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1. INTRODUCTION

This paper is devoted to several applications of morphological analysis
applied to the bounding of the overall behavior of composite materials. In
particular we focuss our attention to the generalization of the Hashin Shtrik-
man variational principles to thermoelasticity.

The analysis of the inhomogeneous elastic random media is based on the
description of the spatial distribution of the phases. The structural morpho-
logy is described by n-points-correlation function. This description gives closer
bounds depending on the increasing knowledge of their structural morphology.

This description gives rise to a systematic theory in the sense of Kroner,
but in particular cases it is better to take into account some morphological
characteristics which are not easy to describe by a limited number of point-
correlation functions. In these cases, it is better to combine a detailed de-
scription of the material by using a decomposition in families of morphological
patterns with spatial distribution of the patterns.

The Hashin-Shtrikman method is extended to take into account this new
description, and then is applied to particular cases of spatial distribution of
some typical representative patterns, as the composite spheres assemblage of
Hashin. Some other composite materials are investigated, for which bounds
of thermoelastic effective behavior are given.

2. GENERALITIES

In a thermodynamical description of the homogenization, we find that the
overall behavior is determined by the definition of the free energy of a repres-
entative volume element (RVE). This volume is small enough to distinguish

205



206 C. STOLZ

the heterogeneities and sufficiently large to be considered as homogeneous at
the macroscopical scale, at this scale the average quantities defined on the
RVE vary slowly with the position.

For the RVE, the free energy is the value of the total free energy for a state
of thermodynamical equilibrium. In our case, the equilibrium state is given
as the solution of a suitable boundary value problem, defined over the RVE.

In thermoelasticity the behavior of each constituent phase is given by the
definition of the local free energy, function of the strain € and of the temper-
ature variation 7,

1 1
w(e, ) = € Clz):e+¢(z) reT + EchQ.
The coefficients of thermoelasticity are the elastic moduli C(z), the thermal
expansion a = —C ™! : ¢, the specific heat c,, all these moduli depend on the
spatial position of the point = inside the RVE.
The local equation of state are given by

o= %—Z) = C(z): e+ ¢(z)T,
SZ—Z—Q: = —¢(z): e —cyT,

where o are the stresses, s is the specific entropy.
At any quantity f an unique macroscopic state is defined thanks to an
averaging process defined on the RVE:

1
F: = — d
</ QAf“’

where () is the volume of the RVE.

Conversely to define a local field f for a given macroscopic one F, we must
solve a complex boundary value problem. In thermoelasticity, this boundary
value problem is well defined and gives rise to the definition of the macroscopic
free energy as the potential of the system.

By definition, the free energy of the homogenized material is W =< w(e) >
determined by studying a complex boundary value problem associated to a
choice of suitable boundary conditions given in terms of macroscopical quant-
ities as the macroscopin strain £ =< & >.

Here, we assume that the macroscopic strain E is given and prescribed
over the boundary value of the medium. The displacement u solution of the
boundary value problem verifies
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the momentum equation
dive =0,

the kinematical relation

2e(u) = Vu + Viu,

the local constitutive law

c=C:e+71¢,

the boundary conditions

u=FE.x,x € 0.

The global free energy is then a function of the global strain E, and of the
variation of the temperature 7. The displacement u is the solution of a linear
problem, then the local strain field takes the form

e(z; E,7) = B(z) : (E— < €res(T) >) + pes(T)

the strain concentration tensor B is the local strain for an isothermal evolution
of the RVE. The local strain ¢,.; is the strain due to the temperature 7, this
field is kinematically admissible with a free expansion of the body Q. These
strains are associated with a self-equilibrated stress field r, which verifies

r=C: €res(T) + ¢7,
0=divr,
O=<r>.

