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1. INTRODUCTION

Corson and Valdivia compact spaces play an important role in functional
analysis. The spaces of continuous functions on such compact spaces, as well
as Banach spaces with dual unit ball in some of these classes were studied for
example in [2], [18], [19], [20], [5], [7], [11], [12].

In [10] it was proved that a compact space, whose every continuous image
is Valdivia, is already Corson. First example of a non-Valdivia continuous
image of a Valdivia compact space was given in [21]. In view of these results
it is natural to ask whether similar results hold in the framework of Banach
spaces. Namely, is the dual unit ball of a Banach space Corson provided the
dual unit ball of every subspace is Valdivia? This question was posed to the
author first by M. Fabian and V. Zizler. An easy example of a Banach space
X and its subspace Y such that Bx- is Valdivia and By- is not Valdivia,
is given in [9]. In the present paper we prove a partial positive answer to
the above question, namely we prove that the dual unit ball of X is Corson
whenever X is of the form C'(K) where K is a continuous image of a Valdivia
compact space, and the dual unit ball of every subspace of X is Valdivia. A
related result, showing that the dual unit ball of a Banach space is Corson
provided the dual unit ball of every equivalent norm is Valdivia, is given in
[12].

Let us start with basic definitions.

*The research was supported by Research grants GAUK 1/1998, GAUK 160/1999 and
GACR 201/97/0216.
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DEFINITION 1. Let I" be a set.

1. For z € R'' we denote suppz = {y € T | z(y) # 0}.
2. We put X(I') = {z € R' | suppz is countable}.

DEFINITION 2. Let K be a compact Hausdorff space.

1. K is called a Corson compact space if K is homeomorphic to a subset
of 3(T) for some T.

2. K is called a Valdivia compact space if K is homeomorphic to a subset
K’ of RU for some T such that K’ N Y(T) is dense in K'.

It turned out to be useful to introduce the following auxiliary notion.

DEFINITION 3. Let K be a compact Hausdorff space and A C K be arbit-
rary. We say that A is a X-subset of K if there is a homeomorphic injection
¢ of K into RT' for some T such that ¢(A) = ¢(K) N (D).

In this setting a compact K is Valdivia if it has a dense X-subset.

We will need also the following notion of property (M), which was used
in [2] to characterize those Corson compact spaces K such that the dual unit
ball B¢ (g~ is Corson as well.

DEFINITION 4. A compact Hausdorff space is said to have property (M)
if every Radon probability measure on K has separable support.

It turned out ([19], [20] and [7]) that there is a closed connection between
Valdivia compacta and projectional resolutions of the identity and MarkuSevic
bases. Let us now recall the definitions of these notions.

DEFINITION 5. Let X be a Banach space of the density x > Ny. The
projectional resolutions of the identity (PRI) on X is an indexed family (P, |
w < a < k) of projections on X with the following properties.

(i) P, =0, P, = Idy;

(ii) ||Pa]l =1 for w < a < k;

(iii) densPaX < carda for w < a < k;

(iv) PoPg = PgP, = P, for w < a < < k;
)

(v) PoX = | PsX if a <k is limit.
B<a
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DEFINITION 6. Let X be a Banach space.

1. A Markusevié basis of X is an indexed family (x4, fo)aca C X x X*
such that the following conditions are fulfilled.

(a) fa(zp) =0if a #b, fa(wa) =1 for a,b € A;

(b) span{z, |a € A} = X;
(c) For every z € X, z # 0 there is a € A with f,(z) # 0.

2. A Markusevic basis (x4, fq)ac 4 is countably 1-norming if for every z € X
we have [lzl] = sup{ f(z) | f € M,||f|| < 1}, where M = {f € X* | {a €
A | f(z,) # 0} is countable}.

2. MAIN RESULTS

To formulate our results in a simple general way we introduce the following
class of compact spaces.

DEFINITION 7. A compact Hausdorff space is said to belong to the class
GQ if for every nonempty open subset U C K the following condition is
satisfied.

Either U contains at least one G point of K, or the one-point
compactification of U contains a homeomorphic copy of the ordinal
segment [0, w;].

It is clear from the definition that the class G§2 contains all compact Haus-
dorff spaces with a dense set of G points. It follows from Proposition 4 below
that every continuous image of a Valdivia compact space belongs to this class
as well. Example 1 shows that this class does not contain all compact spaces.
Now we are ready to formulate main theorems.

