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1. INTRODUCTION

Material points and bodies are among the fundamental notions of con-
tinuum mechanics. It is generally assumed that bodies are sets whose ele-
ments, the material points, are identifiable in all configurations of the body.
This basic assumption allows the definition of a configuration of a body in
the physical space as an injective mapping of the body into the set represent-
ing space. In addition, the velocity field is defined as the vector field whose
value at a point is the tangent to the trajectory of the body element that
occupies this point. Traditionally, the existence of such invariant material
structure has been associated with conservation of mass. In contrast, when
one wishes to study growth of bodies, the material structure of bodies should
be reexamined. In such theories, mass in not conserved and material may be
added to the body or removed from it. Continuum theories of growing bodies,
formulated from a global point of view using configuration spaces of growth,
were presented in [7], [11], and [8].

The term continuum mechanics is used in the sense that in most cases
the body and space sets are assumed to possess smooth structures. In most
traditional formulations the underlying geometric structure is that of a three
dimensional Euclidean space. Some attempts have been made to formulate
parts of the theories on differentiable manifolds having some additional struc-
ture such as a metric, a connection, etc. (see for example [3], [5], [6]).

Here we suggest a framework where material points are derived quantities
rather then assumed a-priori. Following [2], the authors defined in [13] ma-
terial points as integral lines of a flux field, obtained from the balance of an
arbitrary property that need not be conserved. Thus, mass is separated from
the material structure. The framework presented here generalizes [13] by using
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a setting on general differentiable manifolds rather than a three dimensional
Euclidean space as an ambient space. Furthermore, the variance properties of
the relevant variables with respect to a change of frame in the physical event
space are considered. It is assumed that the event space has the structure of a
fiber bundle over the time axis and a frame is a trivialization of that bundle.
In particular, a material frame is constructed where the volumetric growth
has a simple “canonical” form.

Section 2 describes the basic notation, definitions, assumptions and rel-
evant results to be used in the sequel. In particular, using a frame depend-
ent definition, volumetric growth is presented as a combination of density
rate of change and boundary interaction for some extensive property. The
generalized Cauchy postulates and theorem are presented together with the
differential version of the balance law. Section 3 specializes the foregoing res-
ults to the case where a volume element is given. In Section 4, the material
structure is defined and Section 5 introduces the material frames where there
is no boundary interaction term in the expression for the volumetric growth.
The transformation rules for the various quantities associated with volumetric
growth are discussed in Section 6. In particular, it turns out that the volume
term and boundary interaction term used in Section 2 to introduce volumetric
growth are not frame invariant independently. Finally, the variational version
of the balance law is introduced in Section 7. This version is the one suitable
for a frame invariant definition of volumetric growth.

2. VOLUMETRIC GROWTH AND THE GENERALIZED CAUCHY THEORY

The geometric model for the physical event space that we assume here has
an absolute time coordinate. The time axis is assumed to be a one dimensional
manifold 7 that is identified with R. The collection of physical events & is
the total space of a trivializable fiber bundle

m: &= T.

The typical fiber of the bundle is an oriented manifold S to which we do not
attribute at the moment any additional structure. We will refer to S as the
space manifold and use m to denote its dimension.

A frame F is a (global) trivialization of the bundle, i.e., a diffeomorphism

F:£E—=SxT.

In the rest of this section it is assumed that a frame F' is given. For a given
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event e we will loosely use the notation
z=ua(e) = Fi(e), t=t(e)="Fye), e€’,
where Fy, F, are the two components of F.

DEFINITION 2.1. A control volume is a compact m-dimensional subman-
ifold with corners of S.

DEFINITION 2.2. A volumetric growth is an assignment of an m-form Sz
on R and an (m — 1)-form 7z on dR, for each control volume R. Thus, for
any control volume we may set

IR:Z5R+/TR

oR

as a value of a real valued set function defined on the collection of control
volumes.

The set function R +— I is interpreted physically as the production of a
certain property measured in R. The first integral is interpreted as the growth
rate of the property contained in R so the form S is interpreted as the rate of
change of the density of the property in R. The second integral is interpreted
as the rate at which the property leaves R through the boundary and 7 is
referred to as the flux density.

Cauchy’s postulates are concerned with the dependence of the forms Sz
and 7 on the control volume R under consideration. Usually, Cauchy’s postu-
lates and the resulting Cauchy theorem are formulated for a three-dimensional
Euclidean space (see for example [4]). Marsden and Hughes [5] gave a for-
mulation of the theory in the setting of a three dimensional metric manifold.
Here, using the following results of [9], we present a generalized theory for the
case where S is an m-dimensional oriented manifold as stated above.

