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1. INTRODUCTION

It is known that a Banach space X is isomorphic to a Hilbert space if
both X and X* admit C?-smooth bumps [25]. Recall that under bump we
understand a real valued function with bounded and nonempty support. It
is also known that ¢, spaces do not admit any bump function with the order
of smoothness better than that of their canonical norm [19]. There is an
interplay between the geometry of Banach spaces and higher order smooth
variational principles. We refer the reader to [8, Chap. 5], [17] and to the
references in these works for further information and quotations.

The known proofs of these results usually use some advanced methods
from the Banach space theory, like Kwapienn theorem on a type-cotype char-
acterization of spaces isomorphic to Hilbert spaces, Bessaga-Pelczyniski result
on spaces not containing copies of ¢g etc.

In this paper we give simple, elementary, and selfcontained proofs to some
of these results.

For this purpose we further develop a method of line integral convolu-
tions [15] in order to directly obtain a quadratic form needed for constructing
an inner product (Theorem 6 below) and prove a nonconvex version of the
Smulyan duality lemma (Lemma 2 below). We also give an alternative proof
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to a version of Stegall’s variational principle [28], [29] that we need for our
proofs (Theorem 5 below). Finally, we recall an elementary proof of the fact
that Banach spaces isomorphic to a Hilbert space are separably determined
(Theorem 9 below) [22].

Using these tools, we prove, in particular, that X is isomorphic to a Hilbert
space if both X and X™* admit smooth bumps with locally Lipschitzian deriva-
tive (Theorem 10 below), that £, (p not an even integer) does not admit any
bump with Taylor expansion of order p, and that £,, with p < 2, does not ad-
mit any continuous twice Gateaux smooth bump (Theorem 13 below). Finally
we prove a polynomial variational principle for Banach spaces that admit a
separating polynomial (Theorem 21 below).

An advantage of our approach is that it shows an interplay of the higher
order smoothness and some other geometric properties of spaces in a trans-
parent way.

We focus on an explanation of the main points in these phenomena, rather
than on obtaining the most general forms of the results.

2. Toowrs

We will follow the notation standard in Banach space theory. In particular,
if (X,]||-||) is a Banach space, then its closed unit ball is denoted by Bx. If
z* is an element of the dual X* and x € X, the value of z* at z is denoted by
(x*,z). We shall always assume that X is a subspace of its second dual X**.
Let f: X — (—o00,400] be a function such that f(z) < +oo for at least some
x € X. For x € X we define (Moreau-Rockafellar) subdifferential 0f (z) of f
at = as the set (possibly empty) of all £ in the dual X* such that

flx+h)— f(z) > (& h) for all h € X.

If f is convex, then, clearly, f is Gateaux smooth at z if and only if df(z)
is a singleton; then 0f(z) consists of the Gateaux derivative f’(z) of f at .
From the separation theorem we get that df(z) # @ if f is continuous at z
and f is convex. The (Legendre-Fenchel) conjugate f* to f is defined by

fH(@") = sup{(a”, ) — f(z) : € X}, 2" € X"

Thus f* is a convex function from X* to (—o0, +00]. We also put f** = (f*)*.
Ifg: X* — (—o0,+00], we put for z € X

g«(z) = sup{(z”, z) — g(z7) : 2" € X*}.
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LEMMA 1. Let f: X — R be a function, z € X, and z* € X*. Then z* €
Of (x) if and only if f*(z*)+ f(x) = (x*, x) and this implies that x € f*(z*)
and f**(z) = f(z). If f is convex and continuous, then f** x = f.

Proof. Let z* € df(x). Then

fH(@”) = sup{(z”,y) — f(y) : y € X}
= —f(@) + («", z) —inf{f(y) — f(z) = (", y —x) : y€ X}
= —f(z) + (", 7).

If this identity holds and y € X, then
f) = f@) =f(y) + f*(z") — (=", z)
>f(y) + (=" y) — fly) — (&%, 2) = (z",y — z);
so z* € df (x). If the identity holds and y* € X*, then
P W7 = f7(@%) = (y") + f(z) — («7, z)
(", z) = f(2) + f(z) — (2%, 2) = (y* — 2", z);

so z € 0f*(z*). Further, the identity yields

flz) = (% 2) — f*(27) < f7 ().

The reverse inequality follows from a general fact that f**y < f. Indeed, for
z € X we have

7 (z) = sup{(y". 2) — f*(y") : y" € X7}
<sup{(y".2) — ((y",2) — f(2)) : ¥~ € X} = f(2).
Assume that f is convex and continuous. Then the Hahn-Banach theorem

guarantees that 9df(z) # 0 for every z € X and thus f**(z) = f(z) by the
first part of the proof. |}

Given a Banach space (Z,] - ||), a function f : Z — (—o0,+o¢], 29 €
domf:={z€Z: f(z) <400}, 25 € Z* and t > 0, put

a(f, 20,29, 1) = sup{f(2) = f(20) = (20,2 = 20) : z € Z, ||z — 20|l = 1},
B(f, 20,20, 1) = nf{f(2) = f(20) = (29,2 = 20) : 2 € Z, ||z — 2] = t}.
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LEMMA 2. Let f: Z — (—o0, +00| be a function (not necessarily convex),
2o € dom f and 2z € 0f(z9). Then B(f*, 2§, 20,5) > 0 and

alf, 20,20 1) + B, 24, 20,8) > 85 for all t,5 > 0.

If, in addition, f is Fréchet smooth at z, then B(f*,z§.20,s) — 0 implies
sl 0.

Proof. That B(f*, 2z, z0,s) > 0 follows from Lemma 1. Take s > 0 and
consider a z* € Z*, with ||z* — z{|| = s. Using Lemma 1, for z* € Z* we can
estimate

(&)= (z) = (z" — 2, 20)
=sup{(z*,2) — f(2): 2 € Z}+ f(20) — (2", 20)
= —1inf{(f(2) — f(z0) — (25,2 — 20)) + (25 — 2,2 —20): z€ Z}
> —inf{a(f, 20, 25, ||z — 20l|) + (25 — 2", 2 —20) : 2z € Z}
= —inf{a(f, 20, 25,t) — ||z5 — 2*||t : t > 0}
= sup{—a(f, 2o, 25,t) + st : t > 0}.

The inequality is thus proved.
Assume that f is Fréchet smooth at zy. This is equivalent with

li 5.t)/t =0.

(/. 05,0/
Assume there is A > 0 and s; > A, i =1,2,..., such that 5(f*, 2§, 0, 5i) < %
for all ¢ € N. Then

1

= > B(f*, 25,20, 8i) > sit — a(f, 20, 25, t) for all £ > 0 and for all 4 € N.

)
Hence, if s¢ is a cluster point of the sequence (s;), we have sg > A > 0 and
sot—a(f, 20, 25,t) < 0forallt > 0. This is impossible as limy o a(f, 20, 25, 1) /1
=0. 1

LEMMA 3. Let f: Z — (—o0,+0o0| be a proper lower semicontinuous (not
necessarily convex) function with inf f > —oo and assume that the conjugate
function f* is Fréchet smooth at z§ € Z*. Then the derivative zy := (f*)' ()
belongs to Z and

(1) [ (20) = f(20)-
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Proof. We note that for 0 # ¢ € R the functions
* 1 * * * * * * *
gh) = L [F e+~ )], ez,

are weak® lower semicontinuous and for ¢ — 0 converge to zp uniformly on
the unit ball of Z*. It follows zg is thus weak® lower semicontinuous there.
And since zj is linear, 7y is weak* continuous. Hence zg € Z by the Banach-
Dieudonné theorem (see e.g. [18, Theorem 222]).

