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A Banach space space X is called polyhedral, if the unit ball of each of its
finite-dimensional (equivalently: two-dimensional [6]) subspaces is a polytope.
Polyhedral spaces were studied by various authors; most of the structural
results are due to V. Fonf. We refer the reader to the surveys [1], [2] for other
definitions of polyhedrality, main properties and bibliography. In this paper
we present a short alternative proof of the basic result on the structure of the
unit ball of a polyhedral space (Theorem 1) and a related Theorem 2.

Let us start with some definitions. Throughout the paper, X denotes an
infinite-dimensional real Banach space with closed unit ball Bx, unit sphere
Sx and density character dens X (i.e. the minimal cardinality of a dense
subset of X).

We shall say that a set F' C Sx is a true face of By if there exists a closed
hyperplane H C X supporting Bx such that F = H N By and inty F (the
relative topological interior of F' in H) is nonempty. A set B C Sx~ is called
boundary for X if for each z € Sx there exists f € B such that f(z) = 1. (In
[5], B is called “James boundary”.)

The following theorem is a slight reformulation of Theorem 1 from [3].

THEOREM 1. Let X be a polyhedral Banach space. Then the sphere Sx
is covered by the true faces of Bx. Hence the set By = {f € Sx-: f~'(1)n
Bx is a true face of Bx } is a boundary for X. In particular, By is countable
whenever X is separable.

The original proof in [3] is rather technical. About ten years later, V. Fonf
considerably simplified the proof in an unpublished manuscript (see also [4]).
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Our proof is quite different from those by Fonf. It is less elementary, since
it uses results about generic differentiability of convex functions, but simpler
than the proof in [3]. For separable X, our proof uses only the classical
Mazur’s theorem about generic Gateaux differentiability of continuous convex
functions. Even in view of [4], we consider our proof geometric and maybe
interesting.

Let us remark the following

FacT. Since each relative interior point of a true face has a unique sup-
porting functional of norm one, the boundary By from Theorem 1 is minimal
in the sense that it is contained in each boundary of the polyhedral space.

Moreover, in separable case, Bx~ is the norm-closed convex hull of By, as
follows from the following result by Rodé [8]. (For a simpler proof of similar
nature see [5]; a different and more geometric proof has been found recently
by V. Fonf, J. Lindenstrauss and R. R. Phelps.)

THEOREM. (Rodé’s Theorem [8]) Let B C Sx+ be a separable boundary
for X. Then Bx- = conv B (the norm-closure of convl3).

We shall show by a separable reduction argument that, for polyhedral
spaces, the separability assumption is not necessary. We shall prove the fol-
lowing theorem.

THEOREM 2. Let X be a polyhedral Banach space, and By be the bound-
ary for X from Theorem 1. Then Bx- = conv By and card By = dens X =
dens X*. (Consequently, Bx- = conv B whenever B is a boundary for X.)

The algebraic interior of a set A C X is the set a-int A of all points
x € A such that z € int;,(C N L) whenever L C X is a line that contains .
Obviously, int A is always contained in a-int A. The following lemma about
F,-sets is well known for closed sets. The first part of it was suggested to the
author by L. Zajicek.

LEMMA 1. Let A bean F,-set in X. Thenint A # () if and only if a-int A #
(). If, moreover, A is also convex, then int A = a-int A.

Proof. Suppose 0 € a-int A and A = |J A,, where (4,) is a sequence of
closet sets. For every v € Sx there exists ¢ > 0 such that the segment [0, tv] is
covered by A. The Baire theorem implies that some A,, contains a nontrivial
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subsegment of [0, tv]. Consequently,
Sx = U{S(n,a,ﬁ) :neN 0<a<pf, a,pfrational},

where S(n, o, ) = {v € Sx : [av, fv] C Ap}.

Since the sets S(n, a, 3) are easily seen to be closed and they are countably
many, another application of the Baire category theorem implies that some
S(m, @, B) has nonempty interior in Sy. Thus Ay (and hence A) contains the
nonempty open set

J{@v,Bv) : v € ints, S(m, @, B)}.

The assertion concerning convex sets follows from the Hahn-Banach theorem
(indeed, if A is convex and int A is nonempty, no boundary point of A can
belong to a-int A because it is a support point). 1

If ACY and Y is an affine set in X, we denote by a-inty A the relative
algebraic interior of A in Y:

a-intyA={x € A: z € int;,(AN L) whenever L is a line and z € L C Y}.

Remark. (a) Lemma 1 clearly implies: if A is a set of the first category in
a Banach space, then a-int A is empty. (Indeed, A is contained in an Fj-set
with empty interior.)

(b) The equality int A = a-int A does not hold in general. Consider the
origin in X = R? and the set A = {(z,y) : y > 2*} U{(z,y) : y <0}

(c) Lemma 1 remains valid if we replace X by a closed affine subspace of
a Banach space (and consider relative interior and relative algebraic interior).