The first one characterizes Corson compact spaces with property (M) using
properties of all subspaces of the space of continuous functions.

THEOREM 1. Let K be a compact Hausdorff space from the class Gf).
Then the following assertions are equivalent.
1. K is a Corson compact space with the property (M).

2. For every subspace Y C C(K) the dual unit ball (By~,w*) has a dense
convex symmetric Y-subset.
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3. For every subspace Y C C(K) the dual unit ball (By«,w") is a Valdivia
compact.

4. Every subspace of C(K) has a countably 1-norming Markusevi¢ basis.

If the topology of K has a basis with cardinality N, then these conditions are
also equivalent to the following one.

5. Every subspace of C(K) has a projectional resolution of the identity.

In particular, the assumptions of this theorem are satisfied if K is a continuous
image of a Valdivia compact space.

The second theorem gives a characterization of Corson compact spaces
(regardless of the property (M)) using properties of those subspaces of the
space of continuous functions which are also of the form C(L). This theorem
can be viewed as a strengthening of [10, Theorem 3.1].

THEOREM 2. Let K be a compact Hausdorff space from the class Gf).
Then the following assertions are equivalent.

1. K is a Corson compact space.

2. For every continuous image L of K the dual unit ball (B¢(r)-,w*) has
a dense convex symmetric >.-subset.

3. For every continuous image L of K the dual unit ball (B¢ r)-,w") is a
Valdivia compact.

4. For every continuous image L of K the space C(L) has a countably
1-norming MarkuSevi¢ basis.

If the topology of K has a basis with cardinality N, then these conditions are
also equivalent to the following one.

5. For every continuous image L of K the space C'(L) has a projectional
resolution of the identity.

In particular, the assumptions of this theorem are satisfied if K is a continuous
image of a Valdivia compact space.

The following example shows both that the class G2 does not contain all
compact spaces, and that the assumption on K in Theorems 1 and 2 is not
the best possible.
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EXAMPLE 1. Let K = BN\ N be the remainder of N in its Cech-Stone
compactification. Then the following holds.

(a) K does not belong to G<.

(b) The dual unit ball (Bg(k)«,w*) is not a Valdivia compact.

3. AUXILIARY RESULTS

We start with the following lemma which sums up basic properties of X-
subsets.

LEMMA 1. [10, Proposition 2.2] Let K be a compact Hausdorff space and
A C K be a dense Y-subset of K. Then the following assertions hold.

1. A is countably closed in K, i.e. C C A for every C C A countable.

2. A is a Fréchet-Urysohn space, i.e. whenever x € A, C C A are such that
z € C, then there are x, € C with z,, — x.

3. If G C K is a G set, then GN A is dense in G.

Let us remark that the point (1) of the previous lemma is obvious and
the point (2) immediately follows from [15, Theorem 2.1]. In the point (3) it
would be enough to suppose that A is a dense countably compact subset of K
(cf. [10, Lemma 2.3]). The following lemma slightly strengthens [11, Theorem
4.10(3) = (1)].

LEMMA 2. Let K be a compact Hausdorff space such that the dual unit
ball (B¢ k-, w*) is a Valdivia compact. If we denote by M the set of all G
points of K, then M is a Valdivia compact as well.

Proof. We use the same idea as in the proof of [11, Theorem 4.10]. Let A
be a dense X-subset of Boky«. If m € M is a Gy point of K, then there is
f € C(K) such that f(m) =1 and f(k) € [0,1) if kK # m. Then we have

{om} = {1 € By | (s f) = 1},

where J,,, is the Dirac measure supported by the point m. It follows that d,,
is a weak® G5 point of B¢ (g, hence d, € A by Lemma 1(3). If we identify &
with d, for every k € K, we have M C A, so M N A is dense in M. Therefore
M is a Valdivia compact. [
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The following lemma generalizes the result of [17] that every Corson com-
pact has a dense set of G5 points.

LeEMMA 3. Let K be a compact Hausdorfl space such that there is a re-
sidual Y-subset A of K. Then K has a dense set of G4 points.

Proof. At first we prove the following statement.
Every nonempty Corson compact space has at least one G5 point.