In order to prove (1), put for z € Z

m
Z/)(Z) :inf{Zaif(zi) Qg 20, Zj EZ, izl,...,m,
i=1

m m
Zai =1, Zaizi =2z, meE N}.

We note that 1) is a convex function minorizing f. As f** is the supremum of
all affine continuous functions minorizing f, we have f**; <1).

First, we show that (2o, f**(20)) lies in the closure of epi®y) := {(z,t) €
Z x R: 1(z) > t}. Assume this not true. Since epi®) is a convex set, there
are (£,s) € Z* x Rand oo < ¢ < d < 400 such that

(2) (&, 20) + sf™(20) <c<d< (£ 2) + st for all (z,t) € epie.

Take z € dom f. Then (z,t) € epi for all large ¢ € R and so (2) implies that
s > 0. Assume for a while that s = 0. Then (2) yields

(&, z—2)) >d—c (>0) for all z € dom f.
For n =1,2,... define an (affine continuous) function
gn(2) = —n(,z —20) + n(d —c) +inf f, z€ Z

Observe that g, minorizes f and hence also the restriction of f** to Z. Thus,
in particular,

™ (z0) > le gn(20) = le n(d —c¢) + inf f = +o0.

However, by Lemma 1, f**(29) = (2§, 20) — f*(2}) € R, a contradiction. There-
fore s > 0. Then, from (2) we have

f(z) > ég,zo _ o () + é(d _o) forall zE Z
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The function on the right hand side of this inequality is affine and continuous.
Thus f(z) can be replaced by f**(z) here and, in particular we get that
+00 > f*(29) > f**(20) + 1(d—c), which is impossible. Thus we have proved
that (zg, f**(20)) belongs to the closure of epip.

Now we are ready to prove that f(zg) < f**(z). Fix a A > 0. From the
lower semicontinuity of f at zp we find 0 < § < A such that f(z) > f(z0) — A
whenever z € Z, ||z — || < 6. From Lemma 2, we find 0 < v < A such that
B(f**, z0,25,5) < 7 implies s < 0. As (20, f**(20)) is in the weak closure of
epi, there is (z,t) € epit such that

t =" (20) — (25,2 — 20) <.

Find m € N, o > 0 and z € Z, i = 1,...,m such that > ;" o =
1, 37", @iz = z, and

m m
> auf (z) = 7 (20) = (25, Y cwm = 20) <.
i=1 1=1
From this it follows that there is ¢ € {1,...,m} such that
f(zi) = [ (20) — (20,20 — 20) <.

Hence B(f**, 20,25, |12 — 20l|) <y and so ||z; — 2zo|| < d. Thus

f(z0) < f(zi) +0 <y + [ (20) + (25,26 — 20) + 6
<28+ 7 (20) + [z | A

Letting A | 0, we get f(z0) < f**(z0). This proves (1). 1

LEMMA 4. Let g : Z* — (—o0,+00] be a proper lower semicontinuous
(not necessarily convex) function, with inf g > —oo. Assume that g, : Z —
(—o0, +00] is Fréchet smooth at zy € Z and denote z} = (g+)'(z0). Then

9(z9) = (9+)"(20)-

Proof. Proceed in the spirit of the proof of Lemma 3. Interchange the role
of Z and Z*. Instead of Z x R with the norm topology, consider Z* x R with
the weak* topology. |1

A Banach space is called an Asplund space if every convex continuous
function on it is Fréchet smooth at the points of a dense subset (see e.g. [8],
[26], [12]). The following is a version of the Stegall variational principle [28],
[10], [29], [26, Corollary 5.22].
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THEOREM 5. Let Z be an Asplund space. Let ¢ : Z* — (—o0,+00] be
a proper lower semicontinuous (not necessarily convex) function such that
infp > —oc and liminf|,« L (2")/||2*[| > 0. Then, given € > 0, there are
20 € Z, ||z0|| < € and z5 € Z* such that zyg € 0p(z;); actually, more can be
said:

o(=%) = pla) — (" — 7o) 2 (2" — ) forall #* € 7,
where 7y : (0, +00) — [0, +0o0] is such that s | 0 if y(s) — 0. In particular,
o(zg +h") + oz — h") —2¢(z5) >0 for all h* € Z*.
Proof. Put for z € Z
7(2) = sup{(s*,2) — pls*) : 2" € 7°Y.

Then f : Z — (—o0,+o0], f is a convex function, which is bounded on a
neighbourhood of the origin. Indeed, from the assumptions, there are a > 0
and b > 0 such that ¢(z*) > al|z*|| whenever z* € Z* and ||z*|| > b. We can
then easily see that

f(z) < max(0,b||z]| — inf ¢) whenever z € Z and ||z]| < a.

Since the function ¢ is proper, f is locally bounded below. Hence f is convex
and continuous on a neighbourhood of 0.

Since Z is an Asplund space, f is Fréchet smooth at some zy € Z, with
|z0]] < min(a,€). Put z§ = f'(20). In the notation of Lemma 2, we have

P = FH) = (2 = 220} > B 2,20, 125 — l) for all 2% € 27,

Put vy(s) = B(f*, 25, 20,), s > 0. Then, by Lemma 2, y(-) > 0 and y(s) — 0
implies s | 0. Further, it is easy to check that ¢ > f* and Lemma 4 says that
o(zf) = f*(z5). Hence p(z*) — p(z) — (2 — 25, 20) > (2" — Z]l) for all
zxeZ* 1

Remark. Stegall’s principle can also be formulated in a more general set-
ting, when the function ¢ is defined on a dentable Banach space (see [28],
[26, Corollary 5.22]). Recall that a Banach space X is dentable (which is
equivalent to the Radon-Nikodym property) if for every bounded set M C X
and every € > 0 there are £ € X* and a > 0 such that the slice

{x €M: (& x)>sup(&, M) —a}
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has norm-diameter less than e (see e.g. [8], or [26]). The proof proceeds as
that of Theorem 5. We only need Collier’s result that the dual to a dentable
space is a weak* Asplund space (see [26, page 94]).

In what follows, G'-smoothness and F'-smoothness will mean Gateaux
and Fréchet smoothness. Let X be a Banach space, z € X, and f a real
valued function defined on a neighbourhood of z. We say that f is G2-smooth
at z if f is G'-smooth at the points of a neighbourhood of z and there exists
a bounded bilinear form B : X x X — R such that

lim sup |2z + 7E)h — f/(2)h] — B(h, k)| = 0

7—0 heBx ' T
for all K € X. Then we denote f”(z) = B. If the above limit is uniform
with respect to k € By, we say that f is F2-smooth at xz. For n = 3,4,...
the G"- and F"-smoothness and the symbol £, the n-th derivative of f,
are defined by induction. For n = 1,2,... the C"-smoothness means the F"-
smoothness plus that the n-th derivative is a continuous mappping from X
to the Banach space of n-linear forms on X. It should be noted that our
definition of G"-smoothness coincides with the usual one, see, e.g. [24].

The following theorem is devoted to constructing G2-smoothness from Lip-

schitzness of the first derivative. A “norm” variant of it can be found in [15].

THEOREM 6. Assume that a separable Banach space (Z,|| - ||) admits an
Fl-smooth bump b : Z — R whose derivative is (locally) Lipschitz. Then
there exists a bump f : Z — R such that

(i) f is Fl-smooth with (locally) Lipschitz derivative, and
(ii) f is G*-smooth.

Proof. First assume that b’ is globally Lipschitz on Z. Since b is a bump,
b is also Lipschitz on Z. Let L be a Lipschitz constant of both b and ¥'. By
enlarging L, if necessary, we may assume that sup{||t/(z)||: z € Z} < L.