Under these conditions, the global free energy of the system is a quadratic
function of the macroscopic strain F, and of the temperature variation 7 :

1 1
W(E,7)=<w((E,T1),T)>= §E :Cepf: E+®: BT+ 501)72

the coefficients of the overall thermoelastic behavior are given by

Ceff:<Bt:C:B>,
d=<B':¢>,
CoT =<y >T— < P: B> T+ < P Epes > .
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In these expressions, the influence of the residual stresses due to the incom-
patibility of the field of the thermal expansion is emphasized. The value of
the global free energy is determined for the given state (E,7) by using all
the properties of the local fields, the kinematical admissibility of the strains
(€, €res, B), and the statically admissibility of the stresses (o, 7). In particular
the relations < r : g¢s >= 0,and < r : B >= 0 are verified.

The overall behavior takes then the form

ow
Z:<U>:Ceff:E+T<¢:B>:—8E’
ow
S = =——0.
<s> 5,

These relations gives rise to the overall thermal expansion:
Ey = —Cgflf 0T =< s > .
Dually, we can use the complementary energy:

w*(o,7) =min—o : € + w(e, 7)

to obtain the overall complementary energy of the RVE.

3. BounbpING METHOD

Let us rewrite the boundary value problem on a reference homogeneous
medium with macroscopic elastic moduli C,,. Denoting by 6C the perturbation
C(z) — C, and by p(z) the stress polarization field defined by

p=06C:e,H=056C"".

A state of equilibrium verifies the conservation of the momentum, the kin-
ematical admissibility of the strain and the local constitutive law, then it is
the solution of the new boundary value problem:

e the momentum equation
dive =0,

e the kinematical relation

2¢ = Vu + Viu,
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e the local constitutive law

c=Co:e+1d+p,

e the boundary conditions

u=FEzx, x €,

e the internal constraint
e=H:p.

Let n = ¢ — E, a kinematically admissible strain field, <  >= 0, the value
of the total potential energy for the displacement solution of the boundary
value problem is then a stationary point of the functional F"

1 1
F:§E:C'O:E+<p-|-<]57'>:E—i—§<c1,>T2

1 1
+§<77:Co:17>+<(p+<]57'):17>—§<p:H:p>.

For given value (p’,7),denoting by n'(p’, 7) the solution of the variational
equation 86—5 e n = 0, this field depends linearly on the prescribed quantities

(p',7), and realizes a local minimum for ¥ . The value of this minimum is the
Hashin-Shtrikman functional HS(E,p', 7):

1 1
HS:§E:C(,:JE?+<;‘D’+<;5T>:E+§<cv>72

1 1
+§<(p'+q57'):77'(p',7)>—§ <p':H:p >.

A statically admissible stress field ¢’ is obtained for each 7’
o =Co: (E+1n)+p +¢r.

For the given prescribed boundary conditions the free energy of the system is
the value of the potential energy for the solution of the problem of equilibrium
then the free energy of the system can be bounded by the application of the
energy principles:

—<w (0, T) >+ <o > E < W(E, 1) < <wE,7)>.

By using the properties of /', <7’ >=0, < ¢’ : / >= 0, and for a suitable
choice of the reference medium C,, the Hill’s classical results are recovered:



210 C. STOLZ

e if H is negative definite:
W(E,T) < HS"(B,p,T),

e if H is positive definite:
HS™(E,p,7) <W(E,T).

This functional is different of the proposed one in J. Willis (1981). Here
the formulation is based on a purely elastic reference medium, and 7 is con-
sidered as an external given loading. After a suitable choice of the reference
medium, we must determined an optimal value for the polarization field p by

the variational equation
OHS

dp
The optimal value of HS is then a quadratic function of the prescribed quant-
ities (E, 7):

eip=0.

1 1
Q°(E,7) =HS(E,p(E,7),7) = §E :Cy: E+ 3 <p+¢T > FE

1 1
+§<T¢:6(p,7')>+§<c1,>7'2.

In this expression the local strain e(p,7) is the solution of the problem of
thermoelasticity. This strain is kinematically admissible with E for any given
7 and p.

To explain the value of the Q° it is necessary to determine the strain field
¢ defined on the reference medium for any choice of the polarization p and
any choice of 7.