This follows from the result of [17] but we give an easy proof for the sake
of completeness. Let H C 3(I') be compact. Let us introduce on H the
following order.

<y (Vyel)(z(y) #0=z(y) =y()).

This is a partial order and it is clear from compactness of H that any subset of
H totally ordered by this relation has an upper bound. So by Zorn’s lemma,
there is a maximal element z,, of H. It is clear that

{zm} ={y € H|y(y) = zn(y) for all v € suppzy, },

which is a G set as suppz,, is countable. This completes the proof of (x).

Now, let A be a residual X-subset of K and U C K a nonempty open set.
It follows easily from the regularity of K that there is a nonempty closed G
set H C ANU. As H is a Corson compact, by () it has a G point, which is
also a G5 point of K contained in U. This completes the proof. |

Now we are ready to prove the following proposition.

PROPOSITION 1. Let K be a compact Hausdorff space, M be the set of
all G5 points of K. If M is not Corson, then there are a,b € K such that that
Be(r)+ 1s not Valdivia compact where L is the quotient space made from K
by identifying a and b.

Proof. If M is not Valdivia, it is enough to choose a = b, due to Lemma 2.
Next suppose that M is Valdivia. Let A be a dense Y-subset of M. Choose
a € A an non-isolated point and b € M \ A. Let L be the quotient space made
from K by identifying a and b, with @) being the canonical quotient mapping.
Then Q(M) is not Valdivia by [10, Proposition 3.2]. Further, M\ {a} is dense
in M and it is clear that Q(m) is a G point of L for every m € M \ {a}. It
follows that Q(M) is the closure of the set of all G5 points of L. Therefore,
by Lemma 2, the dual unit ball B¢ ()~ is not Valdivia. |
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To deal with compact spaces without G5 points we need some finer prop-
erties of X-subsets. We start by the following lemma which follows easily from
[4, Theorem 1] and [8, Theorem 2] and was proved in [10, Proposition 2.5].

LEMMA 4. Let K be a compact Hausdorff space and A C K be a dense
subset of K. Then A is a ¥-subset of K, if and only if A is homeomorphic to
a countably compact subset of some %(I') and K = SA (i.e., each bounded
continuous real function on A can be continuously extended to K ).

As a consequence we get the following lemma which refines Lemma 1(3).

LEMMA 5. Let K be a compact Hausdorff space and G = () U, where
neN
each U, is an open subset of K. If A is a dense Y.-subset of K, then GN A is

dense in G.

Proof. Let A be a fixed dense X-subset of K.

Step 1. If U is open in K, then U N A is dense in U.

This follows simply by density of A.

Step 2. If U and V are disjoint open subsets of K, then UNV N A is dense
inUNV.

This was proved in [10, Proposition 2.6], we give the proof for the sake of
completeness. Without loss of generality we can suppose that K = UUV. Let
z € UNV and W C K be an open neighborhood of z such that WNUNVNA =
(. Then ANW is a dense Y-subset of W. The sets ANWNU and ANW NV are
disjoint relatively clopen subsets covering ANW (as WNUNVNA =0). Let
f be the characteristic function of W N U N A. This is a bounded continuous
function on AN W. By Lemma 4 this function can be continuously extended
on W. But the point z belongs both to W NU N A and to W NV N A, which
is impossible. This completes the proof.

Step 8. If Uy,...,U, are pairwise disjoint open subsets of K, then GN A
is dense in G, where G = U,Nn---nU0,.

We will prove it by induction. By Steps 1 and 2 the assertion holds for
n = 1,2. Suppose we have proved it up to n and that Uy, ..., U, are pairwise
disjoint open sets. Put H; = Un---NnU,, Hy = Un—l—l and H = H; U Hs.
By induction hypothesis we get that H; N A is dense in Hy, by Step 1 we have
Hs N A dense in Hy. It follows that H N A is a dense Y-subset of H. Now we
are going to prove that H; N Hy N A is dense in Hy N Hs.

Put V = inty, (H; N Hy). Clearly V N A is dense in V (Step 1). Further,
Hy\ Hy and Hy\ H; are two disjoint open subsets of H (the first one is equal
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to H \ Ho, the second one to H \ Hj), hence by Step 2 the intersection H' N A
is dense in H' = Hy \ HoN Hy \ Hy. To finish Step 3 it is enough to show that
HiNHy=H'UV.