Let S = {h; : j € N} be a countable set which is contained and dense
in the unit ball of Z. Assume moreover that S = —S and that S+ 5 C 28S.
Denote @ = [—1,1]",

and

o0
K = {thhj D b= (t,ty,...) € T}.
7j=1
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Note that Q,T and K are compact spaces. Let ¢ : R — [0,4+00) be a C!-

smooth function, with Lipschitz derivative ¢, with support in [—%, %], and

such that [p ¢ = 1. For m,i €N, i <m, and ¢t = (t1,13,...) € Q we define
m m
Um(®) =D tihj,  em(t) = [] 2%0(2" ).
J=1 k=1

m
o (t) = [] 2502 t) - 276 (21:).
ki
Note that |1, ()| < Z;nzl 27971 < I whenever ¢, (t) # 0. Let p be the
measure on () obtained as the product of countably many Lebesgue measures
on [—1,1].
For m € N define

fml2) = /Q bz — () om(Odult), 27

Note that the integrand here is continuous on (the compact) Q. Hence f,(2)
is well defined for every z € Z. From the mean value theorem, because

fQ ©m(t)du(t) = 1, we have
‘%[fm(z +7h) = fm(2)] — / V(z — Q/Jm(t))hgom(t)dﬂ(t)‘
Q

< [ NG00 = bz i )] = e = YD) fom (D)

< Li7|[|Al%

(3) ‘%[fm(Z-FTh) — fm(2)] _/

[ vte - z/)mu))hsom(t)du(t)‘ < L] lh]%

forall0 #7 €R, z,h € Z, and m € N. Hence f,, is F'-smooth on Z and

fin(2)h = /Qb’(z — P (1)) o (£)dpu(t), zh € Z.
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Let ¢ be a Lipschitz constant of ¢'. The substitution ¢; — 7 +— ¢; yields

1
—|f1.(z+ Thy)h — f} (2)h] —
Flnte k= £ ]~ |

- ‘ [ ¥ =] 2000 (2 ozt + 1)
Q ki T

— (2] - 220 ) (o)

< Lllhllq2*|7];

(e wmu))hsozn(t)du(t)\

1 ! Vb — ' ( N (5 — 7
" \;[fm(zwhz)h Jia() ] /Q b wmu))hsom(t)du(t)\

< L||hllq2%|7|
foral0#7€R, 2€Z, he Z,andi,m €N, i <m.

Further, we can easily estimate for z, 2’ € Z, h € Z, and my,ms € N, my <
ma,

() | (2) = fma ()| <L D 2777,

mi1+1

‘ [ B~ s )i (000) ~ [ 8z = e 0, (t)du(t)‘
Q Q

© v
<I|hl Y 277,
mi1+1

V(" — s ()i (D)01(1) \

(7) ‘/Qb'(z = Yy (1) o, (£)dpa(?) _/Q

< Li|Allllz = 2"l

‘/le(z—ﬁlJml(t))hgojnl(t)dN(t)_/

[ e i, (t)du(t)‘

m2
<rjn) Y 2o /R 1 (s)]ds.

mi1+1
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The estimates (5), (6), (8) allow us to define
f(z) = lim f,(2), z€2Z,

9(2)(h) = lim [ (2 =t (t) hem (t)dp(t) (= lim f(2)h). zh€ Z,

m—o0 Q m— 00

d(2)(hyhi) := lim [ b (2 —n(t))he’ du(t), z,he€ Z, i €N
m—0o0 Q
It is easy to check that f is a bump on Z. Moreover, the first limit is uniform
with respect to z from Z, the second and the third limit are uniform with
respect to z from Z and h from a bounded set.
Letting m — oo in (3) then yields

%[f(z +7h) = f(2)] = g(2)(h)| < LI7||R|?,  0#7€R 2heZ

Clearly, g(z)(-) is linear and |g(z)(h)| < L||h||. Hence f is F'-smooth on Z
and
f'(2)h =g(z)(h) = lim fr(2)h,  zh€Z

m— 00

Letting m — oo in (7) then gives that f’ is Lipschitz, with Lipschitz constant
L. Letting m — oc in (4) yields

%[f'(z +7hi)h — f'(2)h] = d(2)(h,h;)| < L2%[|h|lg|7], 0#7€R, 2heZ

where ¢ is the Lipschitz constant of ¢'. So

(9) lim 1 [f'(z+ Thi)h — f'(2)h] = d(2)(h, h;)

T—0 T

uniformly for z from Z and h from a bounded set. For k € By, z € Z, h € By,
and 7,0 € R\{0} we have

Sf' e+ ) = f@)] = 1+ ok — (2)H]
QLI — hall + 117z + Tho)h — /()] = S 1f'(= + oho)h — f(2)A
for all 4 € N. Hence

lim ~[f(z + 7k)h — f'(2)}]

T=0 T
exists for every k € Z uniformly with respect to z € Z and h € Bz. Denote
this limit by d(z)(h, k). Moreover, as f' is Lipschitz, with Lipschitz constant
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L, we have |d(z)(h,k)| < L||h|||k| for all z,h,k € Z. Clearly, d(z)(-,k) is
linear. In order to prove that f is G2-smooth, it remains to show the linearity
of d(z)(h,-). Trivially, d(z)(h,A\k) = Ad(z)(h,k) for all A € R. Hence it
remains to verify that

(10) d(z)(h,u 4+ v) = d(2)(h,u) + d(z)(h,v) for all u,v € By.

Second, assume first that u = h;, v = h; for some 4, j € N. The substitutions
ti — 7 = tj, t; — 7 = t; give for m > max{i, j}

% [fin(z 4 7(hi + hj))h — f},(2)h]

= / Bz — Y ()h x [ 2020~ (2t + )2 0@ (¢ + 7))
Q k#i,j T

— 2'0(21:)2 p(271;) | dp(t)

- /Q (= — b (1)) g (£)dpa(t) + /

o b (z — Q/)m(t))h(pgn(t)du(t) asT— 0

uniformly with respect to m € N. Hence, letting m — oo, we get

E [f'(z47(hi + hy))h— f'(2)h] —d(2)(h, h;) — d(2)(h, h;)| = 0 as 7 — 0.
Thus

(11) d(2)(h, hi + hj) = d(2)(h, hi) + d(2)(h, hj).

Now, as f' is Lipschitz, |d(z)(h, k1) — d(z)(h,k2)| < L||h||||k1 — k2| for all
ki,ko € Bz. Thus, (11) implies (10). Therefore f is G*smooth on Z and
1"(2)(h, k) = d(2)(h,k) for every z,h,k € Z.

Second, assume that o’ is locally Lipschitz. As the set K is compact,
for every z € Z there is an open set z € U C Z such that the mapping ¥’ is
Lipschitz on the set U — K. Using this fact, we can easily check that the whole
argument above, with minor changes, works, and so, the resulting bump f has
locally Lipschitz derivative and is G?-smooth. [

Remarks. 1. The second derivative f"(z)(:,-) is in fact symmetric. In-
deed, an integration by parts yields that fQ V(z — ()it () du(t) =
fQ V(2 — tm (t)hjol, (t)du(t) and so f(2)(hi,hj) = f"(2)(hj, h;). whenever
i,j € N. Hence f"(z)(h,k) = f"(k,h) for all h, k € Z.
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2. In the above argument, we proved that f is in fact (locally) uni-
formly G*-smooth on Z, that is, lim,_osup,cp, H[f’(z + 7k)h — f'(2)h] —
f"(2)(h, k)| =0 (locally) uniformly on Z for every k € Z.

