Ganea Term for CCG-Homology of Crossed Modules

T. Pirashvili

Mat. Inst., Alexidze str. 1, Tbilisi, 380093, Republic of Georgia,

(Research announcement presented by A. Cegarra)

AMS Subject Class. (1991): 18G30

Received November 7, 1999

In [2] an "internal homology" theory of crossed modules was defined (CCG-homology for short), which is very much related to the homology of the classifying spaces of crossed modules ([5]). The goal of this note is to construct a low-dimensional homology exact sequence corresponding to a central extension of crossed modules, which is quite similar to the one constructed in [3] for group homology.

A crossed module (T, G, ∂) is a group homomorphism $\partial: T \to G$ together with an action of G on T satisfying: $\partial(g^gt) = g\partial(t)g^{-1}$ and $\partial^t s = tst^{-1}$, for $g \in G, t, s \in T$. Let **CM** be the category of crossed modules and let Ab**CM** be the category of abelian group objects in **CM**. Abelian crossed modules are nothing, but homomorphisms of abelian groups. The inclusion Ab**CM** \subset **CM** has a left adjoint functor $(T, G, \partial) \mapsto (T, G, \partial)_{ab}$, where $\partial: T \to G$ is a crossed module and

$$(T,G,\partial)_{ab}=(T/[G,T],G/[G,G],\partial)$$

(see for example [2]). Here [G,T] is a subgroup of T generated by the elements $[x,t] = x \ tt^{-1}, x \in G, t \in T$. One calls this functor the abelianization of the crossed module (T,G,∂) . Then CCG-homology of crossed modules is defined as the simplicial derived functor of the abelianization functor ([2]). We now give an alternative definition which is more handabel for many purposes.

For a crossed module (T, G, ∂) we let $B(T, G, \partial)$ be the classifying space of (T, G, ∂) (see [6] and [4]). Then $(0, 1_G) : (0, G, 0) \to (T, G, \partial)$ yields an injective map of simplicial sets $i_{(T,G,\partial)} : BG \to B(T,G,\partial)$, whose cofibre is denoted by $\beta(T,G,\partial)$. Then the homology exact sequence gives rise to a homomorphism $H_{i+1}(\beta(T,G,\partial)) \to H_iG$, which can be considered as an abelian crossed module. Thanks to the result in [5] the CCG-homology of (T,G,∂) is isomorphic to this particular abelian crossed module

$$H_i^{CCG}(T, G, \partial) \cong (H_{i+1}(\beta(T, G, \partial)) \to H_iG), i \ge 1.$$

In [7] the category of abelian crossed modules was equipped with a tensor product. Here we introduce a different tensor product which plays an important role in CCG-homology theory. Let (A, B, ∂) and (M, N, ∂) be two abelian crossed modules and let $f: B \to M$ be a homomorphism of abelian groups. Then $(\partial f, f \partial): (A, B, \partial) \to (M, N, \partial)$ is a morphism of abelian crossed modules. Hence we have a well defined homomorphism of abelian groups (and hence an abelian crossed module)

$$\delta: Hom_{Ab}(B, M) \to Hom_{Ab}(A, B, \partial), (M, N, \partial)$$

given by $\delta(f: B \to M) = (\partial f, f \partial)$. We let $\mathbf{Hom}((A, B, \partial), (M, N, \partial))$ be this particular crossed module

Now we define the internal tensor product in $Ab\mathbf{CM}$. For abelian crossed modules (A, B, ∂) and (M, N, ∂) we let

$$\alpha: A \otimes M \to (B \otimes M) \oplus (A \otimes N)$$

be a homomorphism of abelian groups given by $\alpha = (\partial \otimes 1, -1 \otimes \partial)$. Now we define

$$(A, B, \partial) \otimes (M, N, \partial) := (Coker \ \alpha, B \otimes N, \delta),$$

where $\delta : Coker \ \alpha \to B \otimes N$ is given by $\delta(b \otimes m, a \otimes n) = b \otimes \partial m + \partial a \otimes n$ and it is not so hard to check that the following is true:

PROPOSITION 1. For abelian crossed modules (A, B, ∂) , (M, N, ∂) and (T, G, ∂) there exist a natural isomorphism

$$Hom_{Ab\mathbf{CM}}((A, B, \partial) \otimes (M, N, \partial), (T, G, \partial)) \cong$$

$$Hom_{Ab\mathbf{CM}}((A, B, \partial), \mathbf{Hom}((M, N, \partial), (T, G, \partial))).$$

It is also easy to check that this tensor product makes the category $Ab\mathbf{CM}$ a symmetric monoidal category whose unit is $(0, \mathbf{Z}, 0)$, that is for any abelian crossed module (T, G, ∂) there exists a natural isomorphism

$$(0, \mathbf{Z}, 0) \otimes (T, G, \partial) \cong (T, G, \partial).$$

For an abelian crossed module (A, B, ∂) we also introduce abelian crossed modules $\Lambda^2(A, B, \partial)$, $S^2(A, B, \partial)$ and $\Gamma(A, B, \partial)$ which are crossed module

analogues of the second exterior power, the second symmetric power and the Whitehead Γ functor of abelian groups. Let us recall the definition of the last functor. For any abelian group A the Whitehead group $\Gamma(A)$ is the abelian group generated by elements $\gamma(a)$, $a \in A$ modulo the relations $\gamma(-a) = \gamma(a)$ and $\gamma(a+b+c) - \gamma(a+b) - \gamma(a+c) - \gamma(b+c) + \gamma(a) + \gamma(b) + \gamma(c) = 0$. The last condition means that $\Delta \gamma(a_1, a_2) := \gamma(a_1 + a_2) - \gamma(a_1) - \gamma(a_2)$ is linear on a_1 and on a_2 . Therefore one has a natural homomorphism $\Delta : A \otimes A \to \Gamma A$ given by $\Delta(a_1 \otimes a_2) = \Delta \gamma(a_1, a_2)$. Clearly Δ factors through the second symmetric power $S^2 A$.

Now we extend these quadratic functors to abelian crossed modules. For an abelian crossed module (A, B, ∂) we let $B \bar{\otimes} A$ (resp. $B \underline{\otimes} A$) be the quotient of $B \otimes A$ by the subgroup generated by the elements $\partial(a) \otimes a$, $a \in A$ (resp. $\partial(a_1) \otimes a_2 - \partial(a_2) \otimes a_1$). Let us observe that for any $a_1, a_2 \in A$ one has $\partial(a_1) \bar{\otimes} a_2 + a_1 \bar{\otimes} \partial(a_2) = 0$ in $B \bar{\otimes} A$. Now we put

$$\Lambda^{2}(A, B, \partial) := (B \bar{\otimes} A, \Lambda^{2} B, \partial_{\Lambda^{2}(A, B, \partial)}),$$

and

$$S^2(A, B, \partial) := (B \underline{\otimes} A, S^2 B, \partial_{S^2(A, B, \partial)}),$$

where $\partial_{\Lambda^2(A,B,\partial)}(b\overline{\otimes}a) = b \wedge \partial(a)$ and $\partial_{S^2(A,B,\partial)}(b\underline{\otimes}a) = b\partial(a)$. Similarly for an abelian crossed module (A,B,∂) we put

$$\Gamma(A,B,\partial):=(\bar{\Gamma}(A,B,\partial),\Gamma B,\partial_{\Gamma(A,B,\partial)}),$$

where $\bar{\Gamma}(A, B, \partial)$ is the cokernel of the homomorphism

$$f:A\otimes A\to (B\underline{\otimes} A)\oplus \Gamma A$$

and $\partial_{\Gamma(A,B,\partial)}(b\underline{\otimes}a,\gamma(a_1)) = \Delta(b\otimes\partial a) + \gamma(\partial a_1)$. Here