This solution € is given by the integral equation

e+ / Iz, ) (p(y) + By)7)dew = B,
Q

where I'? is the modified Green operator (I' = G pain)Gia) ) deduced from the

Green tensor G°(z,y) , and E, is chosen such £ =< ¢ >. The Green tensor
is the elementary solution of the problem of elasticity:

e the momentum equation
9 o 9
(9:Ei ikl (9:El

in which we have taken the local constitutive law into account:

Gip(z,2") + 0pd(z — ') =0, zeQ, ' €N
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e the boundary conditions

Gip(z,2') =0,z € 00,2 € Q.
Finally we obtain the bounds of the overall behavior as

1 1
Q (E,7) ZEE:C“:E—i-(I)f:ET—i-ﬁC';T2

1 1
<W(E,7)= EE:Ceff:E+<D:ET+§Cv7'2

1 1
<QY(E,7) = §E:C+:E+CI)+:ET+§CJ7'2.

Then as the two quadratic functions W — Q= and QT — W are positive
definite, we have immediately:

E:C_:ESE:CEff:ESE:C"':E,
Cy <C, <Cf,

and for the non diagonal terms, the two reduced quadratic functions must be
positive definite

(CF = Cepp)(Cf = Cy) = (@F — @) @ (&F — @) >0,
(C™ = Cosp)(Cy —Cy) = (@ =) @ (¢ - @) 20,
4. APPLICATIONS
4.1. CASE OF AN n-PHASE COMPOSITE. For an isotropic reference

medium, the solution e of the problem of polarization is

e+ /Q Iz, ) (p(y) + By)7)dew = &,

where the I'° is known exactly for the infinite medium. I'° has a singular part
E,, value of which is related to the Eshelby problem of spherical inclusion or
heterogeneity, and a regular contribution Fj,.

Following Hashin-Shtrikman and Walpole, we can choose for p(z) piecewise
uniform function

p(z) = Y 1PrXr (z)

where ;. is the characteristic function of the phase r.
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In the Hashin Shtrikman functional, only appear the average quantities &,
of the local strain on each phase r. As pointed out by Walpole, the solution at
the optimum for an isotropic spatial distribution of the phases, extended here
for thermoelastic case, is given by the resolution of n problems of spherical
inclusions, the solution of each being given by

& = B, : (E+ < Eres >)+6:es’
Ay =T+ Epber, By = AN < A7 ST,

n
6:85 = _A;lEO(ﬁTa < f >n = Z err '
1

The functional HS takes the final form
1
HS:§E:CHS:E+<¢:B>nET

1
[< P:eres >n T —T < ¢: B >p< res Snl+ < §cv72 >

N | =

_l’_

for the value 7 = 0, the classical bounds for the elastic moduli are recovered
CHS =< A >< A7 >
and the other coefficients take naturally the value
S =< pB >, =< pA 1 >, < A > L
CHS —< ¢y >, — < (=015 : AL By i >y .

For isotropic phases, these terms are isotropic, and the bounding problem is
reduced to solve two scalar inequalities

3(KT — Kepp)(Cff — Cy) — (@7 = @)* >0,
3(K™ — Kepf)(Cy — Cy) — (@7 — )2 > 0.
As proposed by Rosen (1970), if K. sy is assumed to be known as
Kepp=K"=7yK"+(1-7K , 0<y<1,

the two inequalities determine the intersection of two domains defined by two
parabola in the (®, C),) plane, the intersection of the parabola are two points
(®*,Cy) coordinates of which are defined by

3(K* — K*)(C) - Cy) — (" —9")* =0,
3K~ —K*)C, —C})— (2 —3*)?=0.
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the solution is given by

DL =40 + (1 —7)0 £V,
T = 3y(y — 1)[BAC,AK — (AD)?] >0,
AK=K"— K ,AC,=C —C;,A® =3 — ™.

Then for all Keff KT < Keff < K+, o < —3Keffaeff < (Di.