3. The above argument works if the bump b is replaced by a smooth
equivalent norm | - || such that || - || is (locally) Lipschitz on Z\Bz. The
function f is then convex nonnegative, and coercive (i.e., f(z) — 4oo if
z € X and ||z|| = 4+00). So, an appropriate implicit function theorem and
some extra effort yield an equivalent F'-smooth norm, with (locally) Lipschitz
derivative, and which is (locally) uniformly G2-smooth, see [15] and [1].

3. SPACES ISOMORPHIC TO A HILBERT SPACE
For motivation, we will start with a simple proof of the following result.

THEOREM 7. Assume that a Banach space (X, || -||) is such that the norm
||| and its dual norm are both F2?-smooth on X\ {0} and X*\{0}, respectively.
Then X is isomorphic to a Hilbert space.

Before starting on the proof we remark that easy finite dimensional exam-
ples show that the norm of a Banach space X together with its dual norm
may be twice differentiable and X itself be a non Hilbert space.

Proof. Put f = 1||-||%. We can easily see that f* = 1||-||?> where ||-|| means
the norm on X* dual to || - ||. Clearly, f and f* are F2-smooth on X\{0}
and X*\{0}, respectively. Take any 0 # zo € X and denote z§ = f'(x0).
By Lemma 1, we have that o = (f*)'(zj). The Mean value theorem yields
¢ >0, § > 0 such that

fr(zy +h*) — f*(x5) — (h*, z0) < c||h*||? whenever h* € X*, ||h*|| <é.
Then, using the notation introduced prior to Lemma 2,
af*, xh, g, t) < ct? if 0<t<d.

Hence, by Lemma 2,

1
,B(f**,ZEO,ZES,S) > 4_682 if 0SS<2C(5

By Lemma 3, f**(zo) = f(z¢). Thus

1
B(f, zo, 25, 8) > 4—32 if 0<s<2¢.
C
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This means that
Flwo+h) — f(wo) — (a, h) > 410||h|\2 whenever h € X, [[h] < 2¢0.
Using 'Hospital’s rule, we get
F(z0) (h, h) > 2lc|\h||2 for all h € X.

As f"(zq) is a bounded bilinear form,

hes [f"(x0)(h0)] 2, heX,

is an equivalent Hilbertian norm on X. |

Remarks. 1. We note that X is isomorphic to a Hilbert space if || - ||? is
G%-smooth at 0 (see e.g. [8, page 184]).

2. From the above argument it follows that it was enough to assume in
Theorem 7 that | - || is G2-smooth on X\{0} and the dual norm || - || is F!-
smooth on X*\{0} with pointwise Lipschitz derivative (see [11]).

3. Theorem 7 with F? replaced by C? was proved in [4], [27] and [30].

If a norm on a Banach space X is F2-smooth away from the origin and
another equivalent norm on X* is F2-smooth away from the origin, then the
above argument, of course, does not work. Yet such an X is still isomorphic
to a Hilbert space. Actually, the norms can be replaced by bumps: (Note
that the existence of a norm with some smoothness implies the existence of a
bump with the same smoothness; see the proof of Corollary 14.)

More precisely, we have the following result.

THEOREM 8. Assume that a Banach space X as well as its dual X* admit
a F?-smooth bump. Then X is isomorphic to a Hilbert space.

Proof. First of all, note that X is an Asplund space (see e.g. [18, Corollary
369]). Let f: X — R, g: X* — R be F2smooth bumps. Assume that
f(0) # 0 and put ¢ = f2 (i.e., ¥(x) = +oc if f(z) = 0). Then we can
easily verify that the conjugate function ¢* is convex, locally bounded, and
hence continuous on all of X*, see [26, Proposition 1.6]. Apply Theorem 5 to
Z =X and ¢ := —¢p* + g 2. We get z}; € X* such that for all h* € X*

— " (wg+h") g (ag+h" )~ (25 —h") +g 2 (x5 —h")+24" (25) —29 % (25) > 0.
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Hence g(zf) # 0 and for all h € X*
P (g +h*) + 9 (25— hY) = 297 (25) < g% (@g+ ") + g7 (2g — h*) =297 (7).

We can easily see that g2 is F2-smooth at zj. Thus, there are ¢ > 0 and
0 > 0 such that

g_2(m3+h*)+g_2(:v3—h*)—2g_2(:v3) < cHh*H2 for all h* € X*, ||h*|| < 0.
Hence
Y (xg+h") + " (g — h*) — 29" (z) < c||h*||2 for all h* € X*, ||h*| < 0.

As 1)* is convex and continuous, the above inequality implies that ¢* is Fréchet
smooth at z§. Denote zog = 9*'(zf). Thus a(yp*, zf, o, 1) < ct? for 0 < t < 4.
(We use the notation introduced prior to Lemma 2.) Using Lemma 3, we get
that zg belongs to X, and Lemma 2 gives that

ct® + B(p*, zo, xh, 5) > ts for all 0 <t <.
Hence, using Lemma 3,
B, zo, g, 8) > 4%32 for all 0 < s < 2¢d.
Thus

1
P(zo + h) — Pp(xo) — (zy, h) > 4—Hh||2 whenever h € X and ||h]| < 2¢0.
c

Observe that 1 is F2-smooth at zq since f is such and 9 = f~2. Hence,
I’Hospital’s rule used twice gives

1
" (20)(h, h) > %HhHQ for all h € X.

As " (z¢) is a bounded bilinear form on X, we can conclude that

hs [ (o) (hoh)]'?, heX

is an equivalent Hilbertian norm on X. |

Remarks. 1. The above argument implies that it is enough to assume
in Theorem 8 that X has a continuous and G%-smooth bump and X* has an
Fl-smooth bump with pointwise Lipschitz derivative at every point.

2. Theorem 8 with F2 replaced by C? was proved by Mesgkov [25].
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The result below easily follows from Kwapien’s theorem [20]. Here we
present an elementary proof of it due to Lindenstrauss [22].

THEOREM 9. Assume that every separable subspace of a Banach space
(X, |l -I) is isomorphic to a Hilbert space. Then X is isomorphic to a Hilbert
space.

Proof. For a separable subspace Y of X, let ¢y denote the supremum of
all ¢ > 0 such that there exists a bilinear form @ : Y x Y — R satisfying

clyll” < Qy,y) <llyll>  forall y Y.
We observe that
¢ := inf{cy : Y is a separable subspace of X}

is a positive number. Indeed, assume, by contrary, that for every n € N there
is a separable subspace Y, of X such that cy, < % Let Y be the closure of
U~ Yn; this will again be a separable subspace. Then

1
cy <cy, <E for all n € N,

a contradiction with cy > 0.
For every separable subspace Y of X we find a bilinear form Qy : Y XY —
R such that

1
goollyl* < Qv(y,y) <lly|*  forall yev

and define then @y : X x X = Rby

Qy (z1,39) = {Qy(ml’@) if (x1,29) €Y XY,

if (21,22) € (X x X)\(Y x V).

Let Y denote the family of all separable subspaces of X and endow it by the
relation “C”. Then (), C) is a directed set. Consider the net (Qy(-, )|Bx xBx

BX><BX

Y € y). Since it lies in the compact space [—1, 1] , it has a convergent

subnet, say (@ya (-, ')\BXxBX)- Using the bilinearity of Qy,, we get that

Q(z1,19) 1= li(gn @ya (1, x9)
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exists for all z1,z9 € X. Clearly, ) is a bilinear form on all of X and

1
ECOHxHQ < Q(z,x) < ||z|? for all z € X.

Therefore X is isomorphic to a Hilbert space. |1

THEOREM 10. ([11]) Assume that a Banach space X admits an F'-
smooth bump with locally Lipschitz derivative and its dual X* admits an
F'-smooth bump with pointwise Lipschitz derivative. Then X is isomorphic
to a Hilbert space.