ASSUMPTION 2.3. (GENERALIZED CAUCHY’S POSTULATES) The volum-
etric growth {(8r,7r)}, for all control volumes R, satisfies the following con-
ditions.

(i) For every z € S and control volume R, fr(z) = f(z), i.e., the value
is the same for all control volumes containing z. Accordingly, one can
omit the subscript R.
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(ii) For every z € S and control volume R such that x € IR, T (z) depends
only on the oriented annihilator f € TS \ {0} of T,0R, i.e., f(v) > 0,
for each element v € T, S pointing “outwards”. Thus, denoting by T*S™
the bundle obtained from T*S by the removal of the zero element on
every fiber, we have a section

m—1

7: T*ST - /\ T*S™,

giving 7z (z) when evaluated on a form f representing T,,0R, and satis-
fying 7(f) = 7(af) for every positive number a. Here, A™ ™' T*S* is the
vector bundle over T*S™ whose fiber over the form f at z is the vector
space of (m — 1)-forms on the oriented hyperplane ((m — 1)-dimensional
subspace of T,;S) determined by f.

(iii) The section 7 is smooth.

(iv) There is an m-differential form ¢ on S, such that

Inz/c.

R

The form ¢ is interpreted as a source (production density) term for the
property under consideration and it reflects the fact that the property
is not conserved. In the sequel we will refer to this assumption as the
balance law.

DEFINITION 2.4. Let the form f be the oriented annihilator of H = T,;0R
and let Z7; be the restriction of forms induced (as dual mapping) by the
inclusion Zy of H in T, S. Then, using the orientation on S we assumed, we
define the odd restriction of o, ¢}: A" T,8 — N™ 7 H, as follows.

(i) ¢j(or,. . svma1) = (o) (v1,. .. vm1), if (v,01,...,vm_1) are posit-
ively oriented for any vector v with f(v) > 0 (i.e., v is pointing our-
wards),

i) (v, .oy vm_1) = —Zx(0)(v1, ..., Vm—1), if (v,v1,...,0y_1) are negat-

(i) o3 ( ) = =T (0)( ) if ( ) t

ively oriented.

The basic result is
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PROPOSITION 2.5. (GENERALIZED CAUCHY THEOREM) There is a unique
(m — 1) form o on S such that at every point x € T, S

7(f) = 1}(0).

Remark 2.6. The fact that we use the odd restriction is written tradi-
tionally (where a metric is available) as ¢(—n) = —¢(n) and in our notation

T(=f) = —7(f)
Remark 2.7. In the sequel we will refer to o as the kinetic flux field.

Using the kinetic flux field, the balance law may be rewritten in the form
of a differential equation as follows.

PROPOSITION 2.8. (THE DIFFERENTIAL VERSION OF THE BALANCE LAW) Gi-
ven the kinetic flux field form o, the balance law (Assumption 2.3(iv)), is
equivalent to

do+0=¢

inS.

3. THE CASE OF VOLUME MANIFOLDS

It is now assumed that S is a volume manifold so, in addition to an ori-
entation, a volume element p is given on §. We recall that if p is represented
locally as

r(zt)det AL A dz™,
then, for a vector field v represented by its coordinates v*, the contraction
v p is represented by

m
Z(—l)i+1rvi dz' Ao ANdzi AL A dz™,
=1

Consider a local representation for the kinetic flux o (for the orientation
induced by p) in the form

m
Zaidxl/\.../\dmi/\.../\dxm.
=1

Thus we have
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PROPOSITION 3.1. Given a volume element p and a kinetic flux form o,
there is a unique vector field v, called the kinematic flux, satisfying

vap =o.
With the notation introduced above, the local representation of v is given by

(-1)"g;

r

v =

Remark 3.2. We note that the kinematic flux depends upon the choice
of volume element only by the particular choice of the vector field in a one
dimensional sub-bundle of T'S. Thus, ¢ determines a unique one dimensional
sub-bundle of T'S. We will refer to this sub-bundle as the flux bundle.

Remark 3.3. Let {v1,...,v,_1} be any collection of m — 1 vectors in a
hyperplane containing the fiber of the flux bundle at z € S. Then, since
for any non-zero element v of the flux bundle, the collection {v,v1,...,vym-1}
contains m linearly dependent vectors in T'S,

o(V1y ey Um—1) = 02p(V1, ..y Um—1)
= (1,91, 2+ 1)
=0.

We conclude that the flux density through any hyperplane containing the flux
bundle vanishes.

We note that for a given volume element p, the differential version of the
balance equation do + = ¢ may also be written in terms of the kinematic
flux vector field. We have

do = d(vap) = Lyp —vadp = Lyp.