The inclusion “D” is obvious, let us prove the inverse one. Let x € H{NHs.
If z € V, then clearly z € H' UV. Suppose that z € (H; N Hy) \ V. Observe
that H; N Hy is nowhere dense in Hy, so Hy \ H; = Hy and thus z € Hy \ H;.
Further, (H; N H) \ V is nowhere dense in Hy, so

H =H\(HNH)\V)=(H,\H)UV =H,\ HyUV.

Therefore either z € V or z € Hy \ Hy N Hy \ Hy = H', which completes the
proof of Step 3.

Step 4. If Uy,...,U, are open subsets of K, then GN A is dense in G
where G =U;N---NU,.

For J C {1,...,n} we put

wy=it | T\ JU; |
jeJ j¢J

where we adopt the convention that the union of the empty collection is the
empty set and the intersection of the empty collection is the whole space K.

It is clear that the sets W; are open and pairwise disjoint. In view of Step
3 it is enough to show that the set G is the union of some sets of the form
WJI ne--- ﬂWJk.

First let us show that

(*) Uk:UWJ, k=1,....n.
keJ

The inclusion “D” follows from the definition of W;. To prove the inverse one

let us remark that
Uy = U ﬂ Uj \ U Uj
keJ \jeJ j¢J

In this way we have U}, covered by finitely many closed sets, hence the union
of their interiors is dense in U}, which yields (). In particular, it follows from
(*) that the closures of all W; cover K.

Choose z € G arbitrary. Put J = {J C {1,...,n} | € W,}. By the
above we have J # (). We claim that

T € ﬂWJCG.
JeT
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The first relation is satisfied due to the choice of J. Let us prove the second
one. By the definition of W; we have

WJ C m ﬁj,
jeJ

HWJC m Uj,

JeJ jeUT

hence

so it suffices to prove that | JJ = {1,...,n}. Suppose this is not the case, let
k¢ \UJ. Then z ¢ Uy, Wy. By (*) we get z ¢ Uy which contradicts the
fact € G. This completes the proof of Step 4.

Step 5. Let U, be a sequence of open subsets of K. Then G N A is dense

in A where G = [ Up.
neN
Let z € G and W be an open neighborhood of z. By regularity of K there
n

is an open set V with z € V.C V C W. By Step 4 theset VN (U, N A is

j=1
nonempty for every n € N. As A is countably compact (Lemma 1(1)), it is
clear that V. NG N A # () which completes the proof. |

PROPOSITION 2. Let K be a compact Hausdorff space such that there are
two disjoint closed nowhere dense, mutually homeomorphic subsets M, N C K
such that N has a dense set of (relatively) Gs points and is not a Valdivia
compact. Then there is L, an at most two-to-one continuous image of K, such
that Be(ry« is not Valdivia.

Proof. Let h : M — N be a homeomorphism and put L = K \ M with the
quotient topology defined by the mapping

K ze K\ M,
plw) = {h(x) € M.

There are disjoint open sets U’, V' C K such that U' D M, V' D N and
U'NV' = (. Now it follows from the definition of quotient topology that the
sets U = o(U')\ N and V = ¢(V') \ N are open disjoint in L, and moreover,
UNnV =N.

Suppose that Be(r)- is Valdivia. By Lemma 1(3) the space of Radon

probabilities P(L) is Valdivia as well. Let us note, that P(WW) is of the form

N\ G, with G, open in P(L) whenever W C L is open. Indeed,
neN
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P(W) = = ({r e P(L) | w(W)>1-1}

neN

c({reP@)|uW)>1-1}

neN

C (e PL) | p(W) =1~} =P(W)
neN
We used the standard identification P(B) = {u € P(K) | u(B) = 1} for
any Borel set B C K, and the well known facts that {u € P(L) | u(W) > ¢}
is open in P(L) for W open in L and {n € P(L) | u(F') > ¢} is closed in P(L)
for F closed in L (see e.g [14]). Now clearly P(U) N P(V) = P(N). So it
follows by Lemma 5 that P(N) is Valdivia as well. As N has a dense set of
G points, by Lemma 2 the space N is Valdivia, which is a contradiction. [

COROLLARY 1. Let K be a compact Hausdorff space which contains four
pairwise disjoint nowhere dense homeomorphic copies of the ordinal segment
[0,wi]. Then there is L, an at most four-to-one continuous image of K, such
that B« is not Valdivia.