Proof. Let Y be a separable subspace of X. According to Theorem 9, it is
enough to show that Y is isomorphic to a Hilbert space. By Theorem 6, we
can construct a continuous bump f : Y — R which is G?-smooth. By a shift,
we may assume that f(0) # 0. Let g : X* — R be an F'-smooth bump such
that its derivative is pointwise Lipschitz. Define ¢ : X — (—o0, +oc] by

f2  ifzey,
P(z) = :
+oo if z € X\Y.

Further we copy the proof of Theorem 8 (taking into account Remark following
Theorem 5) until we obtain

1
P(zo + h) —P(zg) — (zg, h) > 4—||h|\2 whenever h € X and ||h| < 2¢6.
c
Using the definition of v, we get that g € Y and
1
f2(zo+h)—f 2 (x0)—(x, h) > 4—||hH2 whenever h €Y and |h| < 2¢é.
c

It is easy to check that f~2 is G? smooth at zy. Then, applying I'Hospital’s
rule twice, we get that

1
(/)" (@) (h.h) = o [|h]*  for all heY.
As (f 2)"(zo) is a bounded bilinear form on X, we can conclude that

he [(F)" (=) (B 1)]?, heY,

is an equivalent Hilbertian norm on Y. [
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Remarks. 1. In Theorem 10, we can replace the word “bump” by “norm”.
Indeed, there is a standard procedure of constructing a bump sharing the same
smoothness as the given norm has; see the proof of Corollary 14.

2. With more effort, we can obtain that X is isomorphic to a Hilbert space
if X and X* both admit F'-smooth bumps (equivalent norms) with pointwise
Lipschitz derivatives [7]. Extra tools needed in the proof of this statement are
the Baire category theorem and a Day’s technique of constructing uniformly
rotund norms.

3. A further elaboration of 2. (see [24]) plus anderwerff’s result that
continuous G2-smooth bumps imply Asplundness [33] yields: X is isomorphic
to a Hilbert space if X and X* both admit a continuous G?-smooth bump
(equivalent norm). Note that the “norm” variant of this statement follows
directly, according to [3, Proposition 2.2], from 2.

4. A first result in the flavour of Theorem 10 was established in [22]. A
consequence of Kadec-Lindenstrauss study of moduli of convexity and smooth-
ness, and convergence of series yields: If a Banach space X admits an uncondi-
tional basis and an equivalent norm such that this norm and the dual norm are
smooth and have Lipschitz derivatives on unit spheres, then X is isomorphic
to a Hilbert space.

4. HIGHER ORDER SMOOTHNESS IN /, SPACES

We say that P: X — R is a polynomial of degree n € N if there is a € R
and for 2 = 1,2,...,n there are continuous ¢-linear forms B; : X* — R such
that

P(z) =a+ By(z) + Ba(z,x) + -+ Bp(x,...,x) for all z € X.

Let 1 < p < +00 be a real number. Let ¢ : X — (—o00, +00] be a function
and z € X, with p(z) < +o00. We say that ¢ is TP-smooth at z if there is a
polynomial P : X — R of degree at most p such that P(0) = 0 and

o(x + h) = ¢(z) + P(h) + o(||h||P) for all h € X.

If Q C X is an open set, we say that ¢ is TP-smooth on Q if it is 7P-smooth
at every x € Q.

LEMMA 11. Let ¢ : X — (—o00,+400] be a function and z € dom . Let
a: R — (0o0,+00] be a function C*°-smooth at ¢(z).
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(i) ([5, Chapitre 1, Théoréme 5.6.3]) If p € N and if ¢ is FP-smooth at z,
then ¢ is TP-smooth at z.

(ii) If1 < p < 400 and ¢ is TP-smooth at z, then a o ¢ is TP-smooth at x.

(iii) If ¢ is continuous and G%-smooth at z, then a o ¢ is G2-smooth at .

Proof. (i) For h € X denote

P(B) = @ (@) ) + 56" () h) 4+ g o) ),

Applying 'Hospital’s rule p — 1 times, we get

0=lim ((p(p_l)(m S th)(hy .. h) — @@ V(@) (hs. .., h)
- ¢<P)(m)(h,...,h,th))
p—1 p—1
= lim %((p(ﬂv +th) — P(th))/;ltpl ) = -
= lim % (olz + th) — P(th))/% ()
= lim tlp (o(x + th) — () — P(th)).

Noting that all the limits above are uniform with respect to h € By, we can
conclude that ¢ is 7P-smooth at z.

(ii) Write @(z + h) = () + P(h) + o(||h|?), h € X, where P is a
polynomial of degree at most p, with P(0) = 0. Find n € N such that n > p.
Then

a(p(z + h)) = a(p(x)) + o (@(2))(P(h) + o([|2]IF)) + -
+ ™ (p(a) (P(h) +o[[nl"))" + o(IP(R) + o([|RIP)]").-

—_y
n!

An inspection of this formula gives that there exists a polynomial @) of degree
at most p such that

ale(x + h)) = a(e(z)) + Q(h) + o(||h]|P) for all h e X.

(iii) Assume that ¢ is continuous and G2-smooth at z. We can easily check
that « o ¢ is then Gateaux smooth at z, with (@ o ) (z) = &/(p(z))¢ (z).
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Also, for h,k € X and 0 # 7 — 0 we have

L[/ (plat k) (@ -+ TR)(B) — o (pla)) ! () ()]
= Lol (pla + ) [¢! (& + TR)(R) — @' () ()]

+ 2ol (gl + 78) — o/ ()] () (B)
5 ol (p(a) () (h, k) + o (p(a) () () () ().

Note that this convergence is uniform with respect to h € Byx. Therefore aoyp
is GZ-smooth at z. 1

Let 1 < p < 400 and I" be an infinite set. The symbol £,(I") means the
(Banach) space of all z = (z),er € R such the norm ||z, := (Zver |x7|p)1/p
is finite. For v € I let e, denote the vector having 1 at the v’s position and

0 at all the other positions. If I' = N we write just £, instead of £,(T").

LEMMA 12. Let 1 < p < +00.

(i) [2, Lemma 1] If P : ¢, — R is a polynomial of degree less than p, with
P(0) =0, then
lim P(e;) = 0.
71— 00
(ii) If T’ is an uncountable set and P : £,(I') — R is a polynomial of degree
less than p, with P(0) = 0, then P(ey) = 0 for all but countably many
vyel.

Proof. (i) Since e; — 0 weakly, P(e;) — 0 for every polynomial of degree
1, with P(0) = 0. Consider p > 1. Take an integer 1 < n < p, and assume we
have already verified this statement for all polynomials of degree less than n.
Let P be a polynomial of degree n, with P(0) = 0. By contradiction, assume
that limsup;_,, |P(e;)| =: 3a > 0. Without loss of generality we may assume
that limsup;_, ., P(e;) = 3a. We observe that

P(x + h) = P(z) + B(z,h) + P(h), for all z,h € £,

where B(z,-) is a polynomial of degree less than n. We shall construct a
sequence (z;) of elements in ¢,, with finite support, as follows. Put z; = e;.
If x; has been constructed, find 5 € N, not belonging to the support of z;,
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so that P(ej) > 2a and B(zj,e;) > —a; it exists according to the induction
assumption. Put z;;1 = z; +¢;. Then

P(zit1) = P(z;) + B(wi, e;) + P(ej) > P(z;) +a > --- > P(er) + ia.

