have

W (N)$(b, An) = sin B[p(b, X)@' (b, An) — &' (b, A)p(b, An)] -
Therefore

' _ W) 46 )
[ ple i@ de = S50,
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and if A — A,
b, A
6620y = WO P52
Now, using (5),

16 AN o0y A= AP O) (12)

Ifsinf =0, by (4) W(X)¢' (b, \) = —cos (b, A) @' (b, Ap,) , and by (3) we can
write (11) as

W(A) ¢'(b; An)
A=\, cosfB

b
/ qﬁ(m,)\)qé(x, >\n) dz = —

Proceeding as before we obtain again (12).

The absolute convergence in (10) follows from the unconditional character
of any orthonormal basis and the fact that convergence in a RKHS implies
pointwise convergence. The uniform convergence is a consequence of Lemma

3.1. 11

Let us illustrate all these results with an example, the finite continuous
cosine transform:

Consider the regular Sturm-Liouville problem

-y ==Xy, =ze€0,n],
y'(0) = y'(m) = 0.

In this case, ¢(z, \) = cos vV Az and therefore
hunuy:p&y:/wﬂmamJ&wL for € L2(0, ).
0

The eigenvalues are A, = n2, n € Ny = NU {0} and the eigenfunctions are
{cosnz}nen,. As a consequence,

(VA +1) x>0
ifA <0

=

=

|
—N—
O 3o

where [-] denotes the integer part of a real number.
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The reproducing kernel, k(X ), is given by

k(X p) :/ cos Vs cos /s ds

0

and therefore

VAsin VAT cos \/Tim — \/Ticos VAT sin /AT

k(A =
The functions
—1)*vAsi A
(pﬂ(A):k(A’nQ): ( ) ;/__j:;l\/_ﬂ-’ TZEN(),

constitute an orthogonal basis and the function F' can be recovered through
its samples in the points n? as

sm\/_7r —ZF \/XS]H\/_W

A —n2

F(\) = F(0)

Since the reproducing kernel k is equal to

o0

FOum) = 3 —en(Ngn(i).
n=0 "

(see [8, 10]), for A, u > 0 we obtain the formula

e () 15 S (sm

\/Xsm\/_w COS /AT — \/J1 COS VT sin /pm
A— ’

5. THE DISCRETE REGULAR STURM-LIOUVILLE TRANSFORM

Let 12 = {{an}i2y C C: Y02, |‘Z§| < o0}, endowed with the inner
product

fan) bu)p = > 22 (13)
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Following [10], we can see that {\,} is a complete interpolating sequence for
B&" ie. the set of all sequences {F()\,)} where F ranges over B5" coincides
with /2, and the interpolation problem

F(An):an, n €Ny

where F' € Bg’b has exactly one solution provided {a,} € [2.
In fact, we have the following result

THEOREM 5.1. Define vy : L%(a,b) — 12 and 1 : Bg’b — 12 as y(f) =

{fs (5 M) 2 ab)}n 0 NEF) ={F(An)}S%o. Then, v and n are isometric
isomorphisms verifying v = nr.

Proof. 1t will be suficient to prove that 7, v are well defined, are isometries
and 7 =1~ 'y. For f € L?(a,b),

o

An
£l = 3 (b Anagan D2
n=0 n
Using Parseval’s equality
> 3 ) >\n 2(q 2
£y = 5 L2 ag))“”’" = (£ $C 2) 120y M
n=0 n

and « is an isometry. The classical Riesz-Fischer Theorem assures that v is
surjective, and therefore an isomorphism.
On the other hand, 7 is a well defined isometry since for each F' € Bg’b

|F
1715, = 3 ol <.
n=0

Let {a,}o° 0 € I2(Ng) and f € L?(a,b) be such that f = v '(a,). Then
an = (f, (s An))12(ap), for each n € Ny, and taking F' = 7 f we conclude that
F € By b and F (A\n) = a, for each n € Ny, proving that 1 is an isomorphism
and 7 =771y, 1

We may refer to v as the discrete regular Sturm-Liouville transform.

Finally, we can apply this result in connection with the inverse Sturm-
Liouville problem. Let {\,},en be a sequence of distinct real positive num-
bers, and let {7,}nen and {p,}nen both belong to I2. Let a, b and ¢ be
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constants, and suppose further that

nmw a b T,
V= +-—+—5+-5 neN,
n

2 cC | Pn

b—a 23

each «, is positive. Then, according with an important inverse result due to
Levitan and Gasymov [6], there exists a regular Sturm-Liouville eigenvalue
problem having eigenvalues {\,}nen, and for which {ay}nen are the nor-
malizing factors for the eigenfunctions. Using this result, we can obtain the
following uniqueness theorem.

THEOREM 5.2. Let {ay, }nen be a sequence of complex numbers such that

>0 lan|?a,? < 0o. There exists a unique entire function F' of order 1/2 and
type at most b— a such that F()\,) = a,. Moreover, this function is given by
the Lagrange-type interpolatory series

P
PO =2 a3 P
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