Since L,p is an m-form there is unique real valued function divwv, the diver-
gence of v (see [1, p. 455]), defined on S, satisfying

Lyp = pdivo.

Thus, using b and s to denote the unique functions such that 5 = bp and
¢ = sp, respectively, we have
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PROPOSITION 3.4. Given a volume element p on S, the differential balance
law may be written in terms of the kinematic flux in one of the following
equivalent forms

(1) £’U:0+ 5 = Ca
(ii) divo +b = s.

4. MATERIAL ELEMENTS AND BODIES

The existence of a manifold B containing as elements the identifiable ma-
terial points, is the standard assumption of continuum mechanics allowing the
definition of a configuration of a body as an embedding

k: B—S.

With the previous observations it is possible now to define material ele-
ments and bodies as derived notions. We note first that all the considerations
of the previous sections hold for any particular time ¢. (The frame where
the variables are defined has been kept fixed so far.) We assume now that
the forms S, ¢, p, and section 7 vary smoothly with time. As a result, the
kinematic flux v(z,t) varies smoothly with time and as such, it determines a
time dependent differential equation in space.

For (z,t9) € S x T, we will use X, ;,(t) to denote the value at the time ¢
of the the integral curve passing through z at time .

DEFINITION 4.1. An integral line of v is a body element. The collection
of all body elements is the universal body B.

We note that by the theory of differential equations, for any instant tg € T
there is a neighborhood U C T, tg € U, where the flow of v

P SxU =7 (U), ¢°(z,t) = (Xuuo(t). 1),

is a fiber bundle diffeomorphism. For the sake of simplicity we assume that
#? is a fiber bundle diffeomorphism for which U = 7. Thus, the integral lines
can be parametrized by the initial conditions at to = 0. As a result, we may
identify a body element X with its unique initial condition in §. Similarly,
the universal body is diffeomorphic to §. Traditionally, the identification of
body elements with the respective initial conditions is referred to as reference
configuration. For this reason, in the sequel we will often omit the #g index
and use ¢;: S — S to denote the mapping such that ¢;(z) = X;0(¢).
These enable us to make the following definition.
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DEFINITION 4.2. A body B is a compact m-dimensional submanifold with
corners of B. A configuration of a body B is an embedding B — S. A motion
of a body B is a fiber bundle morphism B x U — n~!(U), where U is open
in R, whose restriction to B x {t} is a configuration for all ¢t € U.

Clearly, the restrictions of ¢; to bodies are configurations of these bodies.

5. TIME DEPENDENT VOLUME ELEMENTS AND MATERIAL FRAMES

For the fixed frame F' on space-time, consider a smoothly time dependent
volume element p(t) on S. The flow ¢ of the kinematic flux v induces another
smoothly time dependent volume element po(t) = ¢;(p(t)). We will refer to
po as the reference description of the volume element p. Given any body B,
the definition of py implies that

[mr = oo

B ¢+(B)

for any instant ¢.
Since the integral on the left is over a fixed region, we have

d _ dpo
B B

On the other hand, a generalized version of the transport theorem (see [1, p.

471]) implies that
d op
d 1) = P L),
o[- [ ( e p)

$¢(B) $(B)

Thus we arrive at the following

PROPOSITION 5.1. The reference description pg of the time dependent
volume element p satisfies the following equivalent equations

o 1+ 9po dp
1* —_— = —
(l) ¢t < at > at + £’UIO’

(it) ¢ (%) =9 pdive,
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9o\ _ 9p
1%
iii — do.

So far, the interpretation of the form g as a rate of change of the density
of a certain physical extensive property, as mentioned in its introduction, was
not considered any further. In addition, no physical motivation was given to
the introduction of the volume element p. The two can be combined now by
assuming that p is the density whose rate of change is 8 so

dp
p="2.
ot
By comparing Proposition 5.1 with the differential version of the balance law
(Proposition 2.8) it follows that

1.(0
§:¢t1 <£>7

and we may write for the volumetric growth of the property

Ty //3+ / r = / o ()
Op:(B (B)

9po.

ot
B

The last equation is interpreted as follows. In the expression for the set
function I in terms of the forms  and 7, the boundary term indicates in-
teraction. One could ask whether there is a frame where no interaction term
appears. We note that the inverse of the flow ¢: S x R — £ is a global frame
where B and ¢;(B) represent the same control volume and where the expres-
sion for the volumetric growth has the required property. In other words,
the kinematic flux, whose existence is a result of Cauchy’s postulates, induces
a canonical frame, the material frame where growth has a particular simple
form—mno interaction term is present and the source density is identical to the
rate of change of the property’s density.