Note that ||z;||, = i'/? for all i € N. Therefore

P(z;) S P(e1)+ (i —1a _ P(e1) —a

1-n/p .
”xlnpn 4n/p m/p t a — 400 as 1 — 00,

contradicting the fact that P is of degree n.

(ii) Assume this is not true. Then there surely exists k¥ € N such that
the set N := {y € I' : |P(ey)| > 1/k} is infinite. Let {7, : n € N} be
a countable subset in N and let T : £, — £,(I') be the canonical embeding
sending (2 )nen to (Yy)yer, where y, =z, if y = v,, n € N, and y, = 0 if
v € I'\{v : n € N}. Then PoT is a polynomial on £,, with [PoT(e,)| > 1/k
for all n € N, which contradicts (i). 1

THEOREM 13. (i) If1 <p < oo and & ¢ N, then the space ¢, does not
admit any TP-smooth bump.

(ii) If 1 < p < 2, the space ¢, does not admit any continuous G*-smooth
bump.

(iii) Ifp € N and £ ¢ N, and T is an uncountable set, then the space £,(T")
does not admit any continuous GP-smooth bump.

Proof. Let b: /¢, — R be a continuous bump. Apply Stegall’s variational
principle (Theorem 5) to ¢ := b2 — | - ||,F and to Z := ¢q if p = 1, and to
Z =4y, q= [%, it p> 1. We get = € ¢, such that

(12) b2 (@ +h) +b" (@ —h) =267 (2) 2 [lo+hll," + ||z = hll," = 2||z],"

for all h € £,. Then b(x) # 0.
(i) Let 1 <p < oo and assume b is TP-smooth. Lemma 11 (ii) guarantees
that 2 is TP-smooth at z. Then (12) yields

(13) P(h)+o(hlly") = lz+hlly" +1lz—hll," —2]l,”  for all ke,

where P is a polynomial of even degree, say n, with n < p (as p/2 &
N) and such that P(0) = 0. (If @ is a polynomial of odd degree, then
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h — Q(h) + Q(—h) is a polynomial of degree 1 less.) Fix ¢ > 0 and take
in (13) h =te;, i =1,2,.... Then, by Lemma 12 (ii),

ot?) = Tim (P(te;) + o tei],"))

> lim (||z + teil,” + ||z — teill,” — 2]l],") = 2¢7,
1— 00

which is impossible.
(i) Let 1 < p < 2 and assume that b is G2-smooth. Lemma 11 (iii)
guarantees that b2 is G2-smooth at z. L’Hospital rule used twice yields that

. 1 ) -2 -2 _ (1—=2\"
%g%t—Q<b (z-+th)+b=2 (z—th)—2b (m)) = (072)"(@)(h,h)  forall h€ L,

Hence, from (12) we have
. 1 _
(14)  limsup 5 (Hx + th|,? + ||z — th|,F — 2|\x||pp) < (672" (z)(h, h)
t—0

for all h € £,,. (Note that this lim sup is not uniform with repsect to h € By,.)
As in the proof of [3, Proposition 2.2], put

1
o(h) = sup = (llo +thl,” + o = thl,” = 2ljall,?),  heb
0<t<1

From (14) we can see that ¢(h) < 400 for every h € £, and that ¢ : £, = R
is a lower semicontinuous, symmetric, and convex function. A Baire cate-
gory argument easily yields a nonempty open set U C £, and ¢ > 0 so that
sup p(U) < ¢. From the symmetry and convexity of ¢ we then conclude that
¢ is bounded by ¢ on a neighbourhood of 0, say ¢(h) < ¢ whenever h € £,
and ||A|l, <6, for some 6 > 0. Thus, in particular,

|z +tde;| P+l z—tde; | ,F —2||z||,” < t?c¢  for all 4 € N and for all ¢ € [0, 1].

Hence, letting i — oo here, we get 2tP6? < t2c for all ¢ € [0,1], which is
impossible for 1 < p < 2.

(iii) Let p € N be odd and assume that b is a continuous GP-smooth bump
on £,(I"). Applying Stegall’s variational principle as above, we get z € £,(T")
such that b(z) # 0 and (12) holds for all h € £,(I"). Since b is GP-smooth, an
argument used in the proof of Lemma 11 (i) yields a polynomial @ : £,(I") = R
of degree at most p, with Q(0) = 0, such that for every h € £,(I")

#(b(;p +th) — b(z) — Q(th)) >0 as t— 0.
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Then, as in the proof of Lemma 11 (ii), we can find a polynomial P : £,(I') — R
of degree at most p, with P(0) = 0, such that for every h € £,(T')
1
Lk
Then, putting R(h) = P(h) + P(—h), h € £,(T'), R will be a polynomial
of degree less than p, and for every h € £,(I') there is a function wy, with
limy_,o wp(t)/[t|P = 0, such that

(b=2(z + th) —b~*(z) — P(th)) -0  as t — 0.

b=2(z +th) + b~ 2(x — th) — 2b72(z) = R(th) + wp(t), tER

Now, realizing that the support of x is at most countable, and using Lemma
12 (ii) (countably many times), we find v € I so that z, = 0 and R(Ze,) =0
for all n € N. Taking then h = le, in (12), we get

1 1 1 1 p 1 » 2
we, (=) = R(=ey) +we, (=) 2 |2+ —ey || + [z = ~e5 |7 = 2]2],” = .

which is impossible for n — co. |1

Remarks. 1. Theorem 13 (i) is proved in [9]. A slightly weaker form of
it goes back to Kurzweil [19].

2. Once we know that £,, 1 < p < 2, is not isomorphic to a Hilbert space,
then 13 (ii) also follows from [8, Theorem V.1.1] and from Remark 1 after
Theorem 8.

3. Theorem 13 (iii) was proved in [23] using farthest points.

4. We in fact proved that the space £,(I'), with real 1 < p < oo and
uncountable I', does not admit any continuous bump with directional Taylor
expansion of degree p.

COROLLARY 14. (i) If 1 < p < 0o and § € N, then the space ¢, does
not admit any equivalent norm which is TP-smooth on £,\{0}.

(if) If 1 < p < 2, the space ¢, does not admit any equivalent norm which is
G?-smooth on £,\{0}.

(iii) If p € N and £ ¢ N, and T' is an uncountable set, then the space £,(T")
does not admit any equivalent norm which is GP-smooth on £,(I"')\{0}.

Proof. Assume that such a norm, say || - ||, exists. Take a C*°-smooth
function « : R — [0,1] such that a(1) = 1 and «(t) = 0 whenever ¢ < 1 or
t > 2. Then ao | - | is a bump and, according to Lemma 11, has the same
smoothness as || - || had. Now Theorem 13 finishes the proof. 1
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Remarks. 1. Corollary 14 (ii) was proved in [15]; Corollary 14 (iii) was
proved in [32].

2. There is a more direct proof of Corollary 14: Applying Stegall’s prin-
ciple (Theorem 5) to ¢ = || - |[P*2 — || - ||,7, we get = € £, so that

Iz + AP+ |z — AP = 202lPT > |z + AP + o — A" — 2llz],”

for all h € X. Then, applying Lemma 11 (ii) - (iii), we further proceed as in
the proof of Theorem 13.

COROLLARY 15. The space £, for p € N, p/2 ¢ N, does not admit any
FP-smooth bump or equivalent norm.

Proof. Apply Lemma 11 (i) together with Theorem 13 (i) and Corollary
14G). 1

A function ¢ : X — R is called pointwise Lipschitz smooth on an open
set Q C X if it is F'-smooth on © and for every = € € there are ¢ >0, § > 0
such that ||¢'(z 4+ h) — ¢'(z)|| < ¢||h|| whenever h € X and ||h|| < 6.