Proof. Let My, ..., My be the copies of [0,w] with mq,...,m4 being the
respective points w;. Let K’ be the quotient space made from K by identifying
m1 with mg and ms with my. Denote by @) the quotient mapping. Then
Q(My U Ms) and Q(Ms3 U My) are pairwise disjoint closed nowhere dense
mutually homeomorphic sets. Further, each of them has a dense set of G
(even isolated) points, and by [10, Example 3.4] they are not Valdivia. It
remains to use Proposition 2. 1

Further we will need the following lemma which is a Banach space coun-
terpart of [10, Lemma 2.8]. We will need it only for a hyperplane, but we
prefer to formulate it in this more general setting.

LEMMA 6. Let X be a Banach space and Y its complemented subspace
such that the quotient X/Y is separable. Let i denote the canonical injection
of Y into X and i* its adjoint mapping. If K is a weak* compact set in X*
and A is a X-subset of i*(K), then (i*)"'(A) N K is a ¥-subset of K.

Proof. By our assumptions there is a closed separable subspace Z C X
such that X =Y @& Z. Denote by j the canonical injection of Z into X and
by j* the adjoint mapping.
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Let K C X* be weak™ compact and A C 1*(K) a X-subset. Then there is
a homeomorphic injection hq : i*(K) — R with ho(A) = ho(i* (K)) N Z(T).

Further, j*(K) is a metrizable compact (as Z is separable), therefore there
is a homeomorphic injection hy : 5*(K) — RY.

We are ready to define h: K — R'YN by the formula

hz)(7) = ho(i*(2))(7), v €T
hz)(n) = h(i*(2))(n),  neN

It is clear that h is continuous. Further, h is one-to-one. Indeed, if h(x) =
h(y), then i*(z) = i*(y) and j*(z) = 5*(y) (as ho and h; are one-to-one),
whichmeansz [ Y =y [Yandz | Z =y | Z, so x = y. Finally, it is obvious
that h(z) € E(I'UN) if and only if i*(z) € A. 1

LEMMA 7. Let K be a compact Hausdorff space, k € K a non-isolated
point and . be a continuous Radon probability on K (i.e. all singletons have
zero p-measure). PutY = {f € C(K) | f(k) = (u, f)}. Let i be the canonical
embedding of Y into C(K) and i* be its adjoint mapping. Then i*(G) has
nonempty interior in i*(P(K)) whenever G C P(K) is a nonempty open set.

Proof. Denote H = suppu. Let G C P(K) be a nonempty open set.
By [14] there are Uy,...,U, C K pairwise disjoint nonempty open sets and
numbers ¢q,...,¢, > 0 with ¢; +--- + ¢, < 1 such that

Glz{VEP(K)|I/(U]’)>Cj, jzl,...,n}CG,

and this G is a nonempty open set. We can chose nonempty open sets V; C U;
such that V; C Uj, k ¢ V;, and u(U; \ V;) > 0 whenever x(U;) > 0. This is
possible by regularity of K using the fact that k is not an isolated point, and
by regularity of u using the fact that p is continuous. Then the set

Gy ={vePK)|v(V;)>¢cj, j=1,...,n}

is a nonempty open set contained in G. Further, it is easy to construct open
sets Wy, ..., W, C K such that

(i) the sets Vq,...,V,,W1,..., W, are pairwise disjoint;

(i) kg Wy, 5=1,...,n;

(i) W;NnH#0,j=1,...,n.

Now, for every j =1,...,n we choose f;,g; € C(K) such that

() 0<f;<1,0<g; <1
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(b) suppf; C Vj, suppg; C Wj;

(c) [If5]l = 1;

(d) (s £5) = (1 95)-

If V;NH = (), put g; = 0 and choose f; satisfying (a)—(c) by complete
regularity of K. Then (d) is fulfilled automatically.

If VN H # 0, choose first g; such that 0 < g7 < 1, suppg; C W; and
(1, 97) > 0. This is possible due to (iii). Choose L; C V; N H compact such
that 0 < p(Lj) < {(u,g;3). By regularity of 4 and normality of K, there is
M, C K open such that Lj C M; C M; C V; and u(M;) < {11, 95). By Tietze
theorem there is f; € C(K), 0 < f; < 1 such that f; | L; = 1 and f; |
(K \ Mj) = 0. Then f; satisfies conditions (a)-(c) and 0 < (u, f;) < (1, 9;)-

Put g; = ldy) g;.. Then clearly f; and g; satisfy all conditions (a)—(d).