$$f(a_1 \otimes a_2) = (\partial a_1 \otimes a_2, -\Delta(a_1 \otimes a_2)).$$

We let $\theta: \bar{\Gamma}(A,B,\partial) \to Coker \ \alpha$ and $\eta: Coker \ \alpha \to B\bar{\otimes}A$ be the homomorphisms given by $\theta(b\underline{\otimes}a,\gamma(a_1))=(b\otimes a+da_1\otimes a_1,a\otimes b)$ and $\eta(b_1\otimes a_1,a_2\otimes b_2)=b_1\bar{\otimes}a_1-b_2\bar{\otimes}a_2$. Then we get natural homomorphisms $\theta:\Gamma(A,B,\partial)\to (A,B,\partial)\otimes (A,B,\partial)$ and $\eta:(A,B,\partial)\otimes (A,B,\partial)\to \Lambda^2(A,B,\partial)$ and it is not hard to check that for any abelian crossed module (A,B,∂) the following $\Gamma(A,B,\partial)\to (A,B,\partial)\to (A,B,\partial)\to \Lambda^2(A,B,\partial)\to 0$ is an exact sequence.

THEOREM 2. For crossed modules (T, G, ∂) and (R, K, ∂) there exists a natural isomorphism

$$H_2^{CCG}((T,G,\partial)\times(R,K,\partial))\cong$$

$$H_2^{CCG}(T,G,\partial)\oplus H_2^{CCG}(R,K,\partial)\oplus (T,G,\partial)_{ab}\otimes (R,K,\partial)_{ab}.$$

Theorem 3. For any abelian crossed module (A, B, ∂) there exists a natural isomorphism

$$H_2^{CCG}(A, B, \partial) \cong \Lambda^2(A, B, \partial).$$

Let us recall that a short exact sequence of crossed modules

$$0 \to (A,B,\partial) \to (T,G,\partial) \to (R,K,\partial) \to 0$$

is called a central extension if (A, B, ∂) is an abelian crossed module, A and B are central subgroups in T and G respectively, the action of G on A is trivial and the action of B on T is also trivial.

THEOREM 4. For any central extension of crossed modules

$$0 \to (A, B, \partial) \to (T, G, \partial) \to (R, K, \partial) \to 0$$

there exists a natural homomorphism $\tau: \Gamma(A,B,\partial) \to (A,B,\partial) \otimes (T,G,\partial)_{ab}$ and a natural exact sequence

$$H_3^{CCG}(T,G,\partial) \to H_3^{CCG}(R,K,\partial) \to Coker \ \tau \to H_2^{CCG}(T,G,\partial)$$

$$\to H_2^{CCG}(R,K,\partial) \to (A,B,\partial) \to (T,G,\partial)_{ab} \to (R,K,\partial)_{ab} \to 0.$$

Proofs are based on [1], [5], [8], [9], and will be given in [10].

REFERENCES

- [1] BAUES, H.-J., Quadratic functors and metastable homotopy, J. Pure and Appl. Algebra, 91 (1994), 49-107.
- [2] CARRASCO, P., CEGARRA, A.M., GRANDJEAN, A.R., (Co)homology of crossed modules, 1999, preprint.
- [3] ECKMANN, B., HILTON, P., On central group extensions, *Comm. Math. Helv.*, **46** (1971), 345-355.
- [4] Ellis, G.J., Homology of 2-types, J. London Math. Soc., 46 (1992), 1-27.
- [5] GRANDJEAN, A.R., LADRA, M., PIRASHVILI, T., CCG-homology of crossed modules via classifying spaces, to appear in *J. of Algebra*.

- [6] LODAY, J.L., Spaces with finite many homotopy groups, J. Pure and Appl. Alg, 34 (1984), 155-178.
- [7] LODAY, J.L., PIRASHVILI, T., The tensor category of linear maps and Leibniz algebras, Georgian Math. Jour., 5 (1998), 263–276.
- [8] PIRASHVILI, T., Spectral sequence of epimorphism I, *Proc. of Math. Institute* of Tbilisi, **70** (1982), 69–91.
- [9] PIRASHVILI, T., Simplicial degree of functors, Math. Proc. Cambridge Phil. Soc., 126 (1999).
- [10] PIRASHVILI, T., How to construct low-dimensional exact homological sequences, in preparation.
- [11] WHITEHEAD, J.H.C., A certain exact sequence, Ann. of Math., **52** (1950), 51-110.