COROLLARY 16. For 1 < p < 2 the space £, does not admit any pointwise
Lipschitz smooth bump or equivalent norm.

Proof. Observe that this type of smoothness implies the TP-smoothness
for 1 < p < 2. Thus, Corollary 14 (i) applies. 1

COROLLARY 17. If 1 < p < +o0 and p # 2, then the space ¢, is not
isomorphic to a Hilbert space.

Proof. Assume 1 < p < 2. If £, were isomorphic to a Hilbert space, then
it would admit an equivalent C*°-smooth norm (away from 0). However, this
contradicts Corollary 16. If 2 < p < +o00 and ¥, were isomorphic to a Hilbert

space, then so would be its dual £;, which is isometric to £, with ¢ = -2

p—1-
However, 1 < ¢ < 2 and this contradicts the first case. The space £ is not

an Asplund space. |

Remark. For positive results about the smoothness of L, spaces we refer
to [8, Theorem V.1.1].

We conclude this section by one fact related to Theorem 13 (ii).
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THEOREM 18. For 1 < p < 2 the canonical norm || - ||, on £, is nowhere
G?%-smooth.

Proof. Let p = 1. Assume that || - ||; is G?-smooth at some z € £,. Then,
by [3, Proposition 2.2], || - |1 is F'-smooth. But for ¢ > 0

sup (||z + tei| 1+ — teill — 2]|z]1)
ieN

> limsup ([|z + teill1 + ||z — teglls — 2||=(1)

1— 00

> limsup (|z; 4+ t| + |z — t| — 2|z;]) = 21,

1—00
a contradiction.

Let p > 1. Putq:p%l; then 2 < ¢ < +o00. Put Z = ¢, and f(z) =
%Hzﬂqq, z € £4. Then Z* is isometric with £, and we can easily calculate the
conjugate f*(z*) = ;7||z*||pp, z* € £,. Assume that ||- ||, is G*-smooth at some
z§ € £p. Then so is f*. Denote zgp = f*'(2§). Then 2§ € f(20) by Lemma
1 as /, is reflexive. By [8, Theorem V.1.1(iii)], f is F2-smooth at z. Hence
there is ¢ > 0 so that

F(2) = f(z0) = (25,2 — 20) < ||z — 20|l for all z € 4,

Now, using Lemma 2 and the symbols introduced prior it, we can estimate
for s >0

1
B(f* 25, 20,8) > {ts — alf, 20,25, 1) : t >0} > sup{ts —ct>: t >0} = 4—32.
c

Therefore .
f(zg +th*) — f*(25) — (th", z0) > 4—Ctgllh*llp2

for all h* € £, and all £ € R. Now, as f* is G%-smooth at z, 'Hospital rule
used twice gives

1 1

SF7 () (W h) > —||h*,* for all h* € £,

2 4c

In this way we obtained an equivalent Hilbertian norm on £, which is impos-

sible by Corollary 17. 1

Remark. There is a statement more general than Theorem 18: Assume
that a Banach space X is not isomorphic to a Hilbert space, and that it
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admits an equivalent norm | - || having modulus of convexity (see, e.g., [8,
Definition 1V.1.4]) of power type 2. Then this norm is nowhere G?-smooth.
Its proof starts by applying [14, Lemma 5] which yields, for every z € X, a
closed hyperplane H C X and ¢ > 0 such that

lz + hll = llll > elln]®

whenever h € H and ||h|| is small enough. Then we can finish the proof as
that of Theorem 18.

5. HIGHER ORDER SMOOTH VARIATIONAL PRINCIPLES
AND GEOMETRY OF SPACES

Let S be any “reasonable” class of smoothness like “G*-smooth”, “F*-
smooth”, “C¥-smooth”, k € N,... . We say that a Banach space X admits
an S variational principle if for every lower semicontinuous bounded below
function f : X — (—o0,+00] there are an S function g : X — R and a point
zo € X such that f(z¢) = g(z¢) and f > g. Similarly we define the polynomial
variational principle. We require then that the function g is a polynomial
on X.

Let us recall that smooth variational principles as presented e.g. in [§]
require the completeness of spaces of differentiable functions involved. This
usually involves a kind of Lipschitz property of the derivatives and excludes
the direct use of €' smoothness. This drawback is overcome by Stegall’s
variational principle (Theorem 5). In this section we will discuss this approach
to this problem.

THEOREM 19. Assume that a Banach space X is dentable and admits an
S bump. Then X admits an S variational principle.

Proof. Let b : X — R be an § bump. Let f : X — (—o0,+o0] be a
lower semicontinuous bounded below function. Applying Stegall’s principle
mentioned in Remark following Theorem 5 to the function ¢ := f + b72, we
get £ € X* and xg € X such that

fz) +b072(x) — f(wo) — b %(w0) — (€, 2 — x0) >0 for all z € X.
Then, necessarily, b(zg) # 0. For z € X denote

P(z) = —b () + f(zo) + b *(x0) + (£, 2 — m0)
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and put g = a o 19 where a : [—00, +00) — R is a nondecreasing C*°-smooth
function such that

t if ¢>inf f,
a(t) =
inf f—1 if t<inff —1.

It is easy to see that then f(z() = g(zo) and f > ¢g. And, as S is reasonable,
we assume that b € S implies g € S (see [5, Chapitre 1, Théoreme 5.4.2]).
The proof is finished. 1

Remarks. 1. In the cases when S is “F'-smooth” [13], or “G'-smooth
with bounded derivative”, or “F'-smooth with bounded derivative” [8, The-
orem 1.2.3], or “C'-smooth with bounded derivative” [8, Proposition 1.2.7],
then the assumption of the dentability in the above theorem may be dropped.
The arguments are then different. The validity of the C'-smooth variational
principle without the assumption of dentability is an open question.

2. The smooth variational principles considered in [8, Section I1.2] speak
about the so called strong minimum. When we use the full conclusion of
Theorem 5 (involving the function 7y), we also get the strong minimum in
Theorem 19.

The assumption of dentability is not a loss of generality for the C¥-smooth
variational principle with £ > 1. This can be seen in the following result.

THEOREM 20. ([13]) Given an integer k > 1, a Banach space X admits
a C¥-smooth variational principle if and only if it admits a C*-smooth bump
and is superreflexive (or dentable or just ¢y ¢ X ).

Proof. Necessity. Apply the C¥-smooth variational principle to the func-
tion f = | -||'. We get a C¥-smooth function g : X — R and 2y € X such
that ||zo||~! = g(zo) and

1
Tzl > g(z) for all z € X
x

thus zg # 0. We observe that if z € X and ||z| > 2||z||, then

(z) < 1 < 1
g(z) < 77— < .
]l 2foll
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Put b = a o g, where o : R — R is a nondecreasing C*-smooth function such
that

t it >
aw=3. "
0 < g

Then b is a C¥-smooth bump on X [5, Chapitre 1, Théoréme 5.4.2].

As to the superreflexivity of X, it is enough to show that every separable
subspace of X is superreflexive. Indeed, this follows from the very definition
of the superreflexivity [8, page 133] and from the fact that the reflexivity
is separably determined (see e.g. [18, page 182]). So, let Y be a separable
subspace of X. Provide Y with an equivalent locally uniformly rotund norm
| -| (see e.g. [8, Theorem I1.2.6(i)]) and put

1 .
f(m) _ m if z c Y,
too if € X\Y.