(1.9%)
Put

G3:{V6P(K) | <Vﬂfj_g]>>c]7j:111n}

Then Gj is clearly open in P(K). Moreover, G3 C Go, as for v € G3 we
have clearly

v(Vi) > (v, fj) > (v, 95) +¢; > ¢

Further, remark that G3 # (. Indeed, put A =1 — (¢; + -+ + ¢,) and
choose z; € Vj such that f;(z;) = 1. Then the measure v = » 7, (c; + %)6%.
belongs to Gs.

Finally, as f; — g; € Y for every j, we get that

i'(G3) ={{ € (P(K)) [ (&, fi —9j) > ¢jr i =1,...,n}

which is a nonempty open set contained in i*(G). This completes the proof.

PROPOSITION 3. Let K be a Corson compact space without property (M).
Then there is a hyperplane Y C C(K) such that By- is not Valdivia.

Proof. Let P(K) denote the space of Radon probabilities on K endowed
with the weak™ topology inherited from C'(K)*. By [11, Theorem 3.2] P(K)
has a dense convex Y-subset A. This is the unique X-subset, due to [10,
Proposition 2.4], as P(K) has a dense set of G5 points by Lemma 3 and
[11, Lemma 4.11]. By [2, Theorem 3.5] P(K) is not Corson, so there is
po € P(K)\ A. This po, as each element of P(K), is a convex combination of
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a countably supported measure g and a continuous measure p. It is easy to
check that pug € A (cf. [2, Theorem 3.5] or [11, Theorem 3.2]), so u ¢ A as A
is convex. Hence we have a continuous measure p € P(K)\ A. Let H denote
the support of pu. Further, choose k € H an arbitrary point. We put

V ={feCK)|f(k)=(n[)}

This is clearly a hyperplane. We are going to prove that By~ is not Valdivia.
For contradiction suppose it is Valdivia.

Denote by i the inclusion of Y into C(K). Remark, that i*(P(K)) =
{¢ € By- | (¢,1) = 1}. Indeed, the inclusion “C” is trivial and the inverse
one follows for example from Hahn-Banach theorem together with the well-
known fact that P(K) = {v € Bek)- | (v,1) = 1}. So i*(P(K)) is weak*
Gs weak* closed subset of By, hence it is a Valdivia compact as well by
Lemma 1(3). Let B be a dense Y-subset of i*(P(K)). By Lemma 6 the set
C = (i*)"Y(B) N P(K) is a Y-subset of P(K). Tt follows from Lemma 7 that
C' is dense, hence C' = A (as A is the unique dense X-subset), so §; € C and
p ¢ C, which is a contradiction as i*(dg) = ¢*(u). I

PROPOSITION 4. Let K be a compact Hausdorff space which is a continu-
ous image of a Valdivia compact. Then every nonempty open subset of K
contains either a Gy point or a homeomorphic copy of [0,w1]. In particular,
K belongs to the class G2.

Proof. There is a Valdivia compact space L and a continuous onto mapping
f:L— K. Let U C K be a nonempty open set. By regularity of K there is
a nonempty open set V such that V C U. Let H = f~1(V). Then H is the
closure of an open subset of the Valdivia compact L, hence H is Valdivia as
well (Lemma 5). It is clear that f(H) =V, so V is a continuous image of a
Valdivia compact space. If V is Corson, then the set V contains a G point
by Lemma 3. If V is not Corson, then it contains a homeomorphic copy of
[0,w1] by [13, Theorem 1]. This completes the proof. |

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2. (1) = (2) Let K be a Corson compact and L be
a continuous image of K. Then L is Corson by [1, Corollary IV.3.15]. In
particular, L is Valdivia, so (BC( L)*,w*) has a dense convex symmetric -
subset by [11, Theorem 3.2].

(2) = (3) This is trivial.
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(1) = (4) & (5) This follows e.g. from [20, Corollary 2.2] using the fact
that every continuous image of a Corson compact space is again Corson [1,
Corollary IV.3.15].