6. VARIANCE PROPERTIES

So far we restricted ourselves to one frame F': S X T — £ and constructed
the material frame for it. We did not consider the variance properties of the
forms 3, 7, and ¢. This section discusses these issues.
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Assume that in addition to the frame F we are given a frame F’. Thus,
FloF7':SxT 8T

is a fiber bundle morphism whose base mapping 7 — 7T is the identity. Let
: S x T — S, be the first component of F' o F~! and denote its restriction
to S x {t} by 1. The identification of 7 with R implies that we can regard
F' o F~! as a flow whose generating vector field is (u, 1), where u = Tt is
the second partial derivative of 1. Clearly, 1 is a flow on S whose generating
time dependent vector field is u.

Given a control volume R C § that is fixed in the frame F' and an m-form
w' on 8, setting w = 1) (w'), we have

[o= |
R Pe(R)

This transformation rule applies to the density p and to the production rate <.
However, although £ is an m-form, being the time derivative of p, it transforms
differently. Using the generalized transport theorem and Stokes’ theorem, one

has
[ (e
P(R) Pi(R)
/<aa—'[:+d(u_|p)>
/ + [ T,

0Y1(R)
On the other hand, since R is fixed in the frame F',

[ s[5 [

Hence,

IR:/ﬁJr/T: / o T / <I*(UJIOI)+Z/)_1*(T)).



ON VOLUMETRIC GROWTH AND MATERIAL FRAMES 201

It is assumed now that Ig is frame invariant (frame indifferent in the
continuum mechanics terminology), i.e., that I = Iy, (r)- In addition, the
expression of I for the frame F’ should be the same as that for F'; so there is
an m-form S’ on 94(R) and an (m — 1)-form 7’ on 9(R), such that

Iyr) = Ir = / B+ / T

Pt (R) 0Pt (R)
It follows that

,_3_/)'_ — 1%
ﬁ_at_d)t (IB)’

=T (s pl) + 9 ().

It is apparent from the last equation that one cannot treat 8 and 7 as inde-
pendent frame invariant objects.
One concludes that if u satisfies the equation

I*(’LLJ pl) +’(,/);1*(T) — 0’

then, u is a vector field generating a frame for which there is no boundary
interaction. The existence of one vector field that satisfies this equation for
all control volumes is a result of Cauchy’s theorem.

7. THE VARIATIONAL VERSION OF THE BALANCE LAW

Consider a fixed frame F' on £. Multiplying the differential version of
the balance law (see Proposition 2.8) do 4+ 3 = ¢ by a differentiable function
w: S — R and integrating over a typical control volume R, we obtain

dea—l—Zwﬁszg

Since,

/wdaz/d(wa)— dw Ao
R R

R

" (wo) — /dw Ao,

OR R
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we have using Z*(wo) =

to which we will refer as the variational form of the balance law. The vari-
ational form of the balance law regards I as a linear functional, the growth
functional, on the space of differentiable functions on S, that is continuous
with respect to the c' topology. Thus, we will use I (w) to denote either side
of the last equation.

Assume that a volume element p is given so there is a kinematic flux field
v, with 0 = v p. Then,

0=wva(dwA p) = (vadw) A p—dwA (va1p),
and one concludes that in this case
dw Ao =dwA (vap) = dw(v)p.

Thus, for the case of volume manifolds, the growth functional may be repres-
ented in the form
= /wc + /dw('u)p
R R

The significance of the variational version of the balance law is that it
allows a frame invariant characterization of growth. Consider the frames F,
F' with transformation mapping 1;, and a control volume R C S at time ¢
under F' whose image under F’ is R’ = 1)4(R). Then, the requirement that the
evaluation of the growth functional is frame invariant, i.e., Ig(w) = Ix:/ (w'),

w' = by (w), implies

/wg—i—/dw/\a—/wg—i—/dw/\a

R R

As this should hold for an arbitrary control volume and arbitrary test function
w, we conclude that ¢ and o indeed transform according to the rules ¢’ =
Y7 (s) and o’ = ¢b;*(0). Thus, for a given control volume in & = 7 1(t),
all the quantities in the last equation are defined independently of the choice
of frame. Hence we arrive at the following frame indifferent characterization
of growth that includes Cauchy’s postulates.
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DEFINITION 7.1. A volumetric growth at time ¢ consists of an m-form ¢
and an (m — 1)-form o on & that represent, for each control volume R C &,

a growth functional
I (w) :/w§+/dw/\o

R R

on the space of differentiable real valued functions C'(R).
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