Applying the C*-smooth variational principle to this f, we find a C*-smooth
function g : X — R and z¢ € X so that f(z¢) = g(z¢) and f > g. Hence 0 #
1o €Y. Find n € Y*, |n| = 1, such that (n,z0) = |zo| and put H = 1(0).
Consider h,, € H, n=1,2..., such that |zg + h,| — |z¢|. Then

2|zo| = (n,2z0 + hp) < )220 + hnl| < |zo| + |20 + hn| = 2|z0] as n — 0o,
and so
2|$0|2+2|$0+hn|2—|$0+$0+hn|2—>0 as n — oo.

Now, using the definition of the locally uniform rotundity (see, e.g., [18, page
96]), we get that |h,| — 0. Since g is C*-smooth and k > 1, there is § > 0
such that the derivative ¢’ is Lipschitz on the ball around zy with radius 2.
From the above, we find v > 0 such that h € H and |h| > 0 implies that
|zo + h| > |zo| + y. Hence

1
<
lzo + Al  |zo| +7

g(zg+h) < whenever h € H and |h| > 0.

Consider a nondecreasing C2-smooth function « : R — R such that

t ift> ﬁ
a(t) = ’

: 1
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Finally, define

0 if h€ H and |h| >4,
b(h) =

a(g(zg +h)) if h€ H and |h| < 2.

We can easily verify that b is a C'-smooth bump function on H, with Lipschitz
derivative. Then, by [8, Theorem V.3.2], H, and so Y, is suprereflexive.

Finally, recall that the (super)reflexivity implies the dentability of the
space [26, Theorem 2.12, Lemma 2.18] and the latter implies that ¢ ¢ X
since the unit ball in ¢ is not dentable.

Sufficiency. Let X admit a C*-smooth bump, with & > 1, and ¢y ¢ X.
Then, by [8, Theorems V.3.4 and V.3.2], X admits a C'-smooth bump with
Lipschitz derivative, and we already know that this implies the superreflexivity
of X. Now, Theorem 19 completes the proof. |

Recall that a polynomial P on a Banach space X is called separating if
P(0) = 0 and there is ¢ > 0 such that P(h) > ¢ for all h from the unit sphere
of X.

THEOREM 21. For a Banach space (X, || - ||) the following statements are
equivalent:

(i) X admits the C*°-smooth variational principle;
(ii) X admits the C*-smooth variational principle for every k € N;

(iii) X admits a C°°-smooth bump and is superreflexive (or dentable, or just
co & X);

(iv) X admits a C¥-smooth bump for every k € N and is superreflexive (or
dentable, or just co ¢ X);

(v) X admits a separating polynomial ;

(vi) X admits the polynomial variational principle.

Proof. (i) = (ii) and (iii) = (iv) are trivial.

(i) =(iii) and (ii) = (iv): see the proof of the necessity part in Theorem 19.

(iv) = (v). Assume X admits a C¥-smooth bump for every k € N and ¢ ¢
X. From the proof of Theorem 20 we already know that X is superreflexive.
According to the result of Pisier (see e.g. [8, Theorem IV.4.8]), X admits an
equivalent norm | - | such that its modulus of rotundity d(e) > ce?, € > 0,
where ¢ > 0 and ¢ > 2 are constants. Fix an integer £k > gand let b: X - R
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be a C*¥-smooth bump. Applying Stegall’s principle (Theorem 5) to b=2 — | -|,
we find £ € X* and ¢ € X such that

b2(z) — |z| — b 2(20) + |zo| — (&, 2 — 20) >0 for all z € X.
Hence b(zg) # 0 and

(15) b 2(zo + h) + b 2(zo — h) — 2b % (z0) > |zo + h|+|z0 — h| — 2|20
for all h € X.
By replacing b by |zo| 2b, we may and do assume that |zq| = 1. Find n € X*
such that |n| = 1 and (n, z¢) = |z¢|, and put H =7 ~1(0). We claim that

(16) lzo+h| > 1+ 279 R|7  forall he H, |h| <29,

Indeed, fix b € H, |h| < 2¢'/%, and denote A = ¢279hj%. Then A < 1.
If |xg + h] > 1+ A, we are done. Assume that |zg + h| < 1+ A. Put
T = ﬁ—OA, Ty = "i"le; then |z1| < 1, |z2| < 1. According to the definition of
d(e) (see e.g. [8, page 130]),

1 |h|4 21A
1 _ - > (5 _ > — [ = > A
2|$1 + zo| 2 0(|lz1 — 22]) 2 clar — 29 c(l +A) (14 A)—

On the other hand,

1 A
1+A 1+A°

1 1
L= olo s <1- 5

2(77,1‘1 +x9) =1

a contradiction. This proves (16).
Note that b=2 is C¥-smooth and hence T*-smooth at zq by Lemma 11 (i).
Let P be a polynomial of degree k such that

b 2(xo +h) = b 3(x0) + P(h) + o(|h|F)  forall h € X.
Then, by (15) and (16),
P(h) + P(=h) + o(|h|*) > 2" 9%¢|n|?  for all h € H, |n| <29
Hence, there are 0 < v <1 and d > 0 such that

Q(h) :== P(h) + P(—h) >d  whenever h € H and |h| = 7.
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We observe that there exists n € N and for ¢+ = 1,2,...,n there exists a
continuous 2i-linear form P; such that

Q(h) = Py(h,h) 4+ Py(h,h,h,h) 4+ - + Py, (h,...,h)  forall he X.
Put
Q(h) = Py(h, h)? + Py(h,h,h,h)> + -+ + Poy(h,. .., h)?, he X,

this will also be a polynomial and @(0) = 0. Fix an arbitrary h € X, |h| = 1.
We find i € {1,...,n} so that Po(vh,...,vh) > ¢. Then

~ 1 4 1 d?
Q(h) > _741P2i(h7 s ah)2 = _PQZ'(/Yha s a’yh)Q > 9
Y Y n

This means that @ is a separating polynomial on H. Finally, (h,t) + > +
Q(h), (h,t) € H x R= X is a separating polynomial on X.

(v) = (vi). Let P be a polynomial on X and ¢ > 0 be such that P(z) >
c¢> 0= P(0) whenever z € X and ||z| = 1. Write

P(z) = P (z) + Po(z,z) + -+ Pp(z,..., 1), z € X,
where P; are continuous i-linear forms on X and put
P(z) = Pi(2)? + Py(z,2)> + -+ - + Po(z, ..., 2)7% z € X.

This will also be a polynomial on X. Fix an arbitrary z € X, |z|| > 1. We

find i € {1,...,n} such that P;(z/|z|,...,z/||z|) > £. Then
5 2 2 € 2
P(x) = Pi(z, ..., z)" > |lz]|” =5 = ||z —
n n
and so T 5 400 as |z|| — +oo. Let @ : R — R be a C%-smooth bump

llz]]
such that «(0) # 0. Then o P is a C2-smooth bump on X and an argument
from the proof of Theorem 20 guarantess that X is superreflexive. Let f :
X — (—o0,4+00] be a lower semicontinuous function, bounded below. Put
o= f+P. As o) _y oo for lz|| = 400, we can use Theorem 5 for this .

ll]]

We get g € X and &€ € X* so that
f(z) + P(z) — f(z0) — P(zo) — (&, 2 — 30) > 0 for all z € X.

This means that X admits the polynomial variational principle.
(vi) = (i). We need only observe that if P is a polynomial of degree
k € N, then P*+1) =0, and hence P is C*°-smooth. |
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Remark. The equivalences (iii) <= (iv) <= (v) are proved in [14]; see
also [6].

We finish this paper with a few questions that are open in this area.

QUESTIONS. 1. Does X admit a C"*°-smooth norm if it admits a sepa-
rating polynomial?

2. Does X admit a C*®-smooth norm if it admits C*-smooth norms for
every k € N7

3. Does a separable X admit a C?-smooth norm if it admits a C?-smooth
bump?
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