These equations determine bounds of the expansion coefficient in a easier
manner than by using the translational method as proposed by Gibiansky and
Torquato (1997). A particular case is the case of a two phase materials, then
the bounds of the expansion coefficient are given by the Levin formula:

1 1
- < = >
K K
ags =< a>+ ~E——am—(ag — 1) .
K K

It is noticed that the upper bound is not related to the upper Hashin Shtrik-
man bounds it depends on the sign of (ay — a1)(Ky — K7).

4.2. THE COMPOSITE SPHERE ASSEMBLAGE. For the Hashin Sphere
Assemblage, the kernel is made from material 2 inside a core of material 1.
The modulus of compressibility is perfectly determined:

X1(K1 — K3)(3K2 + 4psz)
3K2 + 4,&2 + 3(1 — Xl)(Kl — KQ)

Kepp = Ko+

and then by application of the Levin formula we have

1 1
< >
a —<a>+u(a —ay)
eff— L_L 2 1),
K K

then also the specific heat is determined

3x1(1 = x1)(d2 — ¢1)?
3Ky + 4pg +3(1 — x1)(K; — Ka)

Cy=<cy>—

4.3. OTHER MORPHOLOGICAL ASSEMBLAGE. Let us consider a com-
posite defined by N morphological patterns A. The pattern A has the geometry
D). Inside €1, each domain belong of the family A has a center X ,i‘, the number
of such domains is V).

On the geometry D), we define a polarization field Py(y). Then if the
geometrical point x € € is inside the k-th domain of the family A, there
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exists an unique point y of Dy, such as z = y + X,;\. At the point y the
thermomechanical characteristics are Cy(y), da(y), cor(y). Let us defined a
set of averaging process (Bornert at al (1996)):

1
') = 3D ey + X)),
ATk

1
<qg>y= —/ qdw .
Dy

The functional HS takes now the form

1 1
HS:§E:CO:E+§;f,\<P,\+¢,\T>,\:E

+%Zf,\ < a7 ¥ (p,7) >+%Zf,\ <M >y r?
A A
where f) is the concentration of domains Dy: f) = %.
In the particular case of spherical patterns, with isotropic constituents,
which are in an isotropic spatial of their centers. The solution of the boundary
value problem in thermoelasticity is given by

e+ / Tz )(p(y) + H(y)7)dew = £,
Q

by application of the averaging process and by taking into account the spatial
distribution of the center we have

eo= el + / Tz, ) (Pa(y) + ba(y)7)do
Sx
M (z) = HY () : Pi(a).

As in isothermal elasticity, the optimum is obtained by solving N problems
of spherical composite inclusion embedded in the reference medium C,. The
value of ¢, applied at the infinity is chosen to have the average condition

E:Zf)\<€§/[(y) >y .
A

We consider now an assemblage of N spherical patterns A\, each composed
by ny concentric layers of an isotropic homogeneous medium. Under radial
loading, the solution of the problem of thermoelastic equilibrium shows that
each composite sphere is equivalent to an homogeneous one with thermoelastic
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characteristics (K, D), c{}) . For this particular case the bounds are given as
in the preceding section 4.1 but the reference medium is defined relatively to
the local value C)(y) of the mechanical phases.

For example, for two families of spherical patterns with two layers, we
obtain the bounds

L+
apsy = fax+ (1 — flo, + L_l F(an — )

K K,

where Krgps is one of the bounds of Hashin-Shtrikman for the assemblage of
two composite spheres

3K)\Ku + 4Ho(fK)\ + (1 - f)KM

Kgsu = -
BKOK (75 + L) + 4o

5. COMMENTS

The applications of the proposed method are presented on different situ-
ations ; the extension to morphological patterns has been proposed and ap-
plied to particular cases of local morphology.

The spatial distribution of the different phases have a great influence.
For example in a two phases composite, the thermal expansion coefficient is
only bounded by using the Levin formula and the bounding of the modulus
of compressibility, for the same phases arranged as a the composite sphere
assemblage of Hashin these two moduli are closely determined.
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