LEMMA 2. Let X be polyhedral, xqg € Sx. Then the following assertions
are equivalent.

(i) z¢ Is interior point of a true face of Bx;

(ii) Bx is Fréchet smooth in xg;

(iii) Bx is Gateaux smooth in z.

Proof. The implications (i)=-(ii)=-(iii) are obvious. Suppose (iii) holds.
Then Bx has a unique supporting hyperplane Y at zg. For any two-dimensional
subspace Z C X that contains z¢, the line Y N Z is the unique supporting
line of the polygon Bx N Z at xg, hence the line intersects the polygon in a
nontrivial line segment that contains zq as its (relative) interior point. Con-
sequently, z¢ € inty (Y N Bx). Then Lemma 1 implies that Y N By is a true
face and (i) holds. 1
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Proof of Theorem 1. Let @) be the set of the points from Sx that are not
contained in the union of all true faces.

Fix a point u € @ and a functional f € Sx~ with f(u) = 1. Let Z = f~1(0)
and let 7: X — Z be the linear projection along u, i.e. w(z+tu) = z whenever
z € Z,t € R. It is easy to see that 7 is a homeomorphism of an open
neighborhood G of u in Sx onto Gy := Z N int (%BX). Define p: G — Gy by
p(z) = m(z). Then for each z € G we have

P (2) = 2+ p(2)u

where ¢: Gg — R is continuous and concave. Let Qo = p(Q N G).

Claim: the point ug = p(u) belongs to a-intz Q.

Let z be an arbitrary nonzero vector from Z. Since the unit ball of
span{u, z} is a polygon that contains u as a boundary point, the boundary of
this polygon contains two non-overlapping nondegenerate segments [v1, u] and
[u, vo] with vy,v9 € G. It is easy to see that the segment p([vy,u] U [u,v9]) =
[p(v1),p(v2)] is parallel to z and contains ug as an interior point. Now it is
not difficult to see that (v, u] U [u,v9) C Q. Indeed, if some point y € (v1, u)
belonged to a true face, the hyperplane that defines this face would support
By at y and hence also at each point of [v1,u]. But this is impossible since
u € Q. (Similarly for y € (u,v2).) This implies that (p(v1),p(v2)) C Q. The
claim is proved.

Lemma 2 implies that no point of () is a point of Gateaux differentiability
of Bx; hence @y contains only points of Gateaux nondifferentiability of ¢.

(o) If X is separable, ¢ is generically Gateaux differentiable on Gy by
Mazur’s theorem ([7], [5]). By Remark (a), we must have a-intzQo = (). But
this contradicts our Claim. Thus Theorem 1 holds for separable spaces.

(B) If X is not separable, then each separable subspace of X has a count-
able boundary by («), and hence, by Rodé’s theorem, a separable dual. Thus
¢ is generically Fréchet differentiable on G (cf. [7]). By Remark (a), we get
again a-int zQy = (), a contradiction with our Claim. 1

Proof of Theorem 2. Suppose that dist(f,conv By) > € for some f € Sx-
and some € > 0. Then, for every g € conv By there exists z, € Sx such that
(F = 9)(z4)] > <.

Let us perform the following inductive procedure. For a set H C X™* and
a subspace L C X, we denote by H|7, the set {h|L : h € H} of all restrictions
to L of elements of H.

1) Let {z;}° C Sx be such that f(z;) — 1. Put Y; = span {;}{°. Since
Bo|y, is obviously a boundary for Y7, by Theorem 1 and Fact, there exists a
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countable set By C By such that Bl‘yl is a boundary for Y;. Let D; be a
countable dense subset of conv Bj.

2) Suppose we already have separable subspaces Y; C --- C Y, countable
subsets By C --- C B,, of By, and countable dense sets Dy in conv By, for k =
L,...,n. Put Y,y =span (Y, U{z,: g € D,}). As above, take a countable
set Bpy1 C By such that B,+1 D By, and Bn+1\Yn+1 is a boundary for Yj, .
Let D,41 be any countable dense subset of conv B, .

Letusput Y = U2, Yy, A=U,2;Bnand D = J;°; Dyp. Then Y is
separable, A is countable, and D is a countable dense subset of conv A.

We claim that A}y is a boundary for Y. Indeed, since Y is polyhedral, by
Theorem 1 each true face F' of By contains in its relative interior a point y
that belongs to some Y,,. By our construction, there exists h € B,, C A such
that h(y) = 1. Thus the face F is all contained in A~ '(1).

Since for each g € D the point z, belongs to Sy, we have

diSt(f|Y,CODV A|Y) = djSt(f|YaD\Y) > gig]g I(f —9)(zg)] 2> €.

This contradiction with Rodé’s theorem proves that Bx- is the closed convex
hull of By. Consequently, we have card By < dens X < dens X* < card By
(the first inequality follows from Theorem 1, and the second one holds for any
normed space). 1
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