(4) = (3) This is proved in [9, Lemma 3].

(5) = (3) If K has a basis of cardinality Xy, then it is well-known and easy
to see that C(K) has density ;. So we can apply [7, Lemma 2].

(3) = (1) Let K be a non-Corson compact from the space G2. Let M de-
note the set of all G points of K. If M is not Corson, then we use Proposition
1 to get a continuous image L of K with non-Valdivia B¢ (r,)-.

If M is Corson, then K \ M # (). In fact, this set is uncountable as it has
no isolated points. Therefore, there are Vi,..., V4 nonempty open sets with
pairwise disjoint closures such that V; N M = () for every i. Put

4
Lo=K\|[Joviu{ov; |i=1,...,4}
i=1
and equip Lg with the quotient topology induced by the mapping ¢ : K — Lg
defined by the formula

() — ko ke K\Uj, oV,
Y =ov, keavii=1,....4.

It is clear that Ly is a compact Hausdorff space, and it follows from the
definition of the class GQ) that Ly contains four pairwise disjoint nowhere
dense homeomorphic copies of [0,w;]. To finish it is enough to use Corollary
to Proposition 2. 1

Proof of Theorem 1. (1) = (2) & (4) & (5) Let K be a Corson compact with
property (M). Then B¢ (k)- is Corson by [2, Theorem 3.5]. If Y is a subspace
of C(K), then By~ is a continuous image of B¢ (k)-, hence it is Corson by [1,
Corollary IV.3.15]. Thus (2) is satisfied. The validity of (4) and (5) follows
from [20, Corollary 2.2].

(2) = (3) This is trivial.

(4) = (3) This is proved in [9, Lemma 3].

(5) = (3) If K has a basis of cardinality Ry, this follows from [7] similarly
as in the proof of Theorem 2.

(3) = (1) Suppose that (3) holds. By Theorem 2 we get that K is Corson.
If it had not the property (M), we finish by using Proposition 3. 1

Proof of Example 1. Let K = SN\ N. It follows from [6, p.132, Theorem
3.5.4] that K contains no nontrivial convergent sequence. Hence it is clear
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that K contains no homeomorphic copy of [0, w;]. Further let us remark that
K has no G4 point. Indeed, if g is a G point of K, then it is easy to see that
g has a countable neighborhood basis. Then, as g cannot be an isolated point
of K, one can easily construct a one-to-one sequence converging to g. This
proves that K does not belong to the class G).

It remains to show that B¢ (g~ is not a Valdivia compact. Suppose it is not
the case. Then the space C (BC(K)*,w*) of continuous functions on B (g
has an equivalent locally uniformly rotund norm by [19, Corollary]. And hence
C(K), as a subspace of this space, has an equivalent locally uniformly rotund
norm as well, which contradicts [3]. 1

5. FINAL REMARKS AND OPEN PROBLEMS

We would like to sum up several natural open questions in this area.

QUESTION 1. Let X be a Banach space such that By~ is Valdivia for every
subspace Y C X. Is then By~ Corson?

This is a general question which motivated our investigation in the present
paper. We used substantially the structure of C'(K) spaces, and it seems not to
be clear how to transfer these results to general Banach spaces. For example,
it seems to be unknown whether the dual unit ball of every subspace of £;(T")
is Valdivia. But we do not know the answer even for X = C(K) with no
additional assumptions on K. So it is natural to ask the following question.

QUESTION 2. Let K be a compact Hausdorfl space such that Be(g)- is
Valdivia. Is then K Valdivia as well?

If the answer on Question 2 was positive, then Theorem 2 would follow
directly from [10, Theorem 3.1], and the assumption than K is in the class
G<) could be dropped. Let us remark that the answer is yes, if K has a dense
set of G5 points (Lemma 2, [11, Theorem 4.10]). Further, the converse holds
true by the proof of [16, Corollary 5] (see also [11, Theorem 3.2]).

Another related question concerns the class G€2. We could drop the as-
sumption on K from both theorems if the answer to the following question
would be positive.

QUESTION 3. Let K be a compact Hausdorff space such that Be(x)- is
Valdivia. Does K belong to the class GQ7 In particular, does K contain a
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homeomorphic copy of [0, w] provided K has at most one G5 point and C'(K)
has an equivalent locally uniformly rotund norm?

[1